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LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES OFSYMMETRIC POWER L-FUNCTIONS IN THE LEVEL ASPECTGUILLAUME RICOTTA AND EMMANUEL ROYERAbstra
t. In [12℄, the authors determined, among other things, the main terms forthe one-level densities for low-lying zeros of symmetri
 power L-fun
tions in the levelaspe
t. In this paper, the lower order terms of these one-level densities are found.The 
ombinatorial di�
ulties, whi
h should arise in su
h 
ontext, are drasti
ally re-du
ed thanks to Chebyshev polynomials, whi
h are the 
hara
ters of the irredu
iblerepresentations of SU(2).
Contents1. Introdu
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tions studied 11.2. One-level densities of these families 32. Chebyshev polynomials and He
ke eigenvalues 43. Riemann's expli
it formula for symmetri
 power L-fun
tions 64. Proof of Theorem A 8Appendix A. Some 
omments on an aestheti
 identity 10Appendix B. S.J. Miller's identity and Cheby
hev polynomials 11Referen
es 11A
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ondone is supported by the ANR proje
t �Modunombres�. Both authors would like to thankthe anonymous referee of [12℄ for suggesting them this problem.1. Introdu
tion and statement of the result1.1. Des
ription of the families of L-fun
tions studied. The purpose of this paperis to 
ompute the lower order terms of some parti
ular statisti
s asso
iated to low-lyingzeros of several families of symmetri
 power L-fun
tions in the level aspe
t: the one-leveldensities. First of all, we give a short des
ription of these families. To any primitiveholomorphi
 
usp form f of prime level q and even weight1 κ > 2 (see [12, � 2.1℄ for theautomorphi
 ba
kground) say f ∈ H∗
κ(q), one 
an asso
iate its r-th symmetri
 power

L-fun
tion denoted by L(Symr f, s) for any integer r > 1. It is given by the followingabsolutely 
onvergent and non-vanishing Euler produ
t of degree r + 1 on ℜe s > 1

L(Symr f, s) =
∏

p∈P

Lp(Symr f, s)Date: Version of June 18, 2008.1In this paper, the weight κ is a �xed even integer and the level q goes to in�nity among the primenumbers. 1



2 G. RICOTTA AND E. ROYERwhere
Lp(Symr f, s) =

r∏

i=0

(
1 − αf (p)iβf (p)r−i

ps

)−1for any prime number p. From now on, αf (p), βf (p) are the Satake parameters of fat the prime number p and (λf (n))n>1 is its sequen
e of He
ke eigenvalues, whi
h isarithmeti
ally normalised: λf (1) = 1 and |λf (p)| 6 2 for any prime p. We also de�ne[1, (3.16) and (3.17)℄ a lo
al fa
tor at ∞ whi
h is given by a produ
t of r + 1 Gammafa
tors namely
L∞(Symr f, s) =

∏

06a6(r−1)/2

ΓR (s + (2a + 1)(κ − 1)/2) ΓR (s + 1 + (2a + 1)(κ − 1)/2)(1.1)if r is odd and
L∞(Symr f, s) = ΓR(s + µκ,r)

∏

16a6r/2

ΓR (s + a(κ − 1)) ΓR (s + 1 + a(κ − 1)) (1.2)if r is even where
µκ,r =

{
1 if r(κ − 1)/2 is odd,
0 otherwise.The 
ompleted L-fun
tion is de�ned by

Λ(Symr f, s) = (qr)s/2 L∞(Symr f, s)L(Symr f, s)and qr is the arithmeti
 
ondu
tor. We will need some 
ontrol on the analyti
 behaviourof this fun
tion. Unfortunately, su
h information is not 
urrently known in all generality.We sum up our main assumption in the following statement.Hypothesis Nice(r, f)� The fun
tion Λ (Symr f, s) is a 
ompleted L-fun
tion in thesense that it satis�es the following ni
e analyti
 properties:
• it 
an be extended to an holomorphi
 fun
tion of order 1 on C,
• it satis�es a fun
tional equation of the shape

Λ(Symr f, s) = ε (Symr f)Λ(Symr f, 1 − s)where the sign ε (Symr f) = ±1 of the fun
tional equation is given by
ε (Symr f) =

