
HAL Id: hal-00288656
https://hal.science/hal-00288656

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lower order terms for the one-level densities of
symmetric power L-functions in the level aspect

Guillaume Ricotta, Emmanuel Royer

To cite this version:
Guillaume Ricotta, Emmanuel Royer. Lower order terms for the one-level densities of symmetric
power L-functions in the level aspect. Acta Arithmetica, 2010, 141 (2), pp.153-170. �hal-00288656�

https://hal.science/hal-00288656
https://hal.archives-ouvertes.fr


LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES OFSYMMETRIC POWER L-FUNCTIONS IN THE LEVEL ASPECTGUILLAUME RICOTTA AND EMMANUEL ROYERAbstrat. In [12℄, the authors determined, among other things, the main terms forthe one-level densities for low-lying zeros of symmetri power L-funtions in the levelaspet. In this paper, the lower order terms of these one-level densities are found.The ombinatorial di�ulties, whih should arise in suh ontext, are drastially re-dued thanks to Chebyshev polynomials, whih are the haraters of the irreduiblerepresentations of SU(2).
Contents1. Introdution and statement of the result 11.1. Desription of the families of L-funtions studied 11.2. One-level densities of these families 32. Chebyshev polynomials and Heke eigenvalues 43. Riemann's expliit formula for symmetri power L-funtions 64. Proof of Theorem A 8Appendix A. Some omments on an aestheti identity 10Appendix B. S.J. Miller's identity and Chebyhev polynomials 11Referenes 11Aknowledgements� The �rst author is �naned by the ANR projet �Aspets Arithmé-tiques des Matries Aléatoires et du Chaos Quantique�. He would like to thank the Uni-versity of Nottingham, where this work has been �nished, for its hospitality. The seondone is supported by the ANR projet �Modunombres�. Both authors would like to thankthe anonymous referee of [12℄ for suggesting them this problem.1. Introdution and statement of the result1.1. Desription of the families of L-funtions studied. The purpose of this paperis to ompute the lower order terms of some partiular statistis assoiated to low-lyingzeros of several families of symmetri power L-funtions in the level aspet: the one-leveldensities. First of all, we give a short desription of these families. To any primitiveholomorphi usp form f of prime level q and even weight1 κ > 2 (see [12, � 2.1℄ for theautomorphi bakground) say f ∈ H∗
κ(q), one an assoiate its r-th symmetri power

L-funtion denoted by L(Symr f, s) for any integer r > 1. It is given by the followingabsolutely onvergent and non-vanishing Euler produt of degree r + 1 on ℜe s > 1

L(Symr f, s) =
∏

p∈P

Lp(Symr f, s)Date: Version of June 18, 2008.1In this paper, the weight κ is a �xed even integer and the level q goes to in�nity among the primenumbers. 1



2 G. RICOTTA AND E. ROYERwhere
Lp(Symr f, s) =

r∏

i=0

(
1 − αf (p)iβf (p)r−i

ps

)−1for any prime number p. From now on, αf (p), βf (p) are the Satake parameters of fat the prime number p and (λf (n))n>1 is its sequene of Heke eigenvalues, whih isarithmetially normalised: λf (1) = 1 and |λf (p)| 6 2 for any prime p. We also de�ne[1, (3.16) and (3.17)℄ a loal fator at ∞ whih is given by a produt of r + 1 Gammafators namely
L∞(Symr f, s) =

∏

06a6(r−1)/2

ΓR (s + (2a + 1)(κ − 1)/2) ΓR (s + 1 + (2a + 1)(κ − 1)/2)(1.1)if r is odd and
L∞(Symr f, s) = ΓR(s + µκ,r)

∏

16a6r/2

ΓR (s + a(κ − 1)) ΓR (s + 1 + a(κ − 1)) (1.2)if r is even where
µκ,r =

{
1 if r(κ − 1)/2 is odd,
0 otherwise.The ompleted L-funtion is de�ned by

Λ(Symr f, s) = (qr)s/2 L∞(Symr f, s)L(Symr f, s)and qr is the arithmeti ondutor. We will need some ontrol on the analyti behaviourof this funtion. Unfortunately, suh information is not urrently known in all generality.We sum up our main assumption in the following statement.Hypothesis Nice(r, f)� The funtion Λ (Symr f, s) is a ompleted L-funtion in thesense that it satis�es the following nie analyti properties:
• it an be extended to an holomorphi funtion of order 1 on C,
• it satis�es a funtional equation of the shape

