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Time-Domain Fast Fixed-Point Algorithms
for Convolutive ICA

Johan Thomas, Yannick Deville, Member, IEEE, and Shahram Hosseini

Abstract—This letter presents new blind separation methods for
moving average (MA) convolutive mixtures of independent MA
processes. They consist of time-domain extensions of the FastICA
algorithms developed by Hyvarinen and Oja for instantaneous
mixtures. They perform a convolutive sphering in order to use pa-
rameter-free fast fixed-point algorithms associated with kurtotic
or negentropic non-Gaussianity criteria for estimating the source
innovation processes. We prove the relevance of this approach by
mapping the mixtures into linear instantaneous ones. Test results
are presented for artificial colored signals and speech signals.

Index Terms—Convolutive mixtures, fixed-point algorithms, in-
dependent component analysis (ICA), non-Gaussian signals.

I. INTRODUCTION

B LIND source separation (BSS) consists in estimating a set
of unobserved source signals from observed mixtures

of these sources where the mixture parameters are unknown.
Let us denote by the vector of
sources and by the observations.
We consider convolutive mixtures defined by a set of unknown
filters with impulse responses , where and

. The relations between the sources and the obser-
vations may be expressed in the time domain as

(1)

The overall relationship then reads in the domain

(2)

where and are, respectively, the transforms of
and , and the matrix consists of the

transfer functions of the mixing filters.

In this letter, each source is assumed to be expressed in
the domain as

(3)

where corresponds to a filter, and is the trans-
form of a process , which is the innovation process of
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. Denoting , we can then
express the mixing (2) as

(4)

where , with diag
.

We make the following assumptions concerning the above
mixture model.

• The process is real-valued,
zero-mean, independent and identically distributed
(i.i.d.), and spatially independent, i.e., its components

are statistically independent of each other but do
not necessarily have the same distribution. We also as-
sume that, at most, one of these components is Gaussian.

• The filter matrices , , and thus are causal,
finite impulse response (FIR), and nonsingular. Note
that infinite impulse response (IIR) systems can also
be approximated by equivalent (high-order) FIR models.

The goal of convolutive BSS is typically to estimate the con-
tributions of all sources in each observation, i.e., .
In deflation-based methods such as [1], this is achieved by using
the following procedure.

1) Extract the innovation process of a source
from the observations.

2) Identify coloring filters and apply them to in
order to recover the contributions of in each obser-
vation, i.e., .

3) Subtract these contributions from all the observations.
4) Set . If , go back to step 1) in order to

extract another source.
We here consider time-domain BSS methods, which use non-
Gaussianity as a criterion to realize the first step of the above
procedure and which are therefore based on independent com-
ponent analysis (ICA) [2]. In the next section, we analyze
the principles and limitations of the existing methods, and we
propose an approach to extend them so as to obtain the currently
missing fast-converging kurtotic and negentropic methods for
convolutive mixtures. The experimental performance of the
proposed methods is presented in Section III, and conclusions
are drawn from this investigation in Section IV.

II. ANALYSIS AND EXTENSION OF BSS METHODS

BASED ON NON-GAUSSIANITY

A. Previously Reported Approaches

Delfosse and Loubaton [3] proposed the first deflation-based
kurtotic BSS method for linear instantaneous mixtures, where
the filters are replaced by scalar coefficients. This method
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first consists in derivingaspheredversion of theobservation
vector , i.e.,asetof linearcombinationsoftheseobservations
composed of signals that are mutually uncorrelated at time and
that have unit variances. A first output signal is then derived as a
linear combination of the spheredobservations,
with anormalized coefficient vector selected so as to maximize
the square (or the absolute value) of the nonnormalized kurtosis
of defined by
for a zero-mean signal. Delfosse and Loubaton proved in [3] that
the local maxima of this criterion correspond to the separation
points. They used a gradient-like method to maximize this
criterion. This requires one to select an adequate adaptation
gain and anyway yields slow convergence. Hyvarinen and Oja
solved this problem by introducing a fixed-point algorithm for
optimizing the above criterion [2].

A different approach was proposed by Tugnait for convo-
lutive mixtures [1]. It directly operates on the observations,
i.e., without first sphering them, but then uses the absolute
value of the normalized kurtosis of the output signal , i.e.,

, as the separation
criterion. Tugnait proved that the separation points correspond
to the local maxima of this criterion when recombining the
observations with doubly infinite extraction filters. He proposed
to optimize this criterion by using a gradient-based approach,
which again yields slow convergence. The tests performed in
our team [4] showed that, even when using Newton’s optimiza-
tion scheme instead, convergence remains slow, especially for
high-order mixing filters.

This letter therefore aims at filling the gap that results from the
above approaches, i.e., at introducing fast-converging kurtotic
or negentropic methods for convolutive mixtures. To this end,
we first investigate how to extend to convolutive mixtures the
approach based on sphering and fixed-point optimization of
nonnormalized kurtosis that has been proposed for instantaneous
mixtures.

