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abstract. We consider

∆u = 0 in Ω,
∂u

∂ν
= λf(u) on Γ1, u = 0 on Γ2

where λ > 0, f(u) = eu or f(u) = (1 + u)p and Γ1, Γ2 is a partition of ∂Ω and
Ω ⊂ RN . We determine sharp conditions on the dimension N and p > 1 such that
the extremal solution is bounded, where the extremal solution refers to the one
associated to the largest λ for which a solution exists.
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1. Introduction

We study the semilinear boundary value problem
∆u = 0 in Ω
∂u

∂ν
= λf(u) on Γ1

u = 0 on Γ2

(1)

where λ > 0 is a parameter, f(u) is a nonlinear smooth function of u, Ω ⊂ RN is
a smooth, bounded domain and Γ1, Γ2 is a partition of ∂Ω into surfaces separated
by a smooth interface. We will assume that

f is smooth, nondecreasing, convex and f(0) > 0,(2)

lim
u→∞

f(u)
u

= ∞, and(3)

lim inf
t→+∞

f ′(t)t
f(t)

> 1.(4)
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Assumption (4) is not essential, but it simplifies some of the arguments and holds
for the examples f(u) = eu, f(u) = (1 + u)p, p > 1.

We say that u is a weak solution of (1) if u ∈W 1,1(Ω), f(u) ∈ L1(Γ1) and∫
Ω

u(−∆ϕ) =
∫

Γ1

λf(u)ϕ for all ϕ ∈ C2(Ω̄) such that ϕ
∣∣∣
Γ2

≡ 0 and
∂ϕ

∂ν

∣∣∣
Γ1

≡ 0.

Problem (1) shares many properties with the following generalization of the so-
called Gelfand’s problem {

−∆u = λf(u) in Ω
u = 0 on ∂Ω

(5)

which has been widely considered [3, 4, 10, 11, 19, 20]. In particular, the following
result can be proved as in [3].

Proposition 1.1. There exists λ∗ ∈ (0,∞) such that
• (1) has a smooth solution for 0 ≤ λ < λ∗,
• (1) has a weak solution for λ = λ∗,
• (1) has no solution for λ > λ∗ (even in the weak sense) .

Moreover, for 0 ≤ λ < λ∗ there exists a minimal solution uλ which is bounded,
positive and stable, in the sense that the linearized operator at uλ is positive, i.e.

inf
ϕ∈C1(Ω),ϕ=0 on Γ2

∫
Ω
|∇ϕ|2 dx− λ

∫
Γ1
f ′(uλ)ϕ2 ds∫

Γ1
ϕ2 ds

> 0.(6)

The monotone limit u∗ := limλ↗λ∗ uλ is a weak solution for λ = λ∗ and satisfies

λ∗
∫

Γ1

f ′(u∗)ϕ2 ≤
∫

Ω

|∇ϕ|2 dx, ∀ϕ ∈ C1(Ω), ϕ = 0 on Γ2.(7)

We call u∗ the extremal solution of (1).

Remark 1.2. Under assumption (4) we have u∗ ∈ H1(Ω). The proof is analogous
to the argument for (5) in [4], so we skip it.

Proposition 1.1 suggests the following natural question : is u∗ a bounded solu-
tion?

In the context of (5), no complete answer has been given yet. For the case f(u) = eu,
that is the original Gelfand problem, it was shown by Joseph and Lundgren [19]
that if Ω is a ball, then u∗ is bounded if and only if N < 10. Crandall and
Rabinowitz [11] showed that if f(u) = eu and N < 10 then for any smooth and
bounded domain, u∗ is bounded. Brezis and Vázquez [4] provided a different proof
of the unboundedness of u∗ in the case Ω = B1 and N ≥ 10 : they established in
particular that a singular solution which is stable must be the extremal one. In
applying this criterion in dimension N ≥ 10 they use Hardy’s inequality valid for
N ≥ 3 :