Λ(Symr f, s) = ε (Symr f)Λ(Symr f, 1 − s)where the sign ε (Symr f) = ±1 of the funtional equation is given by
ε (Symr f) =

{
+1 if r is even,

εf (q) × ε(κ, r) otherwise (1.3)with
ε(κ, r) = i(

r+1

2 )
2
(κ−1)+ r+1

2 =






iκ if r ≡ 1 (mod 8),
−1 if r ≡ 3 (mod 8),

−iκ if r ≡ 5 (mod 8),

+1 if r ≡ 7 (mod 8)and εf (q) = −√
qλf (q) = ±1.Remark 1� Hypothesis Nice(r, f) is known for r = 1 (E. Heke [3, 4, 5℄), r = 2 thanksto the work of S. Gelbart and H. Jaquet [2℄ and r = 3, 4 from the works of H. Kim andF. Shahidi [9, 8, 7℄.We aim at studying the lower order terms of the one-level density for the family of

L-funtions given by ⋃

q prime {L(Symr f, s), f ∈ H∗
κ(q)}for any integer r > 1.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 31.2. One-level densities of these families. The purpose of this work is to determinethe lower order terms of the one-level densities assoiated to these families of L-funtions.Let us give the statement of our result, in whih ν is a positive real number, Φ is aneven Shwartz funtion, whose Fourier transform Φ̂ is ompatly supported in [−ν,+ν](denoted by Φ ∈ Sν(R)) and f is a primitive holomorphi usp form of prime level qand even weight κ > 2 for whih hypothesis Nice(r, f) holds2. We refer to [12, � 2.2℄for the probabilisti bakground. Note that, thanks to Fourier inversion formula, suh afuntion Φ an be extended to an entire even funtion whih satis�es
∀s ∈ C, Φ(s) ≪n

exp (ν|ℑm s|)
(1 + |s|)n (1.4)for any integer n > 0. The one-level density (relatively to Φ) of Symr f is de�ned by

D1,q[Φ; r](f) =
∑

ρ, Λ(Symr f,ρ)=0

Φ

(
log (qr)

2iπ

(
ℜe ρ − 1

2
+ iℑm ρ

))where the sum is over the non-trivial zeros ρ of L(Symr f, s) repeated with multipliities.The asymptoti expetation of the one-level density is by de�nition
lim

q prime
q→+∞

∑

f∈H∗

κ(q)

ωq(f)D1,q[Φ; r](f)where ωq(f) = Γ(κ−1)
(4π)κ−1〈f,f〉q

is the harmoni weight of f . Before stating our result, let usde�ne the following onstants:
CPNT =

(
1 +

∫ +∞

1

θ(t) − t

t2
dt

)
, (1.5)

C =
∑

p∈P

log p

p3/2 − p
, (1.6)

C∞ = −(r + 1) log π + CΓ (1.7)where θ is the �rst Chebyshev funtion:
θ(t) =

∑

p prime
p6t

log p,

CΓ =
∑

06a6(r−1)/2

{(
Γ′

Γ

)(
1

4
+

(2a + 1)(κ − 1)

4

)
+

(
Γ′

Γ

)(
1

4
+

1

2
+

(2a + 1)(κ − 1)

4

)}(1.8)if r is odd and
CΓ =

(
Γ′

Γ

)(
1

4
+

µκ,r

2

)
+

∑

16a6r/2

{(
Γ′

Γ

)(
1

4
+

a(κ − 1)

2

)
+

(
Γ′

Γ

)(
1

4
+

1

2
+

a(κ − 1)

2

)}(1.9)if r is even.Theorem A� Let r > 1 be any integer and ε = ±1. We assume that hypothesis Nice(r, f)holds for any prime number q and any primitive holomorphi usp form of level q andeven weight κ > 2. Let
ν1,max(r, κ, θ0) =

(
1 − 1

2(κ − 2θ0)

)
2

r22Note that we do not assume any Generalised Riemann Hypothesis for the symmetri power L-funtions.