B. New Methods for Extracting an Innovation Process

All above methods require a normalization, as the nonnor-
malized kurtosis of tends to infinity when the power of

tends to infinity. In Tugnait’s approach, the criterion itself
is normalized as the method consists in estimating one of the
innovation processes up to a delay and scale factor by
maximizing the absolute value of the normalized kurtosis of a
convolutive combination of the observations defined as

(5)

where , are noncausal FIR filters in practice.
Instead, the two linear instantaneous approaches mentioned

in the previous subsection use nonnormalized kurtosis and are
based on a normalization of the power of . This results
from the sphering stage of these approaches, which yields

, so that selecting with
guarantees that . We here extend this method to
convolutive mixtures. To this end, the first step of our approach

performs a “convolutive sphering” of the observations, defined
as follows. At any time , we consider the column vector

(6)

which contains entries. We derive the -entry
column vector defined as

(7)

where is an matrix chosen so that

(8)

With respect to , operation (7) may therefore be con-
sidered as conventional sphering, which consists of principal
component analysis and normalization. Now, with respect to the
original observations , this may be interpreted differently.
Indeed, (6) and (7) show that the signals are convolutive
mixtures of the . Equation (8) then means that the signals

are created so as to have unit variances and to be mutually
uncorrelated, which may be seen as a spatiotemporal whitening
and normalization of the observations . Let us denote by

the extracted signal

(9)

where is an -entry extended column vector of extraction
coefficients that, together with (7), yields a convolutive
combination of the observations. The power of reads

. By constraining so
as to meet (8), we get . Therefore

(10)

Our method then consists in maximizing the absolute value of
the nonnormalized kurtosis of defined by (9) under the
constraint . The Appendix shows that this
criterion lets us extract an estimate of a delayed and scaled
source innovation process , under some conditions.

Moreover, powerful algorithms for performing a constrained
optimization of the absolute value of the kurtosis of
may then be straightforwardly derived from those previously
reported for linear instantaneous mixtures, because the Ap-
pendix shows that the convolutive mixtures studied in
this letter may be reformulated as instantaneous mixtures in the
considered conditions. Especially, we propose as an extension
of [2] the following convolutive kurtotic fast fixed-point ICA
algorithm based on our modified vector .

• Initialize to a value , e.g., using the approaches pro-
posed below.

• Repeat the following steps 1) and 2) until convergence

(11)

(12)

The above-mentioned initial value of may be selected at
random. An improved approach may be obtained by taking ad-
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vantage of the relationship that exists between our vector and
the coefficients of the FIR filters of Tugnait’s approach defined
in (5). Indeed, let us consider the columns of our sphering ma-
trix and index them as

(13)

based on (6) and (7). Using (7), the signal (9) ex-
tracted in our method reads

. Identifying this expression
with the output signal (5) in Tugnait’s approach, we obtain

(14)

and therefore

(15)

where the row vector consists of the impulse response coef-
ficients of the filters to . This relation lets us ini-
tialize our vector as in Tugnait’s method, i.e., with unit filters

, so that is the sum of all observations .
That corresponds to defined as

(16)
Equation (15) then yields . This initialization of

provided better experimental results than a random one and
is used in Section III.

For instantaneous mixtures, instead of using the kurtosis, an-
other contrast function based on negentropy was proposed by
Hyvarinen to estimate non-Gaussianity [5]. It has been shown
to yield better robustness and lower variance than the kurtotic
approach. In particular, it is more robust to extreme values than
the kurtosis criterion, which involves a fourth-order moment,
whose estimation is very sensitive to outliers. Furthermore, a
fast and reliable fixed-point algorithm was also developed by
Hyvarinen for this type of function. We extend this negentropic
algorithm to convolutive mixtures in the same way as the above
kurtotic approach, using the following adaptation formula in-
stead of (11) in each iteration:

(17)

where and are the first and second derivatives of a contrast
function that is used for estimating the negentropy.

The proposed kurtotic algorithm may be optimized in terms
of the processing time needed for computing the expectation in
(11). Indeed, (11) requires to perform a matrix-vector product

for each sample index in order to compute
the sum of the resulting terms for expectation
estimation. By computing the vector once for the
considered iteration of the algorithm and by replacing by
in the update (11), we obtain

(18)

We hence compute only two matrix-vector products to estimate
the expectation, i.e., one in and one in (18). The
same principle applies to the negentropic algorithm (17).

Fig. 1. (a) SIRs of extracted sources depending on Q for artificial colored
signals. (b) SIRs of extracted sources of interest depending on the input SNR.
(c) Time of extraction of the first innovation process depending on Q for
Tugnait–Newton optimization and for our fixed-point optimization. (d) SIRs of
extracted sources depending on the mixture order for speech signals.

C. Overall Proposed BSS Methods

The above extraction stage provides an estimate of a
source innovation process up to a delay and a scale factor, which
we can then color to obtain each contribution of the th source
in the th observation . This can be done by deriving the
noncausal coloration filters that
make the signals be the closest to in the
mean-square sense [4]. This is here achieved by noncausal FIR
Wiener filters [6], whose impulse response coefficients form
vectors defined by

(19)

where is the autocorrelation matrix of the signal , and
is the cross-correlation vector of the signals and
. Note that the autocorrelation matrix has a highly regular

Toeplitz structure, and there are a number of efficient methods
[6] for solving the linear matrix equation (19).