(8)
(N − 2)2

4

∫
RN

ϕ2

|x|2
≤
∫

RN

|∇ϕ|2, ∀ϕ ∈ C∞0 (RN )

Other explicit nonlinearities, for instance f(u) = (1+u)p with p > 1, are considered
in these references, but in the general case, little is known. In this direction, we
mention the result of Nedev [21], which asserts that for any function f satisfying
(2) and (3), and any smooth bounded domain in RN , N ≤ 3, u∗ is bounded. This
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result has been extended by Cabré to the case N = 4 and Ω strictly convex [5].
Finally, Cabré and Capella [6] showed that if Ω is a ball and N ≤ 9 then for any
nonlinearity f satisfying (2),(3) the extremal solution is bounded.

Proving that u∗ is unbounded seems to be much more difficult. Besides the
radial case Dávila and Dupaigne [13] have shown that in domains that are small
perturbations of a ball and for the nonlinearities eu and (1 + u)p the extremal
solution is singular for large dimensions (N ≥ 11 and N > 2 + 4p

p−1 + 4
√

p
p−1

respectively).
Returning to (1), we are interested in determining whether the extremal solution

u∗ is bounded or singular in the cases f(u) = eu and f(u) = (1 + u)p, p > 1.

Theorem 1.3. Let f(u) = eu. In any dimension N ≥ 10 there exists a domain
Ω ⊂ RN and a partition in smooth sets Γ1,Γ2 of ∂Ω such that u∗ 6∈ L∞(Ω).

The proof is an adaptation of the argument of Brezis and Vázquez [4], using a
stability criterion. In our case the singular solution has the form u0(x) = − log |x|
for x ∈ ∂RN+ and its linearized stability in dimension N ≥ 10 is obtained thanks
to :

(9)
∫

RN
+

|∇ϕ|2 ≥ HN

∫
∂RN

+

ϕ2

|x|
, ∀ϕ ∈ C∞0 (RN+ ),

which holds for N ≥ 3 and where the best constant

HN := inf


∫

RN
+
|∇ϕ|2∫

∂RN
+

ϕ2

|x|

: ϕ ∈ H1(RN+ ), ϕ
∣∣∣
∂RN

+

6≡ 0

(10)

is given by

HN = 2
Γ(N4 )2

Γ(N−2
4 )2

∀N ≥ 3,(11)

where Γ is the Gamma function. Inequality (9) is known as Kato’s inequality and
a proof of it was given by Herbst [18].

We will give here a different proof of this result which offers a sharper version,
analogous to improvements of (8) found by Brezis and Vázquez [4] or Vázquez and
Zuazua [22] (see also [2, 4, 12, 17, 22] for other improved versions of the Hardy
inequality (8)) :

Theorem 1.4. Let B = B1(0) be the unit ball in RN , N ≥ 3. Then for any
1 ≤ q < 2 there exists c = c(N, q) > 0 such that∫

RN
+∩B

|∇ϕ|2 ≥ HN

∫
∂RN

+∩B

ϕ2

|x|
+ c‖ϕ‖2W 1,q(RN

+∩B), ∀ϕ ∈ C∞0 (RN+ ∩B),

As a converse to Theorem 1.3 we prove :

Theorem 1.5. Let f(u) = eu, N ≤ 9 and suppose Ω ⊂ RN+ is open, bounded and
satisfies:

• ∂Ω = Γ1 ∪ Γ2, where Γ1 ⊂ ∂RN+ and Γ2 ⊂ RN+
• Ω is symmetric with respect to the hyperplanes x1 = 0, . . . , xN−1 = 0, and
• Ω is convex with respect to all directions x1, . . . , xN−1.