4 G. RICOTTA AND E. ROYERwith θ0 = 7/64. If ν < ν1,max(r, κ, θ0) then the asymptoti expetation of the one-leveldensity is
[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+
[
C∞ − 2(−1)rCPNT − 2δ2|rC

] Φ̂(0)

log qr
+ O

(
1

log3(qr)

)
.Remark 2� The main terms of the asymptoti expetation of these one-level densitieshave already been found in [12℄ (see Theorem B). The new information is the lowerorder terms namely terms of size 1/ log (qr).Remark 3� Note that θ0 = 7/64 is the best known approximation towards Ramanujan-Peterson-Selberg's onjeture (see [12, hypothesis H2(θ) page 16℄) thanks to the worksof H. Kim, F. Shahidi and P. Sarnak ([8, 7℄). The value θ = 0 is expeted.Remark 4� It is lear from the proof of Theorem A that the same result holds for thesigned families with the same restrition on the support as in [12℄.Remark 5� The partiular ase r = 1 has already been investigated by S.J. Miller[11℄.Notation� We write P for the set of prime numbers and the main parameter in this paperis a prime number q, whose name is the level, whih goes to in�nity among P. Thus, if

f and g are some C-valued funtions of the real variable then the notations f(q) ≪A g(q)or f(q) = OA(g(q)) mean that |f(q)| is smaller than a �onstant� whih only depends on
A times g(q) at least for q a large enough prime number.2. Chebyshev polynomials and Heke eigenvaluesReall that the general fats about holomorphi usp forms an be found in [12, � 2.1℄.Let p 6= q a prime number and f ∈ H∗

κ(q). Denote by χSt the harater of the standardrepresentation St of SU(2). By the work of Deligne, there exists θf,p ∈ [0, π] suh that
λf (p) = χSt

(
eiθf,p 0

0 e−iθf,p

)
.Moreover the multipliativity relation reads

λf (pν) = χSymν

(
eiθf,p 0

0 e−iθf,p

)
= Xν

(
χSt

(
eiθf,p 0

0 e−iθf,p

))
= Xν (λf (p)) (2.1)where χSymν is the harater of the irreduible representation Symν St of SU(2) and thepolynomials Xν are de�ned by their generating series

∑

ν>0

Xν(x)tν =
1

1 − xt + t2
. (2.2)They are equivalentely de�ned by

Xν(2 cos θ) =
sin ((ν + 1)θ)

sin (θ)
. (2.3)These polynomials are known as Chebyshev polynomials of seond kind. Eah Xν hasdegree ν, is even if ν is even and odd otherwise. The family (Xν)ν>0 is a basis for thepolynomial vetor spae Q[T ], orthonormal with respet to the inner produt

〈P,Q〉ST =
1

π

∫ 2

−2
P (x)Q(x)

√
1 − x2

4
dx.The following proposition lists Chebyshev polynomials' needed properties for this work.Proposition 2.1�



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 5
• If ̟ > 0 is any integer then

X̟
r =

r∑̟

j=0

x(̟, r, j)Xj (2.4)with
x(̟, r, j) = 〈X̟

r ,Xj〉ST =
2

π

∫ π

0

sin̟ ((r + 1)θ) sin ((j + 1)θ)

sin̟−1 (θ)
dθ. (2.5)In partiular,

x(̟, r, j) =





0 if j ≡ r̟ + 1 (mod 2),
( ̟

̟/2)
1+̟/2 if ̟ is even, r = 1 and j = 0. (2.6)

• If α is a omplex number of norm 1 and n > 0 is an integer then
αn + α−n =






2X0(α + α−1) if n = 0,
X1(α + α−1) if n = 1,
Xn(α + α−1) − Xn−2(α + α−1) otherwise. (2.7)

• If α is a omplex number of norm 1 and r, n > 1 are some integers then
S(α;n, r) =

r∑

j=0

αn(2j−r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[
αjn + α−jn

] (2.8)
=

∑

06j6r
j≡r (mod 2)

[
Xjn(α + α−1) − Xjn−2(α + α−1)

] (2.9)
= Xr(α

n + α−n) (2.10)where X−1 = X−2 = 0 by onvention.
• If r > 1 and n > 1 are some integers then

∑

06j6r
j≡r (mod 2)

[Xjn − Xjn−2] =

r∑

j=0

(−1)jXj
n−2Xn(r−j) (2.11)where X−1 = X−2 = 0 by onvention.

