Compound Node-Kayles on Paths

Adrien Guignard, Eric Sopena

To cite this version:

Adrien Guignard, Eric Sopena. Compound Node-Kayles on Paths. Theoretical Computer Science, 2009. hal-00288659v1

HAL Id: hal-00288659
 https://hal.science/hal-00288659v1

Submitted on 18 Jun 2008 (v1), last revised 29 Dec 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Compound Node-Kayles on Paths

Adrien Guignard, Éric Sopena
E-mail: \{Adrien.Guignard,Eric.Sopena\}@labri.fr
Université de Bordeaux
LaBRI UMR 5800
351, cours de la Libération
F-33405 Talence Cedex, France

June 18, 2008

Abstract

In his celebrated book On Number and Games (Academic Press, New-York, 1976), J. H. Conway introduced twelve versions of compound games. We analyze these twelve versions for the Node-Kayles game on paths. For usual disjunctive compound, Node-Kayles has been solved for a long time under normal play, while it is still unsolved under misère play. We thus focus on the ten remaining versions, leaving only one of them unsolved.

Keywords: Combinatorial game, Compound game, Graph game, Node-Kayles, Octal game 0.137 .

1 Introduction

An impartial combinatorial game involves two players, say A and B, who play alternately, A having the first move, starting from some starting position G_{0} [3, 5]. When no confusion may arise, a game with starting position G_{0} is itself denoted by G_{0}. A move from a given position G consists in selecting the next position within the finite set $O(G)=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ of the options of $G(O(G)$ corresponds to the set of legal moves from $G)$. Such a game is impartial since the set $O(G)$ is the same for each player playing on G (otherwise, we speak about partizan games, that we do not consider in this paper). A common assumption is that the game finishes after a finite number of moves and the result is a unique winner. In normal play, the last player able to move (to a position G with $O(G)=\emptyset$) wins the game. Conversely, in misère play, the first player unable to move (from a position G with $O(G)=\emptyset$) wins the game. A fundamental property of finite impartial combinatorial games is that the outcome of any such game (that is which of the two players has a winning strategy) is completely determined by its starting position or, in other words, by the game itself.

The main questions we consider when analyzing an impartial combinatorial game are (i) to determine the outcome $o(G)$ of a game G and $(i i)$ to determine which strategy the winner has to use. We set $o(G)=\mathcal{N}$ (resp. $o(G)=\mathcal{P}$) when the first player (resp. second player), that is the Next player (resp. the Previous player), has a winning strategy, and, in that case, G is called a \mathcal{N}-position (resp. \mathcal{P}-position).

For impartial combinatorial games under normal play, these questions can be answered using the Sprague-Grundy Theory [3, 5], independently discovered by Sprague [20] and Grundy [12]: each game G is equivalent to an instance of the game of Nim on a heap of size n, for some $n \geq 0$. We then define the Sprague-Grundy number $\rho(G)$ of such a game G by $\rho(G)=n$. Therefore, in normal play, $o(G)=\mathcal{P}$ if and only if $\rho(G)=0$. For any game G, the value
of $\rho(G)$ can be computed as the least non negative integer which does not appear in the set $\left\{\rho\left(G_{i}\right), G_{i} \in O(G)\right\}$, denoted by $\operatorname{mex}\left(\left\{\rho\left(G_{i}\right), G_{i} \in O(G)\right\}\right)$ (minimum excluded value). The strategy is then the following: when playing on a game G with $o(G)=\mathcal{N}$ (which implies $\rho(G)>0$), choose an option G_{i} in $O(G)$ with $\rho\left(G_{i}\right)=0$ (such an option exists by definition of $\rho)$.

The conjunctive sum of two impartial combinatorial games G and H, denoted by $G+H$, is the game inductively defined by $O(G+H)=\left\{G_{i}+H, G_{i} \in O(G)\right\} \cup\left\{G+H_{j}, H_{j} \in O(H)\right\}$ (in other words, a move in $G+H$ consists in either playing on G or playing on H). The SpragueGrundy value of $G+H$ is obtained as $\rho(G+H)=\rho(G) \oplus \rho(H)$, where \oplus stands for the binary XOR operation (called Nim-sum in this context). The conjunctive sum of combinatorial games is the most common way of playing the so-called compound games, that is games made of several separated components. (The main subject of this paper is to consider other ways of playing such compound games).

Following an inspiring paper by Smith [19], Conway proposed in [55, Chapter 14] twelve ways of playing compound games, according to the rule deciding the end of the game, to the normal or misère play, and to the possibility of playing on one or more components during the same move.

Node-Kayles is an impartial combinatorial game played on undirected graphs. A move consists in choosing a vertex and deleting this vertex together with its neighbours. If we denote by $N^{+}(v)$ the set containing the vertex v together with its neigbours, we then have $O(G)=$ $\left\{G \backslash N^{+}(v), v \in V(G)\right\}$ for every graph (or, equivalently, game) G. If G is a non-connected graph with k components, say $C_{1}, C_{2}, \ldots, C_{k}$, playing on G is equivalent to playing on the conjunctive sum $C_{1}+C_{2}+\ldots+C_{k}$ of its components (since a move consists in choosing a vertex in exactly one of the components of G).

Node-Kayles is a generalisation of Kayles [3, Chapter 4], independently introduced by Dudeney [9] and Loyd [14]. This original game is played on a row of pins by two skilful players who could knock down either one or two adjacent pins.

Playing Node-Kayles on a path is equivalent to a particular Take-and-Break game introduced by Dawson [6], and now known as Dawson's chess, which corresponds to the octal game $\mathbf{0 . 1 3 7}$ (see [3, Chapter 4], [55, Chapter 11], or [10] for more details). This game has been completely solved by using Sprague-Grundy Theory (see Section 3.1).

Node-Kayles has been considered by several authors. Schaeffer 17] proved that deciding the outcome of Node-Kayles is PSPACE-complete for general graphs. In [7] , Bodlaender and Kratsch proved that this question is polynomial time solvable for graphs with bounded asteroidal number. (This class contains several well-known graph classes such as cographs, cocomparability graphs or interval graphs for instance.) Bodlaender and Kratsch proposed the problem of determining the complexity of Node-Kayles on trees. To our best knowledge, this problem is still unsolved. In 1978 already, Schaeffer mentionned as an open problem to determine the complexity of NodeKayles on stars, that is trees having exactly one vertex of degree at least three. Fleischer and Trippen proved in [11] that this problem is polynomial time solvable.

In this paper, we investigate Conway's twelve versions of compound games for Node-Kayles on paths. Let P_{n} denote the path with n vertices and, for any i and $j, P_{i} \cup P_{j}$ denote the disjoint union of P_{i} and P_{j}. As observed before, we have $O\left(P_{1}\right)=O\left(P_{2}\right)=P_{0}, O\left(P_{3}\right)=\left\{P_{0}, P_{1}\right\}$ and $O\left(P_{n}\right)=\left\{P_{n-2}, P_{n-3}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=n-3\right\}$ (and, of course, $O\left(P_{0}\right)=\emptyset$). With initial position P_{n}, any further position will thus be made of k disjoint paths, $P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{k}}$, with $i_{1}+i_{2}+\ldots+i_{k} \leq n-3(k-1)$ (since the only way to break a path into two separated paths is to delete three "non-extremal" vertices), which corresponds to a compound game. Different rules for playing on this set of paths will lead to (very) different situations.