Then the extremal solution u∗ of (1) belongs to L∞(Ω).
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Remark 1.6. In order to prove Theorem 1.5, one is at first tempted to imitate the
classical argument of Crandall and Rabinowitz [11]: roughly speaking, one uses the
stability inequality (7) and the equation (1) with test functions of the form ϕ = eju,
j ≥ 1. This does not lead to the optimal dimension N = 9 but applies to general
domains (see Proposition 1.7 below). We use instead test functions ϕ, which are
not functions of u, but which have the expected behavior of eju near a singular point,
assuming it exists.

Proposition 1.7. Let f(u) = eu and assume Ω ⊂ RN is a smooth bounded domain
such that ∂Ω = Γ1 ∪ Γ2, where Γ1 ⊂ ∂RN+ and Γ2 ⊂ RN+ . Assume further that
N < 6. Then the extremal solution u∗ of (1) belongs to L∞(Ω).

This raises the following question

Open Problem 1. Does Theorem 1.5 hold in any smooth bounded domain Ω ⊂ RN+
such that ∂Ω = Γ1 ∪ Γ2, where Γ1 ⊂ ∂RN+ and Γ2 ⊂ RN+ ?

Next we look at (1) in the case f(u) = (1 + u)p, p > 1. Given 0 < α < N − 1
define

(12) wα(x) =
∫
∂RN

+

K(x, y)|y|−αdy for x ∈ RN+ ,

where K(x, y) = 2xN

NωN
|x − y|−N is the Green’s function for the Dirichlet problem

in RN+ (see e.g. [16]). Clearly, wα > 0 in RN+ . Moreover wα is harmonic in RN+ and
wα extends to a function belonging to C∞(RN+ \ {0}) with

wα(x) = |x|−α for all x ∈ ∂RN+ \ {0}.(13)

It is not difficult to verify that for some constant C(N,α) we have

∂wα
∂ν

(x) = C(N,α)|x|−α−1 ∀x ∈ ∂RN+ \ {0}.

In Section 2 we shall show that

C(N,α) = 2
Γ(α2 + 1

2 )Γ(N−1
2 − α

2 )
Γ(α2 )Γ(N−2

2 − α
2 )

.(14)

A heuristic calculation shows that for (1) with nonlinearity f(u) = (1 + u)p, the
expected behavior of a solution u which is singular at 0 ∈ ∂Ω should be u(x) ∼
|x|

1
p−1 . The boundedness of u∗ is then related to the value of C(N, 1

p−1 ). Observe
that C(N, 1

p−1 ) is defined for p > N
N−1 . In the sequel, when writing C(N, 1

p−1 ) we
will implicitly assume that this condition holds.

Theorem 1.8. Consider (1) with f(u) = (1 + u)p. Assume Ω ⊂ RN+ is a bounded
domain such that ∂Ω = Γ1 ∪ Γ2, where Γ1 ⊂ ∂RN+ and Γ2 ⊂ RN+ and such that the
following condition holds

• Ω is convex with respect to x′ and
• ΠN (Ω) = Γ1, where ΠN is the projection on ∂RN+ .

If pC(N, 1
p−1 ) > HN or 1 < p < N

N−2 then u∗ is bounded.

In the above, Ω is said to be convex with respect to x′ if (tx′, xN ) + ((1 −
t)y′, xN ) ∈ Ω whenever t ∈ [0, 1], x = (x′, xN ) ∈ Ω and y = (y′, xN ) ∈ Ω. ΠN is
defined by ΠN (x′, xN ) = xN for all x = (x′, xN ) ∈ RN+ .
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Remark 1.9. It is not difficult to verify that the same result holds if
• Ω is convex with respect to all directions x1, . . . , xN−1 and
• Ω is symmetric with respect to the hyperplanes x1 = 0, . . . , xN−1 = 0.

Theorem 1.10. Consider (1) with f(u) = (1 + u)p. If pC(N, 1
p−1 ) ≤ HN and

p ≥ N
N−2 there exists a domain Ω such that u∗ is singular.