{
+1 if r is even,

εf (q) × ε(κ, r) otherwise (1.3)with
ε(κ, r) = i(

r+1

2 )
2
(κ−1)+ r+1

2 =






iκ if r ≡ 1 (mod 8),
−1 if r ≡ 3 (mod 8),

−iκ if r ≡ 5 (mod 8),

+1 if r ≡ 7 (mod 8)and εf (q) = −√
qλf (q) = ±1.Remark 1� Hypothesis Nice(r, f) is known for r = 1 (E. He
ke [3, 4, 5℄), r = 2 thanksto the work of S. Gelbart and H. Ja
quet [2℄ and r = 3, 4 from the works of H. Kim andF. Shahidi [9, 8, 7℄.We aim at studying the lower order terms of the one-level density for the family of

L-fun
tions given by ⋃

q prime {L(Symr f, s), f ∈ H∗
κ(q)}for any integer r > 1.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 31.2. One-level densities of these families. The purpose of this work is to determinethe lower order terms of the one-level densities asso
iated to these families of L-fun
tions.Let us give the statement of our result, in whi
h ν is a positive real number, Φ is aneven S
hwartz fun
tion, whose Fourier transform Φ̂ is 
ompa
tly supported in [−ν,+ν](denoted by Φ ∈ Sν(R)) and f is a primitive holomorphi
 
usp form of prime level qand even weight κ > 2 for whi
h hypothesis Nice(r, f) holds2. We refer to [12, � 2.2℄for the probabilisti
 ba
kground. Note that, thanks to Fourier inversion formula, su
h afun
tion Φ 
an be extended to an entire even fun
tion whi
h satis�es
∀s ∈ C, Φ(s) ≪n

exp (ν|ℑm s|)
(1 + |s|)n (1.4)for any integer n > 0. The one-level density (relatively to Φ) of Symr f is de�ned by

D1,q[Φ; r](f) =
∑

ρ, Λ(Symr f,ρ)=0

Φ

(
log (qr)

2iπ

(
ℜe ρ − 1

2
+ iℑm ρ

))where the sum is over the non-trivial zeros ρ of L(Symr f, s) repeated with multipli
ities.The asymptoti
 expe
tation of the one-level density is by de�nition
lim

q prime
q→+∞

∑

f∈H∗

κ(q)

ωq(f)D1,q[Φ; r](f)where ωq(f) = Γ(κ−1)
(4π)κ−1〈f,f〉q

is the harmoni
 weight of f . Before stating our result, let usde�ne the following 
onstants:
CPNT =

(
1 +

∫ +∞

1

θ(t) − t

t2
dt

)
, (1.5)

C =
∑

p∈P

log p

p3/2 − p
, (1.6)

C∞ = −(r + 1) log π + CΓ (1.7)where θ is the �rst Chebyshev fun
tion:
θ(t) =

∑

p prime
p6t

log p,

CΓ =
∑

06a6(r−1)/2

{(
Γ′

Γ

)(
1

4
+

(2a + 1)(κ − 1)

4

)
+

(
Γ′

Γ

)(
1

4
+

1

2
+

(2a + 1)(κ − 1)

4

)}(1.8)if r is odd and
CΓ =

(
Γ′

Γ

)(
1

4
+

µκ,r

2

)
+

∑

16a6r/2

{(
Γ′

Γ

)(
1

4
+

a(κ − 1)

2

)
+

(
Γ′

Γ

)(
1

4
+

1

2
+

a(κ − 1)

2

)}(1.9)if r is even.Theorem A� Let r > 1 be any integer and ε = ±1. We assume that hypothesis Nice(r, f)holds for any prime number q and any primitive holomorphi
 
usp form of level q andeven weight κ > 2. Let
ν1,max(r, κ, θ0) =

(
1 − 1

2(κ − 2θ0)

)
2

r22Note that we do not assume any Generalised Riemann Hypothesis for the symmetri
 power L-fun
tions.