This paper is organised as follows. In Section 2 , we present in more details the twelve Conway's versions of compound games together with the tools available for analyzing them.

We then consider these twelve versions of Node-Kayles on paths in Section 3 and discuss some possible extensions in Section 4.

2 Conway's twelve versions of compound games

We recall in this section the twelve versions of compound games introduced by Conway 绩, Chapter 14]. Let G be a game made of several independent games $G_{1}, G_{2}, \ldots, G_{k}$ (imagine for instance that we are playing Node-Kayles on a graph G with connected components G_{1}, G_{2}, \ldots, G_{k}). As we have seen in the previous section, the game $G=G_{1}+G_{2}+\ldots+G_{k}$ is the disjunctive compound game obtained as the disjunctive sum of its components. In this situation, a compound move consists in making one legal move in exactly one of the components. By modifying this moving rule, we define a conjunctive compound game (a move consists in playing in all components simustaneously) and a selective compound game (a move consists in playing in any number ℓ of components, $1 \leq \ell \leq k$).

We can also distinguish two rules for ending such a compound game: the game ends either when all the components have ended (long rule) or as soon as one of the components has ended (short rule).

Finally, we have already seen that there are two different ways of deciding who is the winner of a game, according to the normal or misère rule.

Combining these different rules, we get twelve different versions of compound games. Considering that the long rule is more natural for selective and conjunctive compounds, while the short rule is more natural for conjunctive compound, Conway proposed the following terminology:
> disjunctive compound
> diminished disjunctive compound
> conjunctive compound
> continued conjunctive compound
> selective compound
> shortened selective compound

We now recall how one can determine the outcome of these various compound games.
Disjunctive compound. Under normal play, the main tool is the Sprague-Grundy Theory introduced in the previous section. The normal Sprague-Grundy number $\rho(G)$ is computed as the Nim-sum $\rho\left(G_{1}\right) \oplus \rho\left(G_{2}\right) \oplus \ldots \oplus \rho\left(G_{k}\right)$ (with $\rho(E)=0$ for any ended position E) and $o(G)=\mathcal{P}$ if and only if $\rho(G)=0$.

The situation for misère play is more complicated and the most useful features of the SpragueGrundy Theory for normal play have no natural counterpart in misère play [3, Chapter 13]. For instance, Kayles has been solved under normal play in 1956, independently by Guy and Smith [13] and by Adams and Benson [1] (the Sprague-Grundy sequence has a period of length 12 after a preperiod of length 70) while a solution of Kayles under misère play was only given by Sibert in 1973 (and published in 1992 (18]). Three main approches have been used in the litterature to solve misère impartial games: genus theory [2, [3], Sibert-Conway decomposition [18] and misère quotient semigroup [16]. These techniques cannot be summarized in a few lines and, since we will not use them in this paper, we refer the interested reader to the corresponding references (see also (15).

Diminished disjunctive compound. Under both normal and misère play, we use the foreclosed Sprague-Grundy number, denoted by $F^{+}(G)$ (resp. $F^{-}(G)$) in normal (resp. misère) play, and defined as follows. Let us declare a position to be illegal if the game has just ended or can
be ended in a single winning move (note here that winning moves are not the same under normal and misère play). If a position is illegal, its foreclosed Sprague-Grundy number is undefined, otherwise its foreclosed Sprague-Grundy number is simply its usual Sprague-Grundy number. The foreclosed Sprague-Grundy number of G is then defined if and only if those of G_{1}, G_{2}, \ldots, G_{k} are all defined and, in that case, is computed as their Nim-sum. Now, the outcome of G is \mathcal{P} if its foreclosed Sprague-Grundy number is 0 or some component has outcome \mathcal{P} but undefined foreclosed Sprague-Grundy number.

Conjunctive compound. In that case, we use another number called the remoteness of a game. Under normal play, the remoteness $R^{+}(G)$ is computed as follows: (i) if G has an option of even remoteness, $R^{+}(G)$ is one more the minimal even remoteness of any option of G, (ii) if not, the remoteness of G is one more than the maximal odd remoteness of any option of G. Moreover, the remoteness of an ended position is 0 . A game G will then have outcome \mathcal{P} if and only if $R^{+}(G)$ is even.

Under misère play, the remoteness $R^{-}(G)$ is computed similarly, except that we interchange the words odd and even in the above rules. A game G will now have outcome \mathcal{P} if and only if $R^{-}(G)$ is odd.

Continued conjunctive compound. We use here the suspense number of a game, denoted either $S^{+}(G)$ or $S^{-}(G)$. The rules for computing this number in normal play are the following: (i) if G has an option of even suspense number, $S^{+}(G)$ is one more the maximal even suspense number of any option of G, (ii) if not, the suspense number of G is one more than the minimal odd suspense number of any option of G. Moreover, the suspense number of an ended position is 0 . As before, for computing the suspense number under misère play, we interchange the words odd and even in the above rules.

A game G will have outcome \mathcal{P} under normal play (resp. misère play) if and only if $S^{+}(G)$ is odd (resp. $S^{-}(G)$ is even).

Selective compound. Under normal play, the outcome of G is \mathcal{P} if and only if the outcomes of $G_{1}, G_{2}, \ldots, G_{k}$ are all \mathcal{P}. Under misère play, unless all but one of the components of G have ended, the outcome of G is the same as in normal play. Otherwise, its outcome is \mathcal{P} if and only if the outcome of the only remaining component is \mathcal{P}.

Shortened selective compound. The rule here is even simpler than the previous one: under normal play, the outcome of G is \mathcal{P} if and only if the outcomes of $G_{1}, G_{2}, \ldots, G_{k}$ are all \mathcal{P}. Under misère play, similarly, the outcome of G is \mathcal{P} if and only if the outcomes of G_{1}, G_{2}, \ldots, G_{k} are all \mathcal{P}. Note that under normal play, all positions have the same outcome in selective compound and in shortened selective compound.

3 Compound Node-Kayles on paths

Recall that for every path P_{n} of order $n \geq 3$, the set of options of P_{n} in Node-Kayles is given by

$$
\begin{equation*}
O\left(P_{n}\right)=\left\{P_{n-2}, P_{n-3}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=n-3\right\} . \tag{1}
\end{equation*}
$$

In this section, we recall what is known for the usual disjunctive compound Node-Kayles and analyze the ten other versions of compound Node-Kayles introduced in the previous section. In each case, we will first try to characterize the set $\mathcal{L}=\left\{i \in \mathbb{N}, o\left(P_{i}\right)=\mathcal{P}\right\}$ of losing paths and then consider the complexity of determining the outcome of any position (disjoint union of paths). Finally, we will study the complexity of the winning strategy which consists in finding, for any position with outcome \mathcal{N}, an option with outcome \mathcal{P}.

3.1 Disjunctive compound

Disjunctive composition is the most common way of considering compound games. We recall here what is known (and unknown) for disjunctive compound Node-Kayles on paths.