Remark 1.11. The condition pC(N, 1
p−1 ) ≤ HN is not enough to guarantee that

the extremal solution is singular for some domain. Actually this condition can
hold for some values of p in the range N

N−1 < p < N
N−2 . In this case a singular

solution exists in some domains, but it does not correspond to the extremal one.
See Theorem 6.2 in [4] for a similar phenomenon.

The organization of the paper is as follows. In Section 2 we derive formula (14)
and we prove Theorem 1.4 in Section 3. In Section 4 we analyze the exponential
case and give a proof of Theorems 1.3 and 1.5. The proofs of Theorems 1.8 and
1.10 are given in Section 5.

2. Computation of C(N,α)

We write x = (x′, xN ) ∈ RN+ with x′ ∈ RN−1, xN > 0. It follows from (12) and
a simple change of variables that

wα(x′, xN ) = wα(e(x′), xN ) for all rotations e ∈ O(N − 1).

and similarly

wα(Rx′, RxN ) = R−αwα(x′, xN ).(15)

Differentiating with respect to xN yields
∂wα
∂xN

(Rx′, RxN ) = R−α−1 ∂wα
∂xN

(x′, xN ).

Let x ∈ ∂RN+ , x = (x′, 0) and plug R = 1
|x| = 1

|x′| in the previous formula to find

∂wα
∂ν

(x) = −∂wα
∂xN

(x′, 0) = |x|−α−1

(
−∂wα
∂xN

( x′
|x′|

, 0
))

.

Define

C(N,α) = −∂wα
∂xN

( x′
|x′|

, 0
)

(16)

and observe that it is independent of x′ ∈ RN−1.
Using (15) and the radial symmetry of w in the variables x′, there exists a

function v : [0,∞) → R such that

wα(x′, xN ) = |x′|−αwα(
x′

|x′|
,
xN
|x′|

) = |x′|−αv(xN
|x′|

).(17)

Writing r = |x′|, t = xN

|x′| , we have

r−αv(t) = wα(x′, rt), ∀x′ ∈ RN−1, |x′| = r.

The equation ∆w = 0 is equivalent to

(1 + t2)v′′(t) + (2α+ 4−N)tv′(t) + α(α−N + 3)v(t) = 0, t > 0,(18)
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while (13) implies

v(0) = 1.

The initial condition for v′ is related to (16)

v′(0) = −C(N,α).

In addition to these initial conditions we remark that wα is a smooth function in
RN+ and this together with (17) implies that

lim
t→∞

v(t)tα exists.(19)

Using the change of variables z = it with i the imaginary unit and defining the
new unknown h(z) := v(−iz) equation (18) becomes

(1− z2)h′′(z)− (2α+ 4−N)zh′(z)− α(α−N + 3)h(z) = 0,(20)

with initial conditions

lim
t>0, t→0

h(it) = 1, lim
t>0, t→0

h′(it) = iC(N,α).(21)

On the other hand (19) implies

lim
t∈R, t→∞

h(it)tα exists.(22)

The substitution

g(z) = (1− z2)
α
2 + 1

2−
N
4 h(z)(23)

transforms equation (20) into

(1− z2)g′′(z)− 2zg′(z) +
(
ν(ν + 1)− µ2

1− z2

)
g(z) = 0,(24)

with

µ = α+
2−N

2
, ν =

N − 4
2

.(25)

The general solution to (24) is well known. Indeed, equation (24) belongs to
the class of Legendre’s equations. Following [1], two linearly independent solutions
of (24) are given by the Legendre functions Pµν (z), Qµν (z), which are defined in
C \ {−1, 1} and analytic in C \ (−∞, 1] (see [1, Formulas 8.1.2 – 8.1.6]). Moreover
the limits of Pµν (z), Qµν (z) on both sides of (−1, 1) exist and we shall use the
notation

Pµν (x+ i0) = lim
z→x,Re(z)>0

Pµν (z), −1 < x < 1,

Pµν (x− i0) = lim
z→x,Re(z)<0

Pµν (z), −1 < x < 1,
(26)

and a similar notation for Qµν .
The solution g of (24) is therefore given by

g(z) = c1P
µ
ν (z) + c2Q

µ
ν (z),

for appropriate constants c1, c2. These constants are determined by the initial
conditions (21), which imply:

(27) c1P
µ
ν (0 + i0) + c2Q

µ
ν (0 + i0) = 1,

(28) c1
d

dz
Pµν (0 + i0) + c2

d

dz
Qµν (0 + i0) = iC(N,α).