4 G. RICOTTA AND E. ROYERwith θ0 = 7/64. If ν < ν1,max(r, κ, θ0) then the asymptoti
 expe
tation of the one-leveldensity is
[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+
[
C∞ − 2(−1)rCPNT − 2δ2|rC

] Φ̂(0)

log qr
+ O

(
1

log3(qr)

)
.Remark 2� The main terms of the asymptoti
 expe
tation of these one-level densitieshave already been found in [12℄ (see Theorem B). The new information is the lowerorder terms namely terms of size 1/ log (qr).Remark 3� Note that θ0 = 7/64 is the best known approximation towards Ramanujan-Peterson-Selberg's 
onje
ture (see [12, hypothesis H2(θ) page 16℄) thanks to the worksof H. Kim, F. Shahidi and P. Sarnak ([8, 7℄). The value θ = 0 is expe
ted.Remark 4� It is 
lear from the proof of Theorem A that the same result holds for thesigned families with the same restri
tion on the support as in [12℄.Remark 5� The parti
ular 
ase r = 1 has already been investigated by S.J. Miller[11℄.Notation� We write P for the set of prime numbers and the main parameter in this paperis a prime number q, whose name is the level, whi
h goes to in�nity among P. Thus, if

f and g are some C-valued fun
tions of the real variable then the notations f(q) ≪A g(q)or f(q) = OA(g(q)) mean that |f(q)| is smaller than a �
onstant� whi
h only depends on
A times g(q) at least for q a large enough prime number.2. Chebyshev polynomials and He
ke eigenvaluesRe
all that the general fa
ts about holomorphi
 
usp forms 
an be found in [12, � 2.1℄.Let p 6= q a prime number and f ∈ H∗

κ(q). Denote by χSt the 
hara
ter of the standardrepresentation St of SU(2). By the work of Deligne, there exists θf,p ∈ [0, π] su
h that
λf (p) = χSt

(
eiθf,p 0

0 e−iθf,p

)
.Moreover the multipli
ativity relation reads

λf (pν) = χSymν

(
eiθf,p 0

0 e−iθf,p

)
= Xν

(
χSt

(
eiθf,p 0

0 e−iθf,p

))
= Xν (λf (p)) (2.1)where χSymν is the 
hara
ter of the irredu
ible representation Symν St of SU(2) and thepolynomials Xν are de�ned by their generating series

∑

ν>0

Xν(x)tν =
1

1 − xt + t2
. (2.2)They are equivalentely de�ned by

Xν(2 cos θ) =
sin ((ν + 1)θ)

sin (θ)
. (2.3)These polynomials are known as Chebyshev polynomials of se
ond kind. Ea
h Xν hasdegree ν, is even if ν is even and odd otherwise. The family (Xν)ν>0 is a basis for thepolynomial ve
tor spa
e Q[T ], orthonormal with respe
t to the inner produ
t

〈P,Q〉ST =
1

π

∫ 2

−2
P (x)Q(x)

√
1 − x2

4
dx.The following proposition lists Chebyshev polynomials' needed properties for this work.Proposition 2.1�



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 5
• If ̟ > 0 is any integer then

X̟
r =

r∑̟

j=0

x(̟, r, j)Xj (2.4)with
x(̟, r, j) = 〈X̟

r ,Xj〉ST =
2

π

∫ π

0

sin̟ ((r + 1)θ) sin ((j + 1)θ)

sin̟−1 (θ)
dθ. (2.5)In parti
ular,

x(̟, r, j) =





0 if j ≡ r̟ + 1 (mod 2),
( ̟

̟/2)
1+̟/2 if ̟ is even, r = 1 and j = 0. (2.6)

• If α is a 
omplex number of norm 1 and n > 0 is an integer then
αn + α−n =






2X0(α + α−1) if n = 0,
X1(α + α−1) if n = 1,
Xn(α + α−1) − Xn−2(α + α−1) otherwise. (2.7)

• If α is a 
omplex number of norm 1 and r, n > 1 are some integers then
S(α;n, r) =

r∑

j=0

αn(2j−r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[
αjn + α−jn

] (2.8)
=

∑

06j6r
j≡r (mod 2)

[
Xjn(α + α−1) − Xjn−2(α + α−1)

] (2.9)
= Xr(α

n + α−n) (2.10)where X−1 = X−2 = 0 by 
onvention.
• If r > 1 and n > 1 are some integers then

∑

06j6r
j≡r (mod 2)

[Xjn − Xjn−2] =

r∑

j=0

(−1)jXj
n−2Xn(r−j) (2.11)where X−1 = X−2 = 0 by 
onvention.

