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ABSTRACT : The present work investigates free damped oscillations of an oil drop in water after 
its release from a capillary tube. Both pure heptane drops and diluted crude oil drops are considered 
(in the second case the interface is covered by amphiphilic species, natural components of crude oil). 
Shadowgraph images of the drops are taken by means of a high speed camera and the drop contour is 
detected  by  image  processing.  The  axisymmetric  drop  shape  is  then  decomposed into  spherical 
harmonics, which constitute the eigenmodes of oscillations predicted by the Rayleigh-Lamb theory. 
Time evolution of each mode is then obtained. The frequency and the damping rate of the principal 
mode (n=2) are accurately determined and compared with theoretical values for an immobile clean 
drop oscillating around spherical shape. For pure heptane drops, theoretical value of the frequency 
agrees well with experiments whereas the damping rate is significantly underestimated by theory. 
The experimental results clearly show that the different modes are coupled. Energy is thus transfered 
from mode n=2 to n=3, which probably explains the observed enhancement of the damping rate. The 
effect of the interface viscoelastic behaviour, induced by adsorbed amphiphilic species on the free 
oscillations was examined. No significant effect was observed in the experiments conditions (small 
amplitude oscillations and moderate aging). 

1 Introduction 

During crude oil extraction, water is often co-produced. The water-cut may exceed 80 vol. % for wells 
at final stages of life. Water-in-oil emulsions are thus produced when liquid-liquid flow encounters 
cross-section restrictions as the wellhead choke valve. These emulsions are stabilized by amphiphillic 
species which are natural components of crude oil. Understanding the emulsion formation process is an 
essential step towards the conception and optimisiation of separation methods.
Drop breakup has been previously studied for a turbulent flow in a vertical column provided with a 
concentric restriction [1]. Results have shown that the deformation and breakup process depended both 
on the flow hydrodynamics and the drops own dynamics. The role of the interface  response in the 



breakup mechanism was previously displayed by Risso and Fabre [2] for bubbles in a turbulent field. 
The Hinze-Kolmogoroff force balance approach [3, 4] was pointed out to be insufficient to predict 
experimental data (break-up probabilities and highest stable diameter). The drop/bubble deformation 
was described by a linear oscillator forced by the Lagrangian turbulent Weber number.  The drop-
oscillator is therefore characterized by an oscillation frequency and a damping rate for each oscillation 
mode, predicted by the Rayleigh-Lamb theory [5, 6]. An accurate determination of the latter properties 
is thus necessary for the development of break-up models. The present work investigates free damped 
oscillations of an oil drop in water after its release from a capillary tube. It aims to study the dynamics 
of  both clean interfaces  and interfaces covered with amphiphilc  species and to asses  the adsorbed 
species effect on the drops dynamics.

A pre-deformed fluid particle immersed in a stagnant medium performs oscilations driven by periodic 
exchange  between  kinetic  and  potential  energies  [7].  Oscillation  eigenmodes  were  determined  by 
Rayleigh [5] and Lamb [6]. Their calculations are based on the potential flow theory and assume the 
oscillations  are  of  low  amplitude.  Each  eigenmode  corresponds  to  a  spherical  harmonic  and  is 
described by two integers n and m. This study focuses on axisymetric oscillation modes, for which 
m=0 .
For an axisymetric mode n, the interface local position in spherical coordinates can be expressed using 
r θ , t  , referred to as the local radius:

r θ , t =a [1Ancos ωn t ⋅Pn cosθ  ] (1)

 where a is the non-deformed drop radius, An the amplitude of the nth mode oscillations, ωn the angular 
frequency and Pn  cosθ   the nth order Legendre polynomial of cos θ , given by

Pn cosθ = 1
2 nn!