NORMAL PLAY

This game has been solved using the Sprague-Grundy Theory [3, Chapter 4]. The sequence $\rho\left(P_{0}\right) \rho\left(P_{1}\right) \rho\left(P_{2}\right) \ldots \rho\left(P_{n-1}\right) \rho\left(P_{n}\right) \ldots$ is called the Sprague-Grundy sequence of Node-Kayles. It turns out that this sequence is periodic, with period 34, after a preperiod of size 51 . We then have:

$$
\begin{aligned}
\mathcal{L}= & \{0,4,8,14,19,24,28,34,38,42\} \\
& \cup\{54+34 i, 58+34 i, 62+34 i, 72+34 i, 76+34 i, i \geq 0\}
\end{aligned}
$$

Determining the outcome of a path can thus be done in constant time. For a disjoint union of paths, we need to compute the Nim-sum of the Sprague-Grundy numbers of its components, which can be done in linear time. Let now $G=P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{\ell}}$ be any \mathcal{N}-position and assume $\rho\left(P_{i_{1}}\right) \leq \rho\left(P_{i_{2}}\right) \leq \ldots \leq \rho\left(P_{i_{\ell}}\right)$. Let $i_{j} \in\{1,2, \ldots, \ell\}$ be the largest index such that (i) the number of components with Sprague-Grundy number $\rho\left(P_{i_{j}}\right)$ is odd and (ii) for every $r>\rho\left(P_{i_{j}}\right)$, the number of components with Sprague-Grundy number r is even. Thanks to the properties of the operator \oplus, we have $\rho\left(P_{i_{j}}\right)>\oplus_{k \in\{1, \ldots, \ell\} \backslash\{j\}}\left\{P_{i_{k}}\right\}$. Therefore, by choosing an option H of $P_{i_{j}}$ with $\rho(H)=\oplus_{k \in\{1, \ldots, \ell\} \backslash\{j\}}\left\{P_{i_{k}}\right\}$, we get an option of G with Sprague-Grundy number 0 . Such a "winning move" can thus be found in linear time.

Misère play

On the other hand, the problem is still open for Node-Kayles on paths under misère play [3, Chapter 13].

3.2 Diminished disjunctive compound

Recall that in this version of disjunctive compound, the game ends as soon as one of the components has ended.

We shall compute the foreclosed Sprague-Grundy number of paths. Under normal play, we shall prove that the corresponding sequence is periodic and that the set of losing positions is finite. On the other hand, we are unable to characterize the set of losing positions under misère play.

Normal play

Recall that the foreclosed Sprague-Grundy number of illegal positions (that is ended positions or positions that can be won in one move) is undefined. Hence, we will note $F^{+}\left(P_{0}\right)=F^{+}\left(P_{1}\right)=$ $F^{+}\left(P_{2}\right)=F^{+}\left(P_{3}\right)=*$. The foreclosed Sprague-Grundy number of other positions is computed as the usual Sprague-Grundy number, using the mex operator. Hence, from (1), we get for every $n \geq 4$:

$$
F^{+}\left(P_{n}\right)=\operatorname{mex}\left(\left\{F^{+}\left(P_{n-2}\right), F^{+}\left(P_{n-3}\right)\right\} \cup\left\{F^{+}\left(P_{i} \cup P_{j}\right), j \geq i \geq 1, i+j=n-3\right\}\right),
$$

with $F^{+}\left(P_{i} \cup P_{j}\right)=F^{+}\left(P_{i}\right) \oplus F^{+}\left(P_{j}\right)$.
Using that formula, we can compute the foreclosed Sprague-Grundy sequence, given as $F^{+}\left(P_{0}\right) F^{+}\left(P_{1}\right) F^{+}\left(P_{2}\right) \ldots F^{+}\left(P_{n-1}\right) F^{+}\left(P_{n}\right) \ldots$

In [13], Guy and Smith proved a useful periodicity theorem for octal games (recall that NodeKayles on paths is the octal game $\mathbf{0 . 1 3 7}$), which allows to ensure the periodicity of the usual Sprague-Grundy sequence whenever two occurrences of the period have been computed. This theorem can easily be extended to the foreclosed Sprague-Grundy sequence in our context and we have:

n	$F^{+}\left(P_{n}\right)$				
$0-49$	$* * * * 001120$	0112031122	3112334105	3415534255	3225532255
$50-99$	0225042253	4423344253	4455341553	4285322853	4285442804
$100-149$	4283442234	4253345533	1253322533	2253422534	2253422334
$150-199$	2233425334	4533425532	2553425544	2554425344	2234425334
$200-249$	5533125342	2533225342	2534225342	2334223342	5334453342
$250-299$	$\underline{5532255342}$	$\underline{5344255442}$	$\underline{5344253442}$	$\underline{5334553342}$	$\underline{5342253322}$
$300-349$	$\underline{5342253422}$	$\underline{5342233422}$	$\underline{3342533425}$	3342553225	\ldots

Table 1: The foreclosed Sprague-Grundy sequence under normal play
Theorem 1 Suppose that for some $p>0$ and $q>0$ we have

$$
F^{+}\left(P_{n+p}\right)=F^{+}\left(P_{n}\right) \text { for every } n \text { with } q \leq n \leq 2 q+p+2 \text {. }
$$

Then

$$
F^{+}\left(P_{n+p}\right)=F^{+}\left(P_{n}\right) \text { for every } n \geq q
$$

Proof. We proceed by induction on n. If $n \leq 2 q+p+2$, the equality holds. Assume now that $n \geq 2 q+p+3$. Recall that

$$
O\left(P_{n+p}\right)=\left\{P_{n+p-2}, P_{n+p-3}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=n+p-3\right\} .
$$

Hence, we have

$$
\begin{aligned}
F^{+}\left(P_{n+p}\right)=\operatorname{mex}(& \left\{F^{+}\left(P_{n+p-2}\right), F^{+}\left(P_{n+p-3}\right)\right\} \\
& \left.\cup\left\{F^{+}\left(P_{i}\right) \oplus F^{+}\left(P_{j}\right), j \geq i \geq 1, i+j=n+p-3\right\}\right) .
\end{aligned}
$$

Since $n-2<n$ and $n-3<n$, we get by induction hypothesis $F^{+}\left(P_{n-2}\right)=F^{+}\left(P_{n+p-2}\right)$ and $F^{+}\left(P_{n-3}\right)=F^{+}\left(P_{n+p-3}\right)$. Similarly, since $q+p \leq\left\lfloor\frac{n+p-3}{2}\right\rfloor-p \leq j-p<n-3$, we get $F^{+}\left(P_{j-p}\right)=F^{+}\left(P_{j}\right)$ and thus $F^{+}\left(P_{n+p}\right)=F^{+}\left(P_{n}\right)$.

By computing the foreclosed Sprague-Grundy sequence, we find a finite number of losing positions and, thanks to Theorem [1, we get that this sequence is periodic, with period 84, after a preperiod of length 245 (see Table [1], the period is underlined).

Hence we have:
Corollary $2 \mathcal{L}=\{0,4,5,9,10,14,28,50,54,98\}$.
Determining the outcome of any disjoint union of paths or finding a winning move from any \mathcal{N}-position can be done in linear time, using the same technique as in the previous subsection.