• If ℓ > 0 is an integer then
Xℓ =

∑

06u6ℓ
u≡ℓ (mod 2)

(−1)(ℓ−u)/2

(
(ℓ + u)/2

u

)
T u. (2.12)Proof of proposition 2.1. The �rst point follows from the fa
t that X̟

r is an polynomialof degree r̟, whi
h is even if r̟ is even and odd otherwise. Thus, (2.4) is the expansionof this polynomial in the orthonormal basis (Xj)06j6r̟. The se
ond point follows fromthe equality
2 cos (nθ) sin (θ) = sin ((n + 1)θ) − sin ((n − 1)θ).If α = exp (iθ) then this equality 
ombined with (2.3) lead to

2 cos (nθ) = Xn(2 cos θ) − Xn−2(2 cos θ),whi
h is the desired result sin
e 2 cos θ = α + α−1 and 2 cos (nθ) = αn + α−n. The thirdpoint is a dire
t 
onsequen
e of the se
ond one, of the dire
t 
omputation
S(α;n, r) =

αn(r+1) − α−n(r+1)

αn − α−n



6 G. RICOTTA AND E. ROYERand of
Xr(α

n + α−n) = Xr(2 cos (nθ)) =
αn(r+1) − α−n(r+1)

αn − α−nif α = exp (iθ). The fourth point is easily dedu
ed from the fa
t that
S(α;n, r) =

r∑

j=0

(−1)jXj
n−2(α + α−1)Xn(r−j)(α + α−1)for any 
omplex number α of norm 1. Let us prove the previous equality. A

ording to[13, Page 727, �rst and se
ond equations℄,

∑

r>0

Xnr(α + α−1)tr =
[
1 + Xn−2(α + α−1)t

]∑

r>0

Xr(α
n + α−n)tr.As a 
onsequen
e,

Xnr(α + α−1) = Xr(α
n + α−n) + Xn−2(α + α−1)Xr−1(α

n + α−n),whi
h implies
Xr(α

n + α−n) =

r∑

j=0

(−1)jXj
n−2(α + α−1)Xn(r−j)(α + α−1).The last point is obtained by developping (2.2) as an entire series in x. �3. Riemann's expli
it formula for symmetri
 power L-fun
tionsTo study D1,q[Φ; r](f) for any Φ ∈ Sν(R), we transform this sum over zeros into a sumover primes in the next proposition. In other words, we establish an expli
it formula forsymmetri
 power L-fun
tions.Proposition 3.1� Let r > 1 and f ∈ H∗

κ(q) for whi
h hypothesis Nice(r, f) holds and let
Φ ∈ Sν(R). We have

D1,q[Φ; r](f) =

[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+

Φ̂(0)

log (qr)

[
C∞ + 2(−1)r+1CPNT − 2δ2|rC

]

+ P 1
q [Φ; r](f) +

r−1∑

m=0

(−1)mP 2
q [Φ; r,m](f) + P 3

q [Φ; r](f) + O

(
1

log3 (qr)

)where CPNT is de�ned in (1.5), C in (1.6), C∞ in (1.7) whereas
P 1

q [Φ; r](f) = − 2

log (qr)

∑

p∈P
p∤q

λf (pr)
log p√

p
Φ̂

(
log p

log (qr)

)
,

P 2
q [Φ; r,m](f) = − 2

log (qr)

∑

p∈P
p∤q

λf

(
p2(r−m)

) log p

p
Φ̂

(
2 log p

log (qr)

)

P 3
q [Φ; r](f) = − 2

log (qr)

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
λf (pjn) − λf (pjn−2)

)




log p

pn/2
Φ̂

(
n log p

log (qr)

)for any integer m ∈ {0, . . . , r − 1}.Proof of proposition 3.1. Let
G(s) = Φ

(
log (qr)