⋅ d n

d cos θ n
[ cos2θ−1 n ] (2)

The oscillation frequency expression for a given eigenmode n is:

ωn=2π f n= n−1 n n1 n2 
 ρd n1  ρc n 

⋅ σ

a3 (3)

where  ρc and  ρd are  respectively  continuous  and  dispersed  phases  densities  and  σ the  interfacial 
tension. 
The particle shape can be written as a sum of spherical harmonics and for small amplitude deformation, 
the  shape  evolution  is  given  by  the  superimposition  of  independant  linear  harmonics  modes,  and 
written as:

r  t , θ =a [1∑n

An cosωn t ⋅Pn cosθ ] (4)

In  the  absence  of  external  forcing,  oscillations  are  damped  and  the  particle  tends  to  recover  an 
equilibrium spherical shape. In the case of low viscosity fluids, the oscillation amplitude decrease as a 
time exponential:

An=An 0 ⋅exp −βn t  (5)

The damping rate βn is derived from the dissipation corresponding to the potential-flow fields [6]. For a 
two fluids system, its expression is [8] 

β n=
n1  n−1  2n1  μdn n2  2n1  μc

[ρd n1 ρc n ]⋅a2 (6)

where µc and µd  are the viscosities of the continuous and disperse phases respectively.



2 Materials and methods 

2.1 Experimental setup and liquid-liquid systems  

Two liquid phase systems were considered: clean interface system and covered interface system. In 
both cases, the continuous phase consisted of tap water. n-heptane (purity 96 %) was used for the first 
system, while crude oil diluted in n-heptane (10 % vol.) was used for the covered interface system. In 
fact, crude oil contains amphiphilic species (mainly asphaltenes and resins) that adsorb at the liquid-
liquid interface, providing it with viscoelastic behaviour. 

Properties at 25°C Continuous phase Disperse phase

(water) Heptane Diluted crude oil

Density ρ (kg/m3) 997 685 697

Viscosity  µ (Pa.s) 9·10-4 4.7·10-4
4.7·10-4

Water / heptane Water / diluted crude oil

Interfacial tension σ (mN.m-1) 47
25

(interface age 20 min)

Table 1. Main physical properties of the liquid-liquid system

The experimental  setup consists of a plane sided flask filled with continuous phase.  Oil  drops are 
released from a vertical U-shape capillary tube immersed in the continuous phase and connected to a 2 
mL syringe.  Diluted crude oil  drops are allowed to age before their release in order to permit the 
diffusion of the amphiphilic species towards the interface and the formation of an interfacial network [7 
bouriat]. Two aging times were considered: 5 min and 20 min. Shadowgraph images of the drops are 
taken  by  means  of  a  high  speed  camera  (Photron  APX),  at  a  rate  of  1000  frames/second  and  a 
resolution of 512 x 1024 pixels. Light source consisted of a light-emitting diodes plate.  The outer 
diameter of the capillary tube is used for image calibration. 

2.2 Drop shape analysis

The  drops  shape  is  analyzed  by  image  processing  using  an  algorithm developed  under  Matlab® 
environment. Captured grayscale images are stored as matrices of 1024 x 512 elements; each element is 
assigned with the correspondent pixel greyscale level, ranging between 0 and 256. After background 
subtraction and image binarization, the drops projection is detected.

The polar coordinates of the boundary pixels are determined and an interface equation is fitted to the 
detected line. Assuming that the drops are axisymetric, the interface equation in spherical coordinates is 
established for each image:

r=∑
i=0

5

k i cosi θ (7)

where θ is the azimuthal angle. Equation (7) is then rearranged and the local radius written as a linear 
combination of Legendre polynomials,

r=∑
i=0

5

Bn Pn  cosθ  (8)

where Bn the multiplying coefficient corresponding to the nth order Legendre polynomial of cos θ , i.e. 
the  nth order  spherical  harmonic.  Spherical  harmonic  corresponding  to  n=0  and  n=1  represent, 
respectively the volume variation and the drop translation. They were not considered in our case which 



involves incompressible fluids and where the boundaries coordinates are defined with respect to the 
drop gravity centre. Equation 8 is normalized by the radius a, leading to:

r  t , θ =a [1∑n

An Pn cos θ ] ,                   An=
Bn

a
           2≤n≤5 (9)

For  2≤n≤5 ,  An,  plotted against  time,  constitutes the  nth eigenmode contribution to the drop free 
oscillations.  The  oscillation  frequency  and  the  damping  rate  can  then  be  measured  for  different 
eigenmodes.