• If ℓ > 0 is an integer then
Xℓ =

∑

06u6ℓ
u≡ℓ (mod 2)

(−1)(ℓ−u)/2

(
(ℓ + u)/2

u

)
T u. (2.12)Proof of proposition 2.1. The �rst point follows from the fat that X̟

r is an polynomialof degree r̟, whih is even if r̟ is even and odd otherwise. Thus, (2.4) is the expansionof this polynomial in the orthonormal basis (Xj)06j6r̟. The seond point follows fromthe equality
2 cos (nθ) sin (θ) = sin ((n + 1)θ) − sin ((n − 1)θ).If α = exp (iθ) then this equality ombined with (2.3) lead to

2 cos (nθ) = Xn(2 cos θ) − Xn−2(2 cos θ),whih is the desired result sine 2 cos θ = α + α−1 and 2 cos (nθ) = αn + α−n. The thirdpoint is a diret onsequene of the seond one, of the diret omputation
S(α;n, r) =

αn(r+1) − α−n(r+1)

αn − α−n



6 G. RICOTTA AND E. ROYERand of
Xr(α

n + α−n) = Xr(2 cos (nθ)) =
αn(r+1) − α−n(r+1)

αn − α−nif α = exp (iθ). The fourth point is easily dedued from the fat that
S(α;n, r) =

r∑

j=0

(−1)jXj
n−2(α + α−1)Xn(r−j)(α + α−1)for any omplex number α of norm 1. Let us prove the previous equality. Aording to[13, Page 727, �rst and seond equations℄,

∑

r>0

Xnr(α + α−1)tr =
[
1 + Xn−2(α + α−1)t

]∑

r>0

Xr(α
n + α−n)tr.As a onsequene,

Xnr(α + α−1) = Xr(α
n + α−n) + Xn−2(α + α−1)Xr−1(α

n + α−n),whih implies
Xr(α

n + α−n) =

r∑

j=0

(−1)jXj
n−2(α + α−1)Xn(r−j)(α + α−1).The last point is obtained by developping (2.2) as an entire series in x. �3. Riemann's expliit formula for symmetri power L-funtionsTo study D1,q[Φ; r](f) for any Φ ∈ Sν(R), we transform this sum over zeros into a sumover primes in the next proposition. In other words, we establish an expliit formula forsymmetri power L-funtions.Proposition 3.1� Let r > 1 and f ∈ H∗

κ(q) for whih hypothesis Nice(r, f) holds and let
Φ ∈ Sν(R). We have

D1,q[Φ; r](f) =

[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+

Φ̂(0)

log (qr)

[
C∞ + 2(−1)r+1CPNT − 2δ2|rC

]

+ P 1
q [Φ; r](f) +

r−1∑

m=0

(−1)mP 2
q [Φ; r,m](f) + P 3

q [Φ; r](f) + O

(
1

log3 (qr)

)where CPNT is de�ned in (1.5), C in (1.6), C∞ in (1.7) whereas
P 1

q [Φ; r](f) = − 2

log (qr)

∑

p∈P
p∤q

λf (pr)
log p√

p
Φ̂

(
log p

log (qr)

)
,

P 2
q [Φ; r,m](f) = − 2

log (qr)

∑

p∈P
p∤q

λf

(
p2(r−m)

) log p

p
Φ̂

(
2 log p

log (qr)

)

P 3
q [Φ; r](f) = − 2

log (qr)

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
λf (pjn) − λf (pjn−2)

)




log p

pn/2
Φ̂

(
n log p

log (qr)

)for any integer m ∈ {0, . . . , r − 1}.Proof of proposition 3.1. Let
G(s) = Φ

(
log (qr)

2iπ

(
s − 1

2

))
.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 7From [6, eq. (4.11) and (4.14)℄ we get
D1,q[Φ; r](f) = Φ̂(0) − (r + 1)

log π

log qr
Φ̂(0)

− 2

log qr

∑

p∈P

+∞∑

m=1




r∑

j=0

αf (p)jmβf (p)(r−j)m



 Φ̂

(
m log p

log qr

)
log p

pm/2

+
Φ̂(0)

log qr

r∑

j=0

Γ′

Γ

(
1

4
+

µj

2

)
+ O

(
1

log3 q

)
. (3.1)Let us fous on the third term in(3.1). Not that the ontribution of the prime q is givenby

−2

r

+∞∑

m=1

(
λf (q)r
√

q

)m

Φ̂
(m

r

)
≪ 1

q(r+1)/2and for p 6= q we use
r∑

j=0

αf (p)jmβf (p)(r−j)m = S (αf (p);m, r)with the notation of (2.8). We obtain
S (αf (p); 1, r) = Xr