2iπ

(
s − 1

2

))
.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 7From [6, eq. (4.11) and (4.14)℄ we get
D1,q[Φ; r](f) = Φ̂(0) − (r + 1)

log π

log qr
Φ̂(0)

− 2

log qr

∑

p∈P

+∞∑

m=1




r∑

j=0

αf (p)jmβf (p)(r−j)m



 Φ̂

(
m log p

log qr

)
log p

pm/2

+
Φ̂(0)

log qr

r∑

j=0

Γ′

Γ

(
1

4
+

µj

2

)
+ O

(
1

log3 q

)
. (3.1)Let us fo
us on the third term in(3.1). Not that the 
ontribution of the prime q is givenby

−2

r

+∞∑

m=1

(
λf (q)r
√

q

)m

Φ̂
(m

r

)
≪ 1

q(r+1)/2and for p 6= q we use
r∑

j=0

αf (p)jmβf (p)(r−j)m = S (αf (p);m, r)with the notation of (2.8). We obtain
S (αf (p); 1, r) = Xr

(
αf (p) + αf (p)−1

)
= λf (pr)a

ording to (2.1) and

S (αf (p); 2, r) =
∑

06j6r
j≡r (mod 2)

X2j

(
αf (p) + αf (p)−1

)
− X2j−2

(
αf (p) + αf (p)−1

)

=

r∑

j=0

(−1)jX2(r−j)

(
αf (p) + αf (p)−1

)
(
f. (2.11))

=

r−1∑

m=0

(−1)mλf

(
p2(r−m)

)
+ (−1)r.As a 
onsequen
e,

∑

p∈P
p 6=q

+∞∑

m=1




r∑

j=0

αf (p)jmβf (p)(r−j)m



 =
∑

p∈P
p∤q

λf (pr) log p

p1/2
Φ̂

(
log p

log (qr)

)

+
∑

p∈P
p∤q

(
r−1∑

m=0

(−1)mλf

(
p2(r−m)

)) log p

p
Φ̂

(
log (p2)

log (qr)

)

+ (−1)r
∑

p∈P
p∤q

log p

p
Φ̂

(
log (p2)

log (qr)

)

+
∑

p∈P
p∤q

∑

n>3

S (αf (p);n, r)
log p

pn/2
Φ̂

(
log (pn)

log (qr)

)
. (3.2)We have isolated the three �rst terms in (3.2) sin
e they may 
ontribute as main termsand not only lower order terms. Let us estimate the third term of (3.2). By partial



8 G. RICOTTA AND E. ROYERsummation, this term equals, up to O(q−0.9),
(−1)r

∫ +∞

1

θ(t)

t2

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt := S3.Then,

S3 = (−1)r
∫ +∞

1

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt

t

+ (−1)r
∫ +∞

1

θ(t) − t

t

(
Φ̂

(
2 log t

log (qr)

)
− 2

log (qr)
Φ̂′

(
2 log t

log (qr)

))
dt

t
.Sin
e Φ̂(u) = Φ̂(0) + O(u2) and Φ̂′(u) ≪ |u|, we get

S3 = (−1)r
log (qr)

2

∫ +∞

0
Φ̂(u) du− (−1)r

∫ +∞

0
Φ̂′(u) du+ (−1)rΦ̂(0)

∫ +∞

1

θ(t) − t

t2
dt

+ O

(
1

log2 (qr)

)and �nally
S3 = (−1)r

log (qr)

4
Φ(0) + (−1)rΦ̂(0)

(
1 +

∫ +∞

1

θ(t) − t

t2
dt

)
+ O

(
1

log2 (qr)

)
.We �nally take 
are of the fourth term of (3.2). A

ording to (2.1) and (2.8), we have

S (αf (p);n, r) = δ2|r +
∑

16j6r
j≡r (mod 2)

[
λf (pjn) − λf (pjn−2)

]
.One may remark that

∑

p∈P
p∤q

∑

n>3

log p

pn/2
Φ̂

(
n log p

log (qr)

)
=
∑

p∈P

∑

n>3

log p

pn/2
Φ̂ (0) + O

(
1

log3 (qr)

)sin
e Φ̂(u) = Φ̂(0) + O(u2). Then, we easily get
∑

p∈P

∑

n>3

log p

pn/2
=
∑

p∈P

log p

p3/2 − p
.