Misère play

In that case, we have $F^{-}\left(P_{0}\right)=*, F^{-}\left(P_{1}\right)=F^{-}\left(P_{2}\right)=0, F^{-}\left(P_{3}\right)=F^{-}\left(P_{4}\right)=1$ and, for every $n \geq 5$:

$$
F^{-}\left(P_{n}\right)=\operatorname{mex}\left(\left\{F^{-}\left(P_{n-2}\right), F^{-}\left(P_{n-3}\right)\right\} \cup\left\{F^{-}\left(P_{i} \cup P_{j}\right), j \geq i \geq 1, i+j=n-3\right\}\right),
$$

with $F^{-}\left(P_{i} \cup P_{j}\right)=F^{-}\left(P_{i}\right) \oplus F^{-}\left(P_{j}\right)$.

n	NbZ	Max	Mean	Deviation	FreqV	\%FreqV	Max	PosMax
10	3	4	1.4	1.08	0	30%	8	9
10^{2}	8	11	4.23	2.4114	2	15%	98	61
10^{3}	11	43	13.629	7.537448	16	6.8%	148	999
10^{4}	12	163	58.5556	30.621093	33	2.73%	1526	9977
10^{5}	13	907	275.95915	177.355129	128	0.795%	12758	94680
10^{6}	16	4600	1357.37834	780.786047	4096	0.256%	235086	979501

Table 2: Statistics on the misère foreclosed Sprague-Grundy sequence

Using that formula, we have computed the misère foreclosed Sprague-Grundy number of paths up to $n=10^{6}$, without being able to discover any period. Some statistics on the corresponding sequence are summarized in Table 2, where:
$-n$ is the upper bound of the considered interval $I=[1, n]$,

- NbZ is the number of paths in I with foreclosed Sprague-Grundy number 0 ,
- Max is the maximal foreclosed Sprague-Grundy number on I,
- Mean is the mean of the foreclosed Sprague-Grundy numbers on I,
- Deviation is the standard deviation of the foreclosed Sprague-Grundy numbers on I,
- FreqV is the most frequently encountered foreclosed Sprague-Grundy number on I,
- \%FreqV is the percentage of apparition of FreqV on I,
- MaxZ is the largest index of a path in I with foreclosed Sprague-Grundy number 0,
- PosMax is the index of the largest foreclosed Sprague-Grundy number on I.

Note that the growth of the mean of the foreclosed Sprague-Grundy numbers is approximately logarithmic, which shows that even an arithmetic period [3, Chapter 4] cannot be expected on the considered interval. Observe also the intriguing fact that the most frequently encountered foreclosed Sprague-Grundy number on the considered intervals is always of the form 2^{k} or $2^{k}+1$ (which seems to be true for every interval of type $[1, n]$).

3.3 Conjunctive compound

Recall that if $G=P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{k}}$ is a graph made of k disjoint paths, we then have $O(G)=\left\{G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right\}$ with $G_{i_{j}} \in O\left(P_{i_{j}}\right)$ for every $j, 1 \leq j \leq k$.

In normal play (resp. misère play), we will determine the remoteness $R^{+}(P)$ (resp. $\left.R^{-}(P)\right)$ of any path P. It appears that in each case the set \mathcal{L} of \mathcal{P}-positions is finite and easy to compute.

Normal Play

Recall that if $O(G)=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, the normal remoteness $R^{+}(G)$ of G is given by:

$$
\begin{cases}R^{+}(G)=0 & \text { if } O(G)=\emptyset \\ R^{+}(G)=1+\min _{\text {even }}\left\{R^{+}\left(G_{1}\right), R^{+}\left(G_{2}\right), \ldots, R^{+}\left(G_{k}\right)\right\} & \text { if } \exists j \in[1, k] \text { s.t. } R^{+}\left(G_{j}\right) \text { is even, } \\ R^{+}(G)=1+\max _{\text {odd }}\left\{R^{+}\left(G_{1}\right), R^{+}\left(G_{2}\right), \ldots, R^{+}\left(G_{k}\right)\right\} & \text { otherwise. }\end{cases}
$$

We prove the following:
Theorem 3 The normal remoteness R^{+}of paths satisfies:

1. $R^{+}\left(P_{1}\right)=R^{+}\left(P_{2}\right)=R^{+}\left(P_{3}\right)=1$,
2. $R^{+}\left(P_{4}\right)=R^{+}\left(P_{5}\right)=2$,
3. $R^{+}\left(P_{6}\right)=R^{+}\left(P_{7}\right)=R^{+}\left(P_{8}\right)=3$,
4. $R^{+}\left(P_{9}\right)=R^{+}\left(P_{10}\right)=4$,
5. $R^{+}\left(P_{n}\right)=3$, for every $n \geq 11$.

Proof. The first four points can easily be checked. Let now $n \geq 11$. Observe that $P_{n-7} \cup P_{4} \in$ $O\left(P_{n}\right)$. By induction on n, and thanks to the remoteness of small paths, we have $R^{+}\left(P_{n-7} \cup\right.$ $\left.P_{4}\right)=\min _{\text {even }}\left\{R^{+}\left(P_{n-7}\right), R^{+}\left(P_{4}\right)\right\}=\min _{\text {even }}\left\{R^{+}\left(P_{n-7}\right), 2\right\}=2$ (since $n-7 \geq 4$ we have $\left.R^{+}\left(P_{n-7}\right) \geq 2\right)$. Therefore, we get $R^{+}\left(P_{n}\right)=1+2=3$.

We thus obtain:
Corollary $4 \mathcal{L}=\{0,4,5,9,10\}$.
Let now $G=P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{\ell}}$ be any disjoint union of paths and assume $i_{1} \leq i_{2} \leq \ldots \leq i_{\ell}$. Clearly, the outcome of G is \mathcal{P} if and only if $i_{1} \in\{4,5,9,10\}$, which can be decided in linear time. Suppose now that G is a \mathcal{N}-position. If $i_{1} \leq 3$, one can win in one move. If $6 \leq i_{1} \leq 8$, one can play in such a way that $P_{i_{1}}$ gives a path of length 4 or 5 and any other component gives a path of length at least 4 . Finally, if $i_{1} \geq 11$, one can play in such a way that each component of order p gives rise to $P_{4} \cup P_{p-7}$. Finding such a winning move can thus be done in linear time.

Misère Play

Similarly, if $O(G)=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, the misère remoteness $R^{-}(G)$ of G is given by:

$$
\begin{cases}R^{-}(G)=0 & \text { if } O(G)=\emptyset \\ R^{-}(G)=1+\min _{\text {odd }}\left\{R^{-}\left(G_{1}\right), R^{-}\left(G_{2}\right), \ldots, R^{-}\left(G_{k}\right)\right\} & \text { if } \exists j \in[1, k] \text { s.t. } R^{-}\left(G_{j}\right) \text { is odd, } \\ R^{-}(G)=1+\max _{\text {even }}\left\{R^{-}\left(G_{1}\right), R^{-}\left(G_{2}\right), \ldots, R^{-}\left(G_{k}\right)\right\} & \text { otherwise. }\end{cases}
$$

We prove the following:
Theorem 5 The misère remoteness R^{-}of paths satisfies:

1. $R^{-}\left(P_{1}\right)=R^{-}\left(P_{2}\right)=1$,
2. $R^{-}\left(P_{n}\right)=2$ for every $n \geq 2$.