5 mm

Fig. 1. Reconstitution of the drop projection. Time between 2 consecutive plots: 30 ms

3 Results and discussion 

3.1 Clean interface system 

Signals corresponding to 4 oscillation modes of a 4.6 mm diameter heptane drop are shown in Fig. 2. 
We can notice a significant contribution of mode 3, while the second mode remains the dominant one. 
A signal shift, increasing with time, is observed especially for the second mode:  the drop average 
shape, initially spherical, evolves towards an oblate spheroid, due to the drop ascent in the stagnant 
phase. Time evolution of the second mode is represented in fig. 3, after being centered by subtracting a 
moving average from the raw time evolution plots. A damped sinusoidal signal is then obtained and 
can be modeled by:

A2=A2 0 e−10 t cos 2π⋅25⋅t  (10)
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Fig. 2. Time evolution of An for 4 oscillation modes

The experimental  oscillation  frequency is  25  Hz and agrees  well  with  the  value  predicted by  the 
Rayleigh-Lamb theory (f2 = 24 Hz, equation 3). However the mentioned theory underestimates the 
damping rate (equation 6): the experimental damping rate for the second mode (10 s-1) is 5 times larger 
than the theoretical value (β2 = 2s-1).
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Fig. 3. Heptane drop: Centered oscillation signal for 
mode 2; dashed line: exponential decay (damping rate 

10 s-1)
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Fig. 4. Heptane drop: Centered oscillating signals for 
mode 2 (continuous line) and mode 3 (dashed line).



Centered oscillation signals for both modes 2 and 3 are represented in figure 4. We notice that mode 3 
oscillations are not purely sinusoidal as predicted by the Rayleigh-Lamb theory. However, the highest 
frequency measured (47 Hz) matches well with the theoretical value (45 Hz). 
 The signal corresponding to mode 3 is modulated by the second mode signal, which has roughly a 
twice smaller frequency. Coupling between modes leads to energy transfer from mode 2 to mode 3, 
which probably explains the observed enhancement of the second mode damping rate.

3.2 Covered interface system

Crude oil amphiphilic components adsorb at oil / water interface constituting a viscoelastic network. A 
variation in the interfacial area induces an interfacial tension variation, which depends on the interface 
deformation (area variation) and deformation speed. The interfacial dilational viscoelastic behaviour 
was  previously  characterized  by  interfacial  rheology  experiments  involving  low frequency  forced 
oscillations (dynamic drop tensiometer [9]). It has been observed that the interface dilational elasticity 
and viscosity depend on the oscillation frequency and the interface age. The frequency range of the 
dynamic  tensiometer  was  from  0.1  to  1  Hz,  therefore,  interfacial  elasticity  and  viscosity  values 
corresponding to the drop natural frequency (tens of Hz) were obtained by extrapolation. 
Figure 5 displays the second mode free oscillations for a 20-minute-old diluted crude oil drop. The 
measured oscillation frequency is 27 Hz, approximately equal to the value predicted by the Rayleigh-
Lamb theory, which stands for a uniform and constant interfacial tension. The measured damping rate 
is  13.76 s-1,  3.5 times the theoretical  one (3.76 s-1),  while  the ratio between the experimental  and 
theoretical damping rates for the clean interface case was 5. Therefore, no significant effect of the 
adsorbed material  was observed in our experimental conditions, i.e.  low amplitude oscillations and 
moderate aging.
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Fig. 5. Diluted crude oil drop: Centered oscillation signal for mode 2; dashed line: exponential decay 
(damping rate 13.76 s-1)