EXTREMAL SOLUTION OF BOUNDARY REACTION 7

In order to evaluate C(N,α), we use also condition (22), which is equivalent to

lim
t→∞, t∈R

(c1Pµν (it) + c2Q
µ
ν (it))t

N
2 −1 exists.(29)

But according to [1, Formulas 8.1.3, 8.1.5]

Pµν (z) ∼ zν as |z| → ∞
Qµν (z) ∼ z−ν−1 as |z| → ∞

This and (23),(29) imply that c1 = 0 and we obtain from (27),(28)

C(N,α) = −i
d
dzQ

µ
ν (0 + i0)

Qµν (0 + i0)
(30)

From the properties and formulas in [1] the following values can be deduced:

(31) Q0
ν(0 + i0) = −i2µ−1π

1
2 eiµπ−iν

π
2

Γ(ν2 + µ
2 + 1

2 )
Γ(ν2 −

µ
2 + 1)

(32)
d

dz
Q0
ν(0 + i0) = 2µπ

1
2 eiµπ−iν

π
2

Γ(ν2 + µ
2 + 1)

Γ(ν2 −
µ
2 + 1

2 )

The relations (30),(31),(32) and the values (25) yield formula (14).
�

3. Improved Kato inequality

We begin with some remarks on (9).

Remark 3.1. a) The singular weight 1
|x| in the right-hand side of (9) is optimal,

in the sense that it may not be replaced by 1
|x|α with α > 1. This can be easily seen

by choosing ϕ ∈ H1(RN+ ) such that ϕ(x) = |x|−N−2
2 + α−1

2 in a neighborhood of the
origin.

Moreover, the infimum in (10) is not achieved.

b) In dimension N = 2 the infimum (10) is zero, see [14]. Nonetheless, if the
test-functions ϕ are required to vanish on the half line x1 > 0 then the infimum has
been computed in [14] :

inf


∫

R2
+
|∇ϕ|2∫

∂R2
+

ϕ2

|x|

: ϕ ∈ H1(R2
+), ϕ(x1, 0) = 0 if x1 > 0, ϕ

∣∣∣
∂R2

+

6≡ 0

 =
1
π

(33)

c) Using Stirling’s formula it is easy to see that

HN =
N − 3

2
+O(

1
N

) as N →∞.(34)

d) The estimates

N − 3
2

≤ HN ≤
√

(N − 3)2 + 1
2

(35)

can be obtained in a more straightforward way using particular test functions. We
give a proof of this at the end of Section 3. Also observe that (34) could be deduced
from (35).
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Let us explain first informally the idea behind the proof of Theorem 1.4, assuming
for a moment that a minimizer w ∈ H1(RN+ ) of (10) exists. w then satisfies the
associated Euler-Lagrange equation:

(36)


∆w = 0 in RN+ ,
∂w

∂ν
= HN

w

|x|
on ∂RN+ .

Elementary changes of variables show that given R > 0 and a rotation e ∈ O(N−1),
wR := R

2−N
2 w(Rx) and we := w̄(e(x′), xN ) are also minimizers of (10). Thus it is

natural to assume w = wR = we for all R > 0 and e ∈ O(N − 1). In particular a
constant multiple of w solves{

∆w = 0 in RN+ ,

w = |x|−
N−2

2 on ∂RN+ .