Proof. The first point is obvious. Similarly, we can easily check that $R^{-}\left(P_{3}\right)=R^{-}\left(P_{4}\right)=2$. Let now $n \geq 5$. Observe that $P_{1} \cup P_{n-4} \in O\left(P_{n}\right)$. By induction on n, and thanks to the remoteness of small paths, we have $R^{-}\left(P_{1} \cup P_{n-4}\right)=\min _{\text {odd }}\left\{R^{-}\left(P_{1}\right), R^{-}\left(P_{n-4}\right)\right\}=\min _{\text {odd }}\left\{1, R^{-}\left(P_{n-4}\right)\right\}=1$ (since $n-4>0$). Thus, we get $R^{-}\left(P_{n}\right)=1+1=2$.

And therefore:

Corollary $6 \mathcal{L}=\{1,2\}$.
Hence, if G is a disjoint union of paths, the outcome of G is \mathcal{P} if and only if the shortest component in G has order 1 or 2 , which can be decided in linear time. If G is a \mathcal{N}-position, a winning move can be obtained, again in linear time, by playing for instance in such a way that each component gives rise to a path of order 1.

3.4 Continued conjunctive compound

In this section, we will compute the suspense number $S^{+}\left(P_{n}\right)$ under normal play (resp. $S^{-}\left(P_{n}\right)$ under misère play) for each path P_{n}. Note that these two functions are additive [5, p. 177] and we have $S^{+}\left(P_{i} \cup P_{j}\right)=\max \left\{S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right\}\left(\right.$ resp. $\left.S^{-}\left(P_{i} \cup P_{j}\right)=\max \left\{S^{-}\left(P_{i}\right), S^{-}\left(P_{j}\right)\right\}\right)$ for every two paths P_{i} and P_{j}.

Normal play

Recall that if $O(G)=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, the normal suspense number $S^{+}(G)$ of G is given by:

$$
\begin{cases}S^{+}(G)=0 & \text { if } O(G)=\emptyset \\ S^{+}(G)=1+\max _{\text {even }}\left\{S^{+}\left(G_{1}\right), S^{+}\left(G_{2}\right), \ldots, S^{+}\left(G_{k}\right)\right\} & \text { if } \exists j \in[1, k] \text { s.t. } S^{+}\left(G_{j}\right) \text { is even, } \\ S^{+}(G)=1+\min _{\text {odd }}\left\{S^{+}\left(G_{1}\right), S^{+}\left(G_{2}\right), \ldots, S^{+}\left(G_{k}\right)\right\} & \text { otherwise. }\end{cases}
$$

Then we prove the following:
Theorem 7 The normal suspense number S^{+}of paths is an increasing function and satisfies for every $n \geq 0$:

1. $S^{+}\left(P_{5\left(2^{n}-1\right)}\right)=2 n$,
2. $S^{+}\left(P_{k}\right)=2 n+1$, for every $k \in\left[5\left(2^{n}-1\right)+1 ; 5\left(2^{n+1}-1\right)-2\right]$,
3. $S^{+}\left(P_{5\left(2^{n+1}-1\right)-1}\right)=2 n+2$.

Proof. We proceed by induction on n. For $n=0$, we can easily check that $S^{+}\left(P_{0}\right)=0$, $S^{+}\left(P_{1}\right)=S^{+}\left(P_{2}\right)=S^{+}\left(P_{3}\right)=1$ and that $S^{+}\left(P_{4}\right)=S^{+}\left(P_{5}\right)=2$.

Assume now that the result holds for every $p, 0 \leq p<n$ and let $k \in\left[5\left(2^{n}-1\right) ; 5\left(2^{n+1}-1\right)-1\right]$. We consider three cases.

1. $k=5\left(2^{n}-1\right)$.

Since $\left\lceil\frac{k-3}{2}\right\rceil=5.2^{n-1}-4>5\left(2^{n-1}-1\right)$, using induction hypothesis, we get $S^{+}\left(P_{j}\right)=$ $2 n-1$ for every $j,\left\lceil\frac{k-3}{2}\right\rceil \leq j \leq k-4$, and thus $\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right)=2 n-1$ for every $i, j, j \geq i \geq 1, i+j=k-3$. Therefore, since $S^{+}\left(P_{k-2}\right)=S^{+}\left(P_{k-3}\right)=2 n-1, P_{k}$ has no option with even suspense number and thus:

$$
\begin{aligned}
S^{+}\left(P_{k}\right)= & 1+\min _{\text {odd }}\left(\quad\left\{S^{+}\left(P_{k-2}\right), S^{+}\left(P_{k-3}\right)\right\}\right. \\
& \left.\cup\left\{\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right), j \geq i \geq 1, i+j=k-3\right\}\right) \\
= & 1+\min _{\text {odd }}(\quad\{2 n-1\} \cup\{2 n-1\}) \\
= & 2 n
\end{aligned}
$$

2. $k \in\left[5\left(2^{n}-1\right)+1 ; 5\left(2^{n+1}-1\right)-2\right]$.

Note first that for every such $k, P_{5\left(2^{n}-1\right)} \cup P_{k-3-5\left(2^{n}-1\right)}$ is an option of P_{k} with even suspense number, since $k-3-5\left(2^{n}-1\right) \leq 5\left(2^{n+1}-1\right)-2-3-5\left(2^{n}-1\right)=5\left(2^{n}-1\right)-10<$ $5\left(2^{n}-1\right)$ and, thus, $\max \left(S^{+}\left(P_{5\left(2^{n}-1\right)}\right), S^{+}\left(P_{k-3-5\left(2^{n}-1\right)}\right)\right)=S^{+}\left(P_{5\left(2^{n}-1\right)}\right)=2 n$ (thanks to the induction hypothesis and Case 1 above). Therefore:

$$
S^{+}\left(P_{k}\right)=1+\max _{\text {even }}\left(\quad \begin{array}{l}
\left\{S^{+}\left(P_{k-2}\right), S^{+}\left(P_{k-3}\right)\right\} \\
\\
\left.\cup\left\{\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right), j \geq i \geq 1, i+j=k-3\right\}\right) .
\end{array}\right.
$$

We now proceed by induction on k. We have

$$
\begin{aligned}
S^{+}\left(P_{5\left(2^{n}-1\right)+1}\right)= & 1+\max _{\text {even }}\left(\left\{S^{+}\left(P_{5\left(2^{n}-1\right)-1}\right), S^{+}\left(P_{5\left(2^{n}-1\right)-2}\right)\right\}\right. \\
& \left.\left.\cup\left\{\max ^{+}\left(S_{i}\right), S^{+}\left(P_{j}\right)\right), j \geq i \geq 1, i+j=5\left(2^{n}-1\right)-2\right\}\right) \\
= & 1+\max _{\text {even }}(\{2 n, 2 n-1\} \cup\{2 n-1,2 n\}) \\
= & 2 n+1
\end{aligned}
$$

and, similarly, $S^{+}\left(P_{5\left(2^{n}-1\right)+2}\right)=S^{+}\left(P_{5\left(2^{n}-1\right)+3}\right)=2 n+1$. Then, using induction hypothesis, we get

$$
\begin{aligned}
S^{+}\left(P_{k}\right)= & 1+\max _{\text {even }}\left(\begin{array}{l}
\left\{S^{+}\left(P_{k-2}\right), S^{+}\left(P_{k-3}\right)\right\} \\
\\
\\
\left.=1\left\{\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right), j \geq i \geq 1, i+j=k-3\right\}\right) \\
= \\
=
\end{array} \quad 2 n+1 .\right.
\end{aligned}
$$

3. $k=5\left(2^{n+1}-1\right)-1$.