After subtracting the contributions from all
observations, we obtain another mixture configuration with

sources. The first step must then be iterated as explained in
Section I to extract the innovation process of another source.

III. EXPERIMENTAL RESULTS

In this section, we illustrate the performance of our methods
on several examples. These algorithms are first tested for

convolutive mixtures of artificial colored signals
containing 100 000 samples. The innovation processes
have uniform distributions. For this type of signal, the kurtosis
turned out to be the best optimization criterion, as compared
to negentropy, and is used below. Fig. 1(a) shows the resulting
output signal-to-interference ratios (SIRs), depending on the
model order that we define as the sum of the orders of the
mixture and innovation coloration filters and .
For each extracted source, this SIR is averaged over the two
estimated source contributions. For each value of , 100 Monte
Carlo simulations were made by varying the mixture and inno-
vation coloration filter coefficients with a uniform distribution,
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and the resulting mean and standard deviations of the SIRs
were computed. The order of in (6) was set to ,
since our tests proved that this yields a good trade-off between
performance (SIR) and computational cost. Similarly, the order
of the noncausal filters used to color the estimated
innovation processes was fixed by using . Fig. 1(a)
shows that for model orders up to 60, the means of SIRs
are between 17 and 9 dB for the first source and a little lower
for the second source, apart for linear instantaneous mixtures,
which yield much higher performance.

In the second series of experiments, we tested our algorithm
in the underdetermined case and , when the
two observed signals contain a stationary white Gaussian “noise
source” in addition to the above two sources of interest. We fixed
the model order to . By varying the power of the noise
source and thus the signal-to-noise ratio (SNR) in the observa-
tions, we investigated the robustness of the estimated mixing
matrix to noise. To this end, we computed the SIRs of the esti-
mated two sources of interest in which we canceled the contri-
butions of the noise source. Fig. 1(b) shows that our method is
fairly robust as SIRs remain higher than 10 dB for SNRs down
to 8 dB.

For , we also compared the processing time
of our method with a modified version of Tugnait’s algorithm
introduced in [4], which already achieves higher speed than
Tugnait’s approach by using a modified Newton algorithm.
We varied the model order between 0 and 30 for sources
containing samples ( or
lead to unacceptably high processing time for 100 runs of
Tugnait–Newton’s approach). The results in Fig. 1(c) represent
the time of the innovation extraction stage, which is by far the
most time consuming. This shows that our method is about 100
times faster than Tugnait–Newton. In addition, it yields slightly
higher SIRs, i.e., about 0.5 dB.

The next series of experiments was carried out with two
English speech sources sampled at 20 kHz during 5 s. As in the
first set of experiments, we varied the order of the mixing filters

, and we again performed 100 experiments for each filter
order. This time, we chose to perform the innovation extraction
stage on a 20 000-sample window where the signals are almost
stationary and to estimate the SIRs on the overall signals. For
these audio signals, the negentropic optimization criterion
with turned out to yield better performance,
probably because of their distributions tails [5]. The results
in Fig. 1(d) show that the mean SIRs are between 11 and 7
dB, which is 4 dB lower than with the above 100 000-sample
artificial stationary signals. This results from the 20 000-sample
window, which yields slightly lower performance for artificial
signals, and from the moving average (MA) process model
(3), which is only approximately relevant for speech sources.
Anyway, this yields significant perceptual quality improvement.

We also tested our negentropic algorithm with real 64th-order
mixing filters measured at the ears of a dummy head [7] and
with , . We selected the impulse responses
associated with source positions defined by 80- and 120-degree

angles in relation to the dummy head. Using again the above
two speech signals, the mean output SIRs were 9.1 dB for the
first source and 6.9 dB for the second source. These real filters
therefore yield almost the same performance as the 64th-order
artificial ones considered in Fig. 1(d).

APPENDIX

RELEVANCE OF CONSIDERED CRITERION

The considered observations are expressed with
respect to the innovation processes according to (4).
They are therefore causal th-order FIR mixtures of these
processes. Now consider the vector defined in (6) and
composed of delayed observations. The analysis provided in
[8] implies that if

(20)

where is the number of lags, then may
also be interpreted as a set of linear instantaneous mixtures
of corresponding sources, which are here delayed and scaled
versions of the innovation processes , with at least as many
observationsassources.Therefore, if (20)ismet, theinvestigation
for instantaneous mixtures provided in [3] proves rigorously
that, by maximizing the absolute value of the nonnormalized
kurtosis of the signal defined in (9) under the constraint (10),
we extract a delayed and scaled innovation process ,
whose practical estimate is denoted hereafter.

If (20) is not met, the reformulated instantaneous BSS
problem is underdetermined, i.e., it involves fewer observations
than sources (note that this is especially the case when ).
Some approximations are then necessary. However, when the
ratio associated to (20) tends to 1 (which is
the case when and is large), a delayed and scaled
innovation process may still be accurately estimated as a linear
combination of the available observations whose absolute
nonnormalized kurtosis is maximum under the constraint (10).
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