(
αf (p) + αf (p)−1

)
= λf (pr)aording to (2.1) and

S (αf (p); 2, r) =
∑

06j6r
j≡r (mod 2)

X2j

(
αf (p) + αf (p)−1

)
− X2j−2

(
αf (p) + αf (p)−1

)

=

r∑

j=0

(−1)jX2(r−j)

(
αf (p) + αf (p)−1

)
(f. (2.11))

=

r−1∑

m=0

(−1)mλf

(
p2(r−m)

)
+ (−1)r.As a onsequene,

∑

p∈P
p 6=q

+∞∑

m=1




r∑

j=0

αf (p)jmβf (p)(r−j)m



 =
∑

p∈P
p∤q

λf (pr) log p

p1/2
Φ̂

(
log p

log (qr)

)

+
∑

p∈P
p∤q

(
r−1∑

m=0

(−1)mλf

(
p2(r−m)

)) log p

p
Φ̂

(
log (p2)

log (qr)

)

+ (−1)r
∑

p∈P
p∤q

log p

p
Φ̂

(
log (p2)

log (qr)

)

+
∑

p∈P
p∤q

∑

n>3

S (αf (p);n, r)
log p

pn/2
Φ̂

(
log (pn)

log (qr)

)
. (3.2)We have isolated the three �rst terms in (3.2) sine they may ontribute as main termsand not only lower order terms. Let us estimate the third term of (3.2). By partial



8 G. RICOTTA AND E. ROYERsummation, this term equals, up to O(q−0.9),
(−1)r

∫ +∞

1

θ(t)

t2

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt := S3.Then,

S3 = (−1)r
∫ +∞

1

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt

t

+ (−1)r
∫ +∞

1

θ(t) − t

t

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt

t
.Sine Φ̂(u) = Φ̂(0) + O(u2) and Φ̂′(u) ≪ |u|, we get

S3 = (−1)r
log (qr)

2

∫ +∞

0
Φ̂(u) du− (−1)r

∫ +∞

0
Φ̂′(u) du+ (−1)rΦ̂(0)

∫ +∞

1

θ(t) − t

t2
dt

+ O

(
1

log2 (qr)

)and �nally
S3 = (−1)r

log (qr)

4
Φ(0) + (−1)rΦ̂(0)

(
1 +

∫ +∞

1

θ(t) − t

t2
dt

)
+ O

(
1

log2 (qr)

)
.We �nally take are of the fourth term of (3.2). Aording to (2.1) and (2.8), we have

S (αf (p);n, r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[
λf (pjn) − λf (pjn−2)

]
.One may remark that

∑

p∈P
p∤q

∑

n>3

log p

pn/2
Φ̂

(
n log p

log (qr)

)
=
∑

p∈P

∑

n>3

log p

pn/2
Φ̂ (0) + O

(
1

log3 (qr)

)sine Φ̂(u) = Φ̂(0) + O(u2). Then, we easily get
∑

p∈P

∑

n>3

log p

pn/2
=
∑

p∈P

log p

p3/2 − p
.

�4. Proof of Theorem AThe aim of this part is to determine an asymptoti expansion of
∑

f∈H∗

κ(q)

ωq(f)D1,q[Φ; r](f) = Eh
q (D1,q[Φ; r]) .Aording to proposition 3.1 and the proof of [12, eq. (4.6) and (4.7)℄, if

ν <

(
1 − 1

2(κ − 2θ)

)
2

r2
(4.1)then

Eh
q (D1,q[Φ; r]) =

[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+

Φ̂(0)

log (qr)

[
C∞ + 2(−1)r+1CPNT − 2δ2|rC

]

+ Eh
q

(
P 3

q [Φ; r](f)
)

+ O

(
1

log3 (qr)

)
. (4.2)



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 9The �rst term in (4.2) is the main term given in Theorem A. We now estimate thepenultemate term of (4.2) via the trae formula given in [12, Proposition 2.2℄:
Eh

q

(
P 3

q [Φ; r]
)

= P3
q,new[Φ; r] + P3

q,old[Φ; r] (4.3)where
P3

q,new[Φ; r] = − 2

log (qr)

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
∆q(p

jn, 1) − ∆q(p
jn−2, 1)

)




log p

pn/2
Φ̂

(
n log p

log (qr)

)and
P3

q,old[Φ; r] =
2

q log (qr)