Thanks to Case 2 above, we have $S^{+}\left(P_{k-2}\right)=S^{+}\left(P_{k-3}\right)=2 n+1$. Moreover, since $\left\lceil\frac{k-3}{2}\right\rceil=5.2^{n}-3>5\left(2^{n}-1\right)$, using induction hypothesis and Case 2 above, we get $S^{+}\left(P_{j}\right)=2 n+1$ for every $j,\left\lceil\frac{k-3}{2}\right\rceil \leq j \leq k-4$, and thus $\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right)=2 n+1$ for every $i, j, j \geq i \geq 1, i+j=k-3$. Hence, P_{k} has no option with even suspense number and thus:

$$
\begin{aligned}
S^{+}\left(P_{k}\right)= & 1+\min _{o d d}\left(\quad\left\{S^{+}\left(P_{k-2}\right), S^{+}\left(P_{k-3}\right)\right\}\right. \\
& \left.\cup\left\{\max \left(S^{+}\left(P_{i}\right), S^{+}\left(P_{j}\right)\right), j \geq i \geq 1, i+j=k-3\right\}\right) \\
= & 1+\min _{o d d}(\{2 n+1\} \cup\{2 n+1\}) \\
= & 2 n+2
\end{aligned}
$$

And therefore:
Corollary $8 \mathcal{L}=\left\{5\left(2^{n}-1\right), n \geq 0\right\} \cup\left\{5\left(2^{n+1}-1\right)-1, n \geq 0\right\}$.
Note that Theorem 7 shows that the normal suspense sequence of paths has a geometric period with geometric ratio 2 .

Let $G=P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{\ell}}$ be a disjoint union of paths and assume $i_{1} \leq i_{2} \leq \ldots \leq i_{\ell}$. The position G has outcome \mathcal{P} if and only if $i_{\ell} \in \mathcal{L}$, which can be decided in linear time. Now, if G is a \mathcal{N}-position, let r be the greatest integer such that $t=5\left(2^{r}-1\right)<i_{\ell}$. A winning move can be obtained by playing in such a way that each component of order $p>t$ gives rise to P_{t-1} (if $p=t+1$), to P_{t} (if $p=t+2$) or to $P_{t} \cup P_{p-t-3}$ (otherwise). Such a move clearly leads to a \mathcal{P}-position and can be found in linear time.

Misère Play

Recall that if $O(G)=\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$, the misère suspense number $S^{-}(G)$ of G is given by:

$$
\begin{cases}S^{-}(G)=0 & \text { if } O(G)=\emptyset \\ S^{-}(G)=1+\max _{\text {odd }}\left\{S^{-}\left(G_{1}\right), S^{-}\left(G_{2}\right), \ldots, S^{-}\left(G_{k}\right)\right\} & \text { if } \exists j \in[1, k] \text { s.t. } S^{-}\left(G_{j}\right) \text { is odd, } \\ S^{-}(G)=1+\min _{\text {even }}\left\{S^{-}\left(G_{1}\right), S^{-}\left(G_{2}\right), \ldots, S^{-}\left(G_{k}\right)\right\} & \text { otherwise. }\end{cases}
$$

Then we prove the following:
Theorem 9 The misère suspense number S^{-}of paths is an increasing function and satisfies for every $n \geq 0$:

1. $S^{+}\left(P_{\left.7.2^{n}-6\right)}\right)=2 n+1$,
2. $S^{+}\left(P_{\left.7.2^{n}-5\right)}\right)=2 n+1$,
3. $S^{+}\left(P_{k}\right)=2 n+2$ for every $k, 7.2^{n}-4 \leq k \leq 7.2^{n+1}-7$.

Proof. The proof is very similar to that of Theorem ${ }^{7}$ and we thus omit it.
And therefore:
Corollary $10 \mathcal{L}=\left\{7.2^{n}-6, n \geq 0\right\} \cup\left\{7.2^{n}-5, n \geq 0\right\}$.
As in normal play, determining the outcome of a disjoint union of paths or finding a winning move from a \mathcal{N}-position can be done in linear time.

3.5 Selective compound

With selective compound, each player may play on any number of components (at least one). As seen in Section 2 , it is enough to know the outcome of each component to decide the outcome of their (disjoint) union. Therefore, we shall simply compute a boolean function σ, defined by $\sigma(P)=1($ resp. $\sigma(P)=0)$ if and only if $o(P)=\mathcal{N}($ resp. $o(P)=\mathcal{P})$ for every path P.

Then we have:

$$
\begin{cases}\sigma(G)=0 \text { (normal) or } 1 \text { (misère) } & \text { if } O(G)=\emptyset, \\ \sigma(G)=1-\min \left\{\sigma\left(G^{\prime}\right), G^{\prime} \in O(G)\right\} & \text { otherwise } .\end{cases}
$$

The function σ is additive, under both normal and misère play, and we have $\sigma\left(P_{i} \cup P_{j}\right)=$ $\sigma\left(P_{i}\right) \vee \sigma\left(P_{j}\right)$ (boolean disjunction) for any two non-empty paths P_{i} and P_{j}.

We shall prove that the sequence $\sigma\left(P_{0}\right) \sigma\left(P_{1}\right) \sigma\left(P_{2}\right) \ldots \sigma\left(P_{n-1}\right) \sigma\left(P_{n}\right) \ldots$ has period 5 under normal play and period 7 under misère play.

NORMAL PLAY

We prove the following:
Theorem 11 For every $n \geq 0$, we have:

1. $\sigma\left(P_{5 n}\right)=\sigma\left(P_{5 n+4}\right)=0$,
2. $\sigma\left(P_{5 n+1}\right)=\sigma\left(P_{5 n+2}\right)=\sigma\left(P_{5 n+3}\right)=1$.

Proof. We proceed by induction on n. For $n=0$, the result clearly holds. Assume now that the result holds up to $n-1$. Then we have:

1. Recall that $O\left(P_{5 n}\right)=\left\{P_{5 n-2}, P_{5 n-3}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=5 n-3\right\}$. Hence:

$$
\begin{aligned}
\sigma\left(P_{5 n}\right) & =1-\min \left\{\sigma\left(P^{\prime}\right), P^{\prime} \in O\left(P_{5 n}\right)\right\} \\
& =1-\min \left\{1,1, \min _{j} \geq i \geq 1, i+j=5 n-3\left\{\sigma\left(P_{i}\right) \vee \sigma\left(P_{j}\right)\right\}\right\} \\
& =1-\min \left\{1,1, \min _{j=5 n-8, \ldots, 5 n-4}\left\{\sigma\left(P_{5 n-3-j)} \vee \sigma\left(P_{j}\right)\right\}\right\}\right. \\
& =1-\min \{1,1, \min \{0 \vee 1,0 \vee 1,1 \vee 0,1 \vee 0,1 \vee 1,\}\} \\
& =1-1 \\
& =0
\end{aligned}
$$

We can check in a similar way that $\sigma\left(P_{5 n+4}\right)=0$.
2. Since $\sigma\left(P_{5 n}\right)=\sigma\left(P_{5 n-1}\right)=0, P_{5 n-1} \in O\left(P_{5 n+1}\right), P_{5 n} \in O\left(P_{5 n+2}\right)$ and $P_{5 n} \in O\left(P_{5 n+3}\right)$, we have $\sigma\left(P_{5 n+1}\right)=\sigma\left(P_{5 n+2}\right)=\sigma\left(P_{5 n+3}\right)=1$.