�4. Proof of Theorem AThe aim of this part is to determine an asymptoti
 expansion of
∑

f∈H∗

κ(q)

ωq(f)D1,q[Φ; r](f) = Eh
q (D1,q[Φ; r]) .A

ording to proposition 3.1 and the proof of [12, eq. (4.6) and (4.7)℄, if

ν <

(
1 − 1

2(κ − 2θ)

)
2

r2
(4.1)then

Eh
q (D1,q[Φ; r]) =

[
Φ̂(0) +

(−1)r+1

2
Φ(0)

]
+

Φ̂(0)

log (qr)

[
C∞ + 2(−1)r+1CPNT − 2δ2|rC

]

+ Eh
q

(
P 3

q [Φ; r](f)
)

+ O

(
1

log3 (qr)

)
. (4.2)



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 9The �rst term in (4.2) is the main term given in Theorem A. We now estimate thepenultemate term of (4.2) via the tra
e formula given in [12, Proposition 2.2℄:
Eh

q

(
P 3

q [Φ; r]
)

= P3
q,new[Φ; r] + P3

q,old[Φ; r] (4.3)where
P3

q,new[Φ; r] = − 2

log (qr)

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
∆q(p

jn, 1) − ∆q(p
jn−2, 1)

)




log p

pn/2
Φ̂

(
n log p

log (qr)

)and
P3

q,old[Φ; r] =
2

q log (qr)

∑

ℓ|q∞

1

ℓ

∑

p∈P
p∤q

∑

n>3




∑

16j6r
j≡r (mod 2)

(
∆1(p

jnℓ2, 1) − ∆1(p
jn−2ℓ2, 1)

)





log p

pn/2
Φ̂

(
n log p

log (qr)

)
.For m 6= 1 we have

∆k(m, 1) = 2πiκ
∑

c>1
k|c

S(m, 1; c)

c
Jκ−1

(
4π

√
m

c

)where S(m, 1; c) is a Kloosterman sum. Let us estimate the new part whi
h 
an bewritten as
P3

q,new[Φ; r] = −2(2πiκ)

log (qr)

∑

16j6r
j≡r (mod 2)

∑

n>3

(
P3

q,new[Φ; r, jn] − P3
q,new[Φ; r, jn − 2]

)where
P3

q,new[Φ; r, k] =
∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log
(
qr/n

)
)
∑

c>1
q|c

S(pk, 1; c)

c
Jκ−1

(
4π
√

pk

c

)
. (4.4)By [12, lemma 3.10℄, the c-sum in (4.4) is bounded by

τ(q)√
q






(√
pk

q

)1/2 if p > q2/k,
(√

pk

q

)κ−1 otherwise.We dedu
e
∑

n>3

P3
q,new[Φ; r, jn] ≪ τ(q)

qκ−1/2

∑

n>3

∑

p6qrν/n

1

pn/2
prn(κ−1)/2 log p

≪ τ(q)

qκ−1/2

∑

36n6νr log q/log 2

1

n
qνr[((κ−1)r−1)n/2+1]/n

≪ τ(q)

qκ−1/2
qνr[(κ−1)r−1]/2qνr/3 log log(3q)

≪ 1

q1/2



10 G. RICOTTA AND E. ROYERas soon as ν < 2/r2 (and in parti
ular if (4.1) is satis�ed). We make the same 
ompu-tations for jn − 2 and �nd then that P3
q,new[Φ; r, k] is an admissible error term. The oldpart is

P3
q,old[Φ; r] =

2(2πiκ)

q log (qr)

∑

16j6r
j≡r (mod 2)

∑

n>3

(
P3

q,old[Φ; r, jn] − P3
q,old[Φ; r, jn − 2]