In order to explain the obtained results,  let us consider the expression of the oscillation frequency 
(equation 3). The frequency is proportional to the square root of the interfacial tension (σ1/2), which is 
assumed  constant  and  uniform all  over  the  interface.  When  the  interface  is  covered  by  adsorbed 
species, the interfacial tension is no longer constant and depends on the interfacial area variation, the 
interface is then said to have viscoelastic behavior. Rheological constitutive equations establish the 



relation between the interfacial tension and the interfacial deformation (aria variation) and deformation 
speed.  Assuming  the  interface  behavior  is  described  by  the  Kelvin-Voigt  model,  the  constitutive 
equation writes:
  

σ=σ0εαη α̇ ,            with     α̇=dα
dt

= 1
Α

dΑ
dt

(11)

where Α  is the interfacial area, σ0 the non-deformed drop interfacial tension, ε the interfacial elasticity 
and η the interfacial viscosity, respectively 30 mN/m and 0.05 mN.s.m-1 (values extrapolated to match 
the drop second mode frequency). Therefore, for small amplitude deformation, the interfacial tension 
variation is insignificant and the oscillation frequency corresponds to the clean interface case.
On the other hand, the interfacial viscosity contribution in the oscillations damping is evaluated by 
calculating a surface damping rate, which is proportional to the square of the oscillation amplitude:

β n
S= 1

2 2n1 
⋅

n1 n
nρcn1  ρd

⋅ η

a3
⋅An

2

 
(12)

The  surface  damping  rate  (0.03  s-1) is  also  insignificant  compared  to  the  volume  damping  rate
(equation 6).

4 Conclusion 

Drop free oscillations in a liquid at rest have been analysed by video processing. First results have 
shown the contribution of several eigenmodes in the drop free oscillation, whose frequencies are well 
predicted by the Rayleigh-Lamb theory. Coupling is observed mainly between modes 2 and 3 and 
accounts for an energy transfer between the mentioned modes, which could explain that measured 
damping rates are large compared to those predicted by the above-mentioned theory. The effect of the 
interface viscoelastic behavior, induced by adsorbed amphiphilic species on the free oscillations was 
examined. No significant effect was observed for the present experimental conditions, which 
correspond to oscillations of small amplitude and moderate interface aging. 

References

1. Galinat, S., Risso, F., Masbernat, O., Guiraud, P. Dynamics of drop breakup in inhomogeneous turbulence at 
various volume fractions. J. Fluid Mech. Vol 578 , pp 85 – 94, 2007. 

2. Risso F., Fabre J. Oscillation and breakup of a bubble immersed in a turbulent flow,  J. Fluid Mech. Vol. 
972, pp 323-355, 1998.

3. Hinze J. Fondamentals of the hydrodynamics of splitting dispersion processes, AICHE J. Vol. 1, pp 289-295, 
1955.

4. Kolmogorov A.N. On the disintegration of drops in turbulent flow, Doklady Akad. Nauk U.S.S.R., Vol. 66, p. 
825, 1949.

5. Rayleigh Lord. On the capillary phenomena of jets, Proc. Roy. Soc., Vol. A 138, pp. 41-48, 1879.
6. Lamb. Hydrodynamics, 6th edition, Dover press, New York, 1932.
7. Risso F. (2000), The mechanismes of deformation and breakup of droplets and bubbles, Multiphase science 

and technology,  12, 1-50
8. Miller C.A., Scriven L.E. The oscillations of a fluid droplet immersed in another fluid, J. Fluid Mech., Vol. 

32, pp. 417-435, 1968.
9. Benjamins J., Cagna A., Lucassen-Reynders E.H. Viscoelastic properties of triacylglycerol/water interfaces 

covered by proteins.  Colloids and Surfaces A: Physicochemical and Engineering Aspects 114, 245-254, 
1996