And therefore:

Corollary $12 \mathcal{L}=\{5 n, n \geq 0\} \cup\{5 n+4, n \geq 0\}$.
Now, the outcome of a disjoint union of paths if \mathcal{P} if and only if each component P is such that $\sigma(P)=0$, which can be decided in linear time. A winning move from a \mathcal{N}-position can be obtained by playing on each component P with $\sigma(P)=1$ in such a way that this component gives rise to a path P^{\prime} with $\sigma\left(P^{\prime}\right)=0$, as explained in the proof of Theorem 11. Here again, such a move can be found in linear time.

Misère play

We prove the following:
Theorem 13 For every $n \geq 0$, we have:

1. $\sigma\left(P_{7 n+1}\right)=\sigma\left(P_{7 n+2}\right)=0$,
2. $\sigma\left(P_{7 n+a}\right)=1$, for every $a, 3 \leq a \leq 7$.

Proof. We proceed by induction on n. For $n=0$, the result clearly holds. Assume now that the result holds up to $n-1$. Then we have:

1. Recall that $O\left(P_{7 n+1}\right)=\left\{P_{7 n-1}, P_{7 n-2}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=7 n-2\right\}$. Hence:

$$
\begin{aligned}
\sigma\left(P_{7 n+1}\right) & =1-\min \left\{\sigma\left(P^{\prime}\right), P^{\prime} \in O\left(P_{7 n+1}\right)\right\} \\
& =1-\min \left\{1,1, \min _{j \geq i \geq 1, i+j=7 n-2}\left\{\sigma\left(P_{i}\right) \vee \sigma\left(P_{j}\right)\right\}\right\} \\
& =1-\min \left\{1,1, \min _{j=7 n-9, \ldots, 7 n-3}\left\{\sigma\left(P_{7 n-2-j}\right) \vee \sigma\left(P_{j}\right)\right\}\right\} \\
& =1-\min \{1,1, \min \{1 \vee 1,1 \vee 1,1 \vee 1,0 \vee 1,0 \vee 1,1 \vee 0,1 \vee 0\}\} \\
& =1-1 \\
& =0
\end{aligned}
$$

We can check in a similar way that $\sigma\left(P_{7 n+2}\right)=0$.
2. Since $\sigma\left(P_{7 n+1}\right)=\sigma\left(P_{7 n+2}\right)=0, P_{7 n+1} \in O\left(P_{7 n+3}\right), P_{7 n+1} \in O\left(P_{7 n+4}\right)$ and $P_{7 n+2} \in$ $O\left(P_{7 n+5}\right)$, we have $\sigma\left(P_{7 n+3}\right)=\sigma\left(P_{7 n+4}\right)=\sigma\left(P_{7 n+5}\right)=1$.
Now, observe that $P_{7 n+2} \cup P_{1} \in O\left(P_{7 n+6}\right)$. Since $\sigma\left(P_{7 n+2}\right)=\sigma\left(P_{1}\right)=0$, we have $\sigma\left(P_{7 n+2} \cup P_{1}\right)=\sigma\left(P_{7 n+2}\right) \vee \sigma\left(P_{1}\right)=0 \vee 0=0$, which implies $\sigma\left(P_{7 n+6}\right)=1$.
Similarly, since $P_{7 n+2} \cup P_{2} \in O\left(P_{7 n+7}\right)$, we get $\sigma\left(P_{7 n+7}\right)=1$.

And therefore:
Corollary $14 \mathcal{L}=\{7 n+1, n \geq 0\} \cup\{7 n+2, n \geq 0\}$.
As in normal play, determining the outcome of a disjoint union of paths or finding a winning move from a \mathcal{N}-position can be done in linear time.

3.6 Shortened selective compound

We will use the same boolean function σ as in the previous subsection. In both normal and misère play, we prove that the corresponding sequence is periodic with period 5 .

As we have noted in Section 2 all positions have the same outcome as in the selective compound. Therefore, we get from the previous subsection:

Corollary $15 \mathcal{L}=\{5 n, n \geq 0\} \cup\{5 n+4, n \geq 0\}$.
The outcome of disjoint union of paths and winning moves are also similar.

Misère play

On the other hand, selective compound and shortened selective compound behave differently under misère play. For instance, if G is made of k isolated vertices ($G=P_{1} \cup P_{1} \cup \ldots \cup P_{1}$), with $k \geq 2$, then G is a \mathcal{P}-position in selective compound and a \mathcal{N}-position in shortened selective compound.

As observed in [可, Chapter 14] the function σ is not additive under misère play. For instance, $\sigma\left(P_{1}\right)=0$ while $\sigma\left(P_{1} \cup \ldots \cup P_{1}\right)=1$, and $\sigma\left(P_{4}\right)=\sigma\left(P_{5}\right)=\sigma\left(P_{8}\right)=1$ while $\sigma\left(P_{5} \cup P_{4}\right)=0$ and $\sigma\left(P_{8} \cup P_{4}\right)=1$.

We first prove the following lemma which allows us to determine $\sigma(G)$ for every position G made of at least two components (paths).

Lemma 16 Let $G=P_{i_{1}} \cup P_{i_{2}} \cup \ldots \cup P_{i_{\ell}}$, with $\ell \geq 2$, and let $\lambda_{i}(G), 0 \leq i \leq 4$, be the number of paths in G whose order is congruent to i, modulo 5. Then,

$$
\sigma(G)=0 \text { if and only if } \lambda_{1}(G)+\lambda_{2}(G)+\lambda_{3}(G)=0 .
$$

Proof. We proceed by induction on the order n of G. The result clearly holds for $n=2$ (in that case, $G=P_{1} \cup P_{1}$ and $\left.\sigma(G)=1\right)$. Suppose now that the result holds for every $p<n$.

Recall that $O\left(P_{k}\right)=\left\{P_{k-2}, P_{k-3}\right\} \cup\left\{P_{i} \cup P_{j}, j \geq i \geq 1, i+j=k-3\right\}$ for every path with k vertices. Hence, if $k \equiv 0$ or $4(\bmod 5)$, then every option of P_{k} contains a path with order $m \equiv 1,2$ or $3(\bmod 5)$. Therefore, if $\lambda_{1}(G)+\lambda_{2}(G)+\lambda_{3}(G)=0$ then for every option G^{\prime} of G we get $\lambda_{1}\left(G^{\prime}\right)+\lambda_{2}\left(G^{\prime}\right)+\lambda_{3}\left(G^{\prime}\right) \neq 0$. By induction hypothesis, that means $\sigma\left(G^{\prime}\right)=1$ for every option G^{\prime} of G, and thus $\sigma(G)=0$.