)where
P3

q,old[Φ; r, k] =
∑

p∈P
p 6=q

log p

pn/2
Φ̂

(
log p

log qr/n

)∑

ℓ|q∞

1

ℓ
∆1(p

kℓ2, 1).From [12, eq (3.2) and (3.3)℄ we have
∑

ℓ|q∞

1

ℓ
∆1(p

kℓ2, 1) 6 2(k + 1)so that ∑

n>3

P3
q,old[Φ; r, jn] ≪ 1and similary for P3

q,old[Φ; r, jn − 2]. Finally Eh
q

(
P 3

q [Φ; r]
) enters the O(1/ log3 qr) term.Appendix A. Some 
omments on an aestheti
 identityIt is possible to prove on indu
tion on k0 > 1 the following equality in Q[T ]:

X2k0
− X2k0−2 =

k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)]{
T 2kj −

(
2kj

kj

)}
.(A.1)As a 
onsequen
e, if K > 1 then

X2K+1 − X2K−1 = (−1)KT



1 +
∑

16k06K

(−1)k0X2k0
− X2k0−2



 . (A.2)Now, use (2.4) with r = 1 (so that X1 = T ) to get from (A.1) the equality
X2k0

− X2k0−2 =

k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)]


2kj∑

ℓ=0

x(2kj , 1, ℓ)Xℓ −
(

2kj

kj

)
X0



and 
ompare the 
oe�
ients of X0 to obtain, thanks to (2.6) the equality
k0−1∑

j=0

∑

16kj<kj−1<···<k1<k0

(−1)j

[
j−1∏

i=0

(
2ki

ki − ki+1

)](
2kj

kj

)
kj

1 + kj
= 0.We 
ould have expressed formulas (A.1) and (A.2) in terms of Fourier 
oe�
ients ofprimitive forms to determine the lower order terms. However, this is de�nitely not thebest way to pro
eed sin
e it 
onsists in de
omposing the polynomial XK −XK−2 in the
anoni
al basis of Q[T ] and de
omposing again ea
h element of this 
anoni
al basis inthe Chebyshev basis (Xℓ)ℓ∈N.



LOWER ORDER TERMS FOR THE ONE-LEVEL DENSITIES 11Appendix B. S.J. Miller's identity and Cheby
hev polynomialsS.J. Miller ([10, Equation (3.12) Page 6℄) re
ently proved that
αf (p)K + βf (p)K =

∑

06k6K
k≡K (mod 2)

cK,kλf (p)k (B.1)where cK,k = 0 if k ≡ K + 1 (mod 2) and
c0,0 = 0,

c2K,0 = 2(−1)K (K > 1),

c2K,2L =
2(−1)K+LK(K + L − 1)!

(2L)!(K − L)!
(1 6 L 6 K),

c2K+1,2L+1 =
(−1)K+L(2K + 1)(K + L)!

(2L + 1)!(K − L)!
(0 6 L 6 K).We would like to give a qui
k proof of this identity, the 
ru
ial tool being Cheby
hevpolynomials.Proof of equation (B.1). We know that

αf (p)K + βf (p)K = XK(λf (p)) − XK−2(λf (p))for K > 2 a

ording to (2.7). Thus, the proof 
onsists in de
omposing the polynomial
XK − XK−2 in the 
anoni
al basis of Q[T ]. This 
an be done via (2.12). It entails that

αf (p)K+βf (p)K =
∑

06u6K−2
u≡K (mod 2)

(−1)(K−u)/2

[(
(K + u)/2

u

)
+

(
(K + u)/2 − 1

u

)]
λf (p)u

+
∑

K−16u6K
u≡K (mod 2)

(−1)(K−u)/2

(
(K + u)/2

u

)
λf (p)u,whi
h is an equivalent formulation of (B.1). �Remark B.1� Equation (B.1) 
ould be used to re
over the lower order terms 
oming from

P 3
q [Φ; r] but,on
e again, it is not the most 
lever way to pro
eed sin
e it would implyde
omposing the polynomials XK −XK−2 in the 
anoni
al basis of Q[T ] at the beginningof the pro
ess and de
omposing the polynomials T j in the basis (Xr)r>0 just before theend of the proof in order to be able to apply some tra
e formula for the Fourier 
oe�
ientsof 
usp forms. Referen
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