∑

ℓ|q∞

1

ℓ

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
∆1(p

jnℓ2, 1) − ∆1(p
jn−2ℓ2, 1)

)





log p

pn/2
Φ̂

(
n log p

log (qr)

)
.For m 6= 1 we have

∆k(m, 1) = 2πiκ
∑

c>1
k|c

S(m, 1; c)

c
Jκ−1

(
4π

√
m

c

)where S(m, 1; c) is a Kloosterman sum. Let us estimate the new part whih an bewritten as
P3

q,new[Φ; r] = −2(2πiκ)

log (qr)

∑

16j6r
j≡r (mod 2)

∑

n>3

(
P3

q,new[Φ; r, jn] − P3
q,new[Φ; r, jn − 2]

)where
P3

q,new[Φ; r, k] =
∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log
(
qr/n

)
)
∑

c>1
q|c

S(pk, 1; c)

c
Jκ−1

(
4π
√

pk

c

)
. (4.4)By [12, lemma 3.10℄, the c-sum in (4.4) is bounded by

τ(q)√
q






(√
pk

q

)1/2 if p > q2/k,
(√

pk

q

)κ−1 otherwise.We dedue
∑

n>3

P3
q,new[Φ; r, jn] ≪ τ(q)

qκ−1/2

∑

n>3

∑

p6qrν/n

1

pn/2
prn(κ−1)/2 log p

≪ τ(q)

qκ−1/2

∑

36n6νr log q/log 2

1

n
qνr[((κ−1)r−1)n/2+1]/n

≪ τ(q)

qκ−1/2
qνr[(κ−1)r−1]/2qνr/3 log log(3q)

≪ 1

q1/2



10 G. RICOTTA AND E. ROYERas soon as ν < 2/r2 (and in partiular if (4.1) is satis�ed). We make the same ompu-tations for jn − 2 and �nd then that P3
q,new[Φ; r, k] is an admissible error term. The oldpart is

P3
q,old[Φ; r] =

2(2πiκ)

q log (qr)

∑

16j6r
j≡r (mod 2)

∑

n>3

(
P3

q,old[Φ; r, jn] − P3
q,old[Φ; r, jn − 2]

)where
P3

q,old[Φ; r, k] =
∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log qr/n

)∑

ℓ|q∞

1

ℓ
∆1(p

kℓ2, 1).From [12, eq (3.2) and (3.3)℄ we have
∑

ℓ|q∞

1

ℓ
∆1(p

kℓ2, 1) 6 2(k + 1)so that ∑

n>3

P3
q,old[Φ; r, jn] ≪ 1and similary for P3

q,old[Φ; r, jn − 2]. Finally Eh
q

(
P 3

q [Φ; r]
) enters the O(1/ log3 qr) term.Appendix A. Some omments on an aestheti identityIt is possible to prove on indution on k0 > 1 the following equality in Q[T ]:

X2k0
− X2k0−2 =

k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)]{
T 2kj −

(
2kj

kj

)}
.(A.1)As a onsequene, if K > 1 then

X2K+1 − X2K−1 = (−1)KT



1 +
∑

16k06K

(−1)k0X2k0
− X2k0−2



 . (A.2)Now, use (2.4) with r = 1 (so that X1 = T ) to get from (A.1) the equality
X2k0

− X2k0−2 =

k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)]


2kj∑

ℓ=0

x(2kj , 1, ℓ)Xℓ −
(

2kj

kj

)
X0



and ompare the oe�ients of X0 to obtain, thanks to (2.6) the equality
k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)](
2kj

kj

)
kj

1 + kj
= 0.We ould have expressed formulas (A.1) and (A.2) in terms of Fourier oe�ients ofprimitive forms to determine the lower order terms. However, this is de�nitely not thebest way to proeed sine it onsists in deomposing the polynomial XK −XK−2 in theanonial basis of Q[T ] and deomposing again eah element of this anonial basis inthe Chebyshev basis (Xℓ)ℓ∈N.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 11Appendix B. S.J. Miller's identity and Chebyhev polynomialsS.J. Miller ([10, Equation (3.12) Page 6℄) reently proved that
αf (p)K + βf (p)K =

∑

06k6K
k≡K (mod 2)

cK,kλf (p)k (B.1)where cK,k = 0 if k ≡ K + 1 (mod 2) and
c0,0 = 0,

c2K,0 = 2(−1)K (K > 1),

c2K,2L =
2(−1)K+LK(K + L − 1)!