Suppose now that $\lambda_{1}(G)+\lambda_{2}(G)+\lambda_{3}(G)>0$. Note that every path P_{k} with $k \equiv 1,2$ or 3 $(\bmod 5)$, has either an empty option (if $k \leq 3)$ or an option $P_{k^{\prime}}$ with $k^{\prime} \equiv 0$ or $4(\bmod 5)$ (by deleting 2 or 3 vertices on one extremity of P_{k}). Therefore, by choosing such a move for every path of G of order $k \equiv 1,2$ or $3(\bmod 5)$, we get an option G^{\prime} of G with $\sigma\left(G^{\prime}\right)=0$ (by induction hypothesis) and thus $\sigma(G)=1$.

We can now prove the following:
Theorem 17 The boolean function σ satisfies:

1. $\sigma\left(P_{1}\right)=\sigma\left(P_{2}\right)=\sigma\left(P_{8}\right)=\sigma\left(P_{9}\right)=0$,
2. $\sigma\left(P_{i}\right)=1$ for every $i \in\{3,4,5,6,7,10,11,12,13,14\}$,
3. $\sigma\left(P_{5 n}\right)=\sigma\left(P_{5 n+4}\right)=0$ for every $n \geq 3$,
4. $\sigma\left(P_{5 n+1}\right)=\sigma\left(P_{5 n+2}\right)=\sigma\left(P_{5 n+3}\right)=1$ for every $n \geq 3$.

Proof. The first values can easily by checked. For cases 3 and 4 we proceed by induction on n.
Since $P_{5 n-1} \in O\left(P_{5 n+1}\right), P_{5 n} \in O\left(P_{5 n+2}\right), P_{5 n} \in O\left(P_{5 n+2}\right)$ and, by induction hypothesis, $\sigma\left(P_{5 n-1}\right)=\sigma\left(P_{5 n}\right)=0$, we get $\sigma\left(P_{5 n+1}\right)=\sigma\left(P_{5 n+2}\right)=\sigma\left(P_{5 n+3}\right)=1$.

Observe (as in the proof of Lemma (16) that every option of $P_{5 n}$ or $P_{5 n+4}$ contains a path of order $m \equiv 1,2$ or $3(\bmod 5)$. Therefore, by Lemma 16, every such option is a winning position, and thus $\sigma\left(P_{5 n}\right)=\sigma\left(P_{5 n+4}\right)=0$.

And therefore:
Corollary $18 \mathcal{L}=\{1,2,8,9\} \cup\{5 n, n \geq 3\} \cup\{5 n+4, n \geq 3\}$.
Now, the outcome of a disjoint union of paths has outcome \mathcal{P} if and only if the order of every component belongs to the set \mathcal{L}, which can be decided in linear time. A winning move from a \mathcal{N}-position can be obtained by playing on every component of order $p \notin \mathcal{L}$ as indicated in the proof of Theorem 17. Such a winning move can be found in linear time.

4 Discussion

The first natural question is to complete the analysis of compound Node-Kayles on paths, by solving the diminished disjunctive compound under misère play and, of course, the longstanding open problem of disjunctive compound under misère play.

It would also be interesting to extend our results to other graph families, such as stars, trees or outerplanar graphs (we can solve for instance continued conjunctive compound Node-Kayles on stars). Note here that all our results trivially extend to cycles since we have $O\left(C_{n}\right)=\left\{P_{n-3}\right\}$ for every cycle length $n \geq 3$.

Stromquist and Ullman studied in [2]] the notion of sequential compounds of games. In such a compound game $G \rightarrow H$, no player can play on H while G has not ended. They proposed as an open question to consider the following compound game. Let $<$ be a partial order on games and $G=G_{1} \cup G_{2} \cup \ldots \cup G_{k}$ be a compound game. Then, a player can play on component G_{i} if and only if there is no other component G_{j} in G with $G_{j}>G_{i}$. This idea can be applied to Node-Kayles on paths by ordering the components according to their length. (Note that this new rule makes sense only for disjunctive and selective compounds).

Another variation could be to study Node-Kayles on directed paths (paths with directed edges), where each player deletes a vertex together to its out-neighbours. Such a directed version of Node-Kayles on general graphs has been considered in [8] (see also [7]), under the name of universal domination game.

Finally, inspired by the selective rule, we could also consider a selective Node-Kayles game, where each player deletes a vertex together with some of its neighbours. Restricted to paths, this game corresponds to the octal game $\mathbf{0 . 7 7 7}$, still unsolved, and lies in some sense between Kayles and Dawson's chess.

References

[1] E. W. Adams and E. C. Benson. Nim-type games. Technical Report 13, Carnegie Inst., 1956.
[2] D. T. Allemang. Generalized genus sequences for misère octal games. Int J. Game Theory, 30:539-556, 2001.
[3] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways. Two volumes, Academic Press, London, 1982. Second edition, four volumes (2001-2004), A. K. Peters, Wellesley, Massachussets.
[4] H. L. Bodlaender and D. Kratsch. Kayles and nimbers. J. Algorithms, 43:106-119, 2002.
[5] J. H. Conway. On Numbers and Games. Academic Press, New-York, 1976. Second edition (2001), A. K. Peters, Wellesley, Massachussets.
[6] T. R. Dawson. Caissa's wild roses. 1935. Reprinted in: Five Classics of Fairy Chess. Dover Publication, Inc., 1973.
[7] É. Duchêne. Jeux combinatoires sur les graphes (in french). PhD thesis, Grenoble, France, 2006.
[8] É. Duchêne, S. Gravier, and M. Mhalla. Combinatorial graph games. Ars Combin., to appear.
[9] H. E. Dudeney. Canterbury Puzzles, pages 118, 220. London, 1910.
[10] A. Flammenkamp. Octal games. http://wwwhomes.uni-bielefeld.de/achim/octal.html.
[11] R. Fleischer and G. Trippen. Kayles on the way to the stars. In H. J. van den Herik, Y. Björnsson, and N. S. Netanyahu, editors, Proc. 4th Int. Conf. on Computers and Games, volume 3846 of Lecture Notes in Comput. Sci., pages 232-245, July 2004.
[12] P. M. Grundy. Mathematics and games. Eureka, 2:6-8, 1939.
[13] R. K. Guy and C. A. B. Smith. The G-values of various games. Proc. Cambridge Philos. Soc., 52:539-556, 1956.
[14] S. Loyd. Cyclopedia of Tricks and Puzzles, page 232. New York, 1914.
[15] T. E. Plambeck. Misère Games. http://miseregames.org.
[16] T. E. Plambeck. Taming the wild in impartial combinatorial games. INTEGERS: The Electr. J. Combin. Number Theory, (\#G05), 2005.
[17] T. J. Schaeffer. On the complexity of some two-person perfect-information games. J. Comput. System Sci., 16:185-225, 1978.
[18] W. L. Sibert and J. H. Conway. Mathematical Kayles. Int. J. Game Theory, 20:237-246, 1992.
[19] C. A. B. Smith. Graphs and composite games. J. Combin. Theory, 1:51-81, 1966.
[20] R. Sprague. Über mathematische Kampfspiele. Tôhoku Math. J., 41:438-444, 1936.
[21] W. Stromquist and D. Ullman. Sequential compounds of combinatorial games. Theoret. Comput. Sci., 119:311-321, 1993.