Unfortunately, such a function w does not belong to H1(RN+ ). Let w = wα with
α = N−2

2 as defined in (12). Observe that C(N, N−2
2 ) = HN by (16) and hence w

is indeed a solution of(36).
Following an idea of Brezis and Vázquez (equation (4.6) on page 453 of [4]), we

restate (9) in terms of the new variable v = ϕ/w.
Proof of Theorem 1.4. When N ≥ 3, C∞0 (RN+ \ {0}) is dense in H1(RN+ ). So
it suffices to prove (9) for ϕ ∈ C∞0 (RN+ \ {0}). Fix such a ϕ 6≡ 0 and let w be the
function defined by (12). Notice that, on supp ϕ, w is smooth and bounded from
above and from below by some positive constants. Hence v := ϕ

w ∈ C∞0 (RN+ ) is well
defined. Now, ϕ = vw, ∇ϕ = v∇w + w∇v and

|∇ϕ|2 = v2|∇w|2 + w2|∇v|2 + 2vw∇v∇w.

Integrating ∫
RN

+

|∇ϕ|2 =
∫

RN
+

v2|∇w|2 +
∫

RN
+

w2|∇v|2 + 2
∫

RN
+

vw∇v∇w

and by Green’s formula∫
RN

+

v2|∇w|2 =
∫
∂RN

+

v2w
∂w

∂ν
−
∫

RN
+

w∇(v2∇w)

=
∫
∂RN

+

v2w
∂w

∂ν
− 2

∫
RN

+

wv∇w∇v,

since w is harmonic in RN+ . Thus,

(37)
∫

RN
+

|∇ϕ|2 =
∫

RN
+

w2|∇v|2 +
∫
∂RN

+

v2w
∂w

∂ν
=
∫

RN
+

w2|∇v|2 +
∫
∂RN

+

ϕ2

w

∂w

∂ν
.

But by (16)
∂w
∂ν (x)

w(x) = HN

|x| for x ∈ ∂RN+ and hence,

(38)
∫

RN
+

|∇ϕ|2 ≥ HN

∫
∂RN

+

ϕ2

|x|
+
∫

RN
+

w2|∇v|2 ∀ϕ ∈ H1(RN+ ).

The second term in the right hand side of the above inequality yields the improve-
ment of Kato’s inequality when ϕ has support in the unit ball.
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Now we assume ϕ ∈ C∞0 (RN+ \ {0}∩B) and, as before, set v = ϕ
w . Our aim is to

prove that given 1 ≤ q < 2 there exists C > 0 such that

(39) I :=
∫

RN
+

w2|∇v|2 ≥ 1
C
‖ϕ‖W 1,q .

In spherical coordinates

I =
∫ 1

0

rN−1

∫
S+

1

w2(rθ)|∇v(rθ)|2dθ dr

where S+
1 = S1 ∩ RN+ and S1 = {x ∈ RN / |x| = 1} is the sphere of radius 1. From

(15) we have w(x) ≥ 1
C |x|

−N−2
2 for some C > 0 and all x ∈ B ∩ RN+ . Hence

I ≥ 1
C

∫ 1

0

r

∫
S+

1

|∇v(rθ)|2dθ dr.

Let us compute the Sobolev norm of ϕ :

‖ϕ‖qW 1,q =
∫

RN
+∩B

|∇ϕ|qdx =
∫ 1

0

rN−1

∫
S+

1

|∇ϕ(rθ)|qdθ dr

=
∫ 1

0

rN−1

∫
S+

1

|∇v(rθ) w(rθ) +∇w(rθ) v(rθ)|qdθ dr

≤ Cq

∫ 1

0

rN−1

∫
S+

1

|∇v(rθ)|q|w(rθ)|q + |∇w(rθ)|q|v(rθ)|qdθ dr.

Define

I1 :=
∫ 1

0

rN−1

∫
S+

1

|∇v(rθ)|q|w(rθ)|qdθ dr

I2 :=
∫ 1

0

rN−1

∫
S+

1

|∇w(rθ)|q|v(rθ)|qdθ dr.