(2L)!(K − L)!
(1 6 L 6 K),

c2K+1,2L+1 =
(−1)K+L(2K + 1)(K + L)!

(2L + 1)!(K − L)!
(0 6 L 6 K).We would like to give a quik proof of this identity, the ruial tool being Chebyhevpolynomials.Proof of equation (B.1). We know that

αf (p)K + βf (p)K = XK(λf (p)) − XK−2(λf (p))for K > 2 aording to (2.7). Thus, the proof onsists in deomposing the polynomial
XK − XK−2 in the anonial basis of Q[T ]. This an be done via (2.12). It entails that

αf (p)K+βf (p)K =
∑

06u6K−2
u≡K (mod 2)

(−1)(K−u)/2

[(
(K + u)/2

u

)
+

(
(K + u)/2 − 1

u

)]
λf (p)u

+
∑

K−16u6K
u≡K (mod 2)

(−1)(K−u)/2

(
(K + u)/2

u

)
λf (p)u,whih is an equivalent formulation of (B.1). �Remark B.1� Equation (B.1) ould be used to reover the lower order terms oming from

P 3
q [Φ; r] but,one again, it is not the most lever way to proeed sine it would implydeomposing the polynomials XK −XK−2 in the anonial basis of Q[T ] at the beginningof the proess and deomposing the polynomials T j in the basis (Xr)r>0 just before theend of the proof in order to be able to apply some trae formula for the Fourier oe�ientsof usp forms. Referenes[1℄ J. Cogdell and P. Mihel, On the omplex moments of symmetri power L-funtions at s = 1, Int.Math. Res. Not. (2004), no. 31, 1561�1617. MR MR2035301 (2005f:11094)[2℄ Stephen Gelbart and Hervé Jaquet, A relation between automorphi representations of GL(2) and

GL(3), Ann. Si. Éole Norm. Sup. (4) 11 (1978), no. 4, 471�542. MR MR533066 (81e:10025)[3℄ E. Heke, Über die Bestimmung Dirihletsher Reihen durh ihre Funktionalgleihung, Math. Ann.112 (1936), no. 1, 664�699. MR MR1513069[4℄ , Über Modulfunktionen und die Dirihletshen Reihen mit Eulersher Produktentwiklung.I, Math. Ann. 114 (1937), no. 1, 1�28. MR MR1513122[5℄ , Über Modulfunktionen und die Dirihletshen Reihen mit Eulersher Produktentwiklung.II, Math. Ann. 114 (1937), no. 1, 316�351. MR MR1513142[6℄ Henryk Iwanie, Wenzhi Luo, and Peter Sarnak, Low lying zeros of families of L-funtions, Inst.Hautes Études Si. Publ. Math. (2000), no. 91, 55�131 (2001). MR MR1828743 (2002h:11081)[7℄ Henry H. Kim, Funtoriality for the exterior square of GL4 and the symmetri fourth of GL2, J.Amer. Math. So. 16 (2003), no. 1, 139�183 (eletroni), With appendix 1 by Dinakar Ramakrishnanand appendix 2 by Kim and Peter Sarnak. MR MR1937203 (2003k:11083)



12 G. RICOTTA AND E. ROYER[8℄ Henry H. Kim and Freydoon Shahidi, Cuspidality of symmetri powers with appliations, DukeMath. J. 112 (2002), no. 1, 177�197. MR MR1890650 (2003a:11057)[9℄ , Funtorial produts for GL2 × GL3 and the symmetri ube for GL2, Ann. of Math. (2)155 (2002), no. 3, 837�893, With an appendix by Colin J. Bushnell and Guy Henniart. MRMR1923967 (2003m:11075)[10℄ Steven J. Miller, An identity for sums of polylogarithm funtions.[11℄ , One- and two-level densities for rational families of ellipti urves: evidene for theunderlying group symmetries, Compos. Math. 140 (2004), no. 4, 952�992. MR MR2059225(2005:11085)[12℄ Guillaume Riotta and Emmanuel Royer, Statistis for low-lying zeros of symmetri power l-funtions in the level aspet, (2007), submitted, available at http://arxiv.org/abs/math/0703760.[13℄ Emmanuel Royer and Jie Wu, Speial values of symmetri power L-funtions and Heke eigenvalues,J. Théor. Nombres Bordeaux 19 (2007), no. 3, 703�753. MR MR2388795