Since w(x) ≤ C|x|−N−2
2 we have by Hölder’s inequality

I1 ≤ C

∫ 1

0

rN−1− (N−2)q
2

∫
S+

1

|∇v(rθ)|qdθ dr

≤ C
[ ∫ 1

0

r

∫
S+

1

|∇v(rθ)|2dθdr
] q

2
[ ∫ 1

0

r(N−1−Nq
2 + q

2 ) 2
2−q dr

] 2−q
2

= CI
q
2 ,(40)

since q < 2.
Using |∇w(x)| ≤ C|x|−N

2 we estimate I2 :

I2 ≤ C

∫
S+

1

∫ 1

0

rN−1−Nq
2 |v(rθ)|q dr dθ.

From the classical Hardy inequality∫ 1

0

rγ |f(r)|p dr ≤
( p

γ + 1

)p ∫ 1

0

rγ+p|f ′(r)|p dr

(p ≥ 1, γ > −1, f ∈ C∞0 (0, 1)) we deduce∫ 1

0

rN−1−Nq
2 |v(rθ)|q dr ≤ C

∫ 1

0

rN−1−Nq
2 +q|∇v(rθ)|q dr
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and therefore

I2 ≤ C

∫
S+

1

∫ 1

0

rN−1−Nq
2 +q|∇v(rθ)|q dr dθ.

Hölder’s inequality yields

I2 ≤ C
[ ∫

S+
1

∫ 1

0

r|∇v(rθ)|2 dr dθ
] q

2
[ ∫

S+
1

∫ 1

0

r(N−1−Nq
2 + q

2 ) 2
2−q dr dθ

]1− q
2

= CI
q
2 ,

(41)

where we have used q < 2. Gathering (40) and (41) we conclude that (39) holds. �
Now we pass to the proof of item (d) of Remark 3.1.

Proof of (35). We shall first show the inequality
N − 3

2
≤ HN , ∀N ≥ 4.

One may assume that u = u(r, t) where r = |(x1, . . . , xN−1)| and t = xN . Then∫
∂RN

+

u2

|x|
= (N − 1)ωN−1

∫ ∞

0

u(r, 0)2rN−3 dr,

where ωN−1 is the volume of the unit ball in RN−1. But

u(r, 0) = −2
∫ ∞

0

u(r, t)
∂u

∂t
(r, t) dt.

So,∫
∂Rn

+

u2

|x|
= −2(N − 1)ωN−1

∫ ∞

0

∫ ∞

0

u(r, t)
∂u

∂t
(r, t)rN−3 dr dt

≤ 2(N − 1)ωN−1

∫ ∞

0

(∫ ∞

0

u(r, t)2rN−4 dr

)1/2(∫ ∞

0

(∂u
∂t

(r, t)
)2

rN−2 dr

)1/2

dt.

We use now the inequality∫ ∞

0

u(r, t)2rN−4 dr ≤ 4
(N − 3)2

∫ ∞

0

(∂u
∂r

(r, t)
)2

rN−2 dr,

which is one of the classical version of Hardy’s inequality (in dimension N −1). We
obtain∫
∂RN

+

u2

|x|

≤ 4
N − 3

(N − 1)ωN−1

∫ ∞

0

[∫ ∞

0

(∂u
∂r

(r, t)
)2

rN−2 dr

] 1
2
[∫ ∞

0

(∂u
∂t

(r, t)
)2

rN−2 dr

] 1
2

dt

≤ 2
N − 3

(N − 1)ωN−1

∫ ∞

0

∫ ∞

0

[(∂u
∂t

)2

+
(∂u
∂r

)2]
rN−2 dr dt

=
2

N − 3

∫
RN

+

|∇u|2.

To prove

HN ≤
√

(N − 3)2 + 1
2

,(42)
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we consider, for fixed a > 0 and ε ↓ 0, the function

ϕ̃(r, xN ) =

{
r

2−N
2 e−axN/r if r > ε

ε
2−N

2 e−axN/ε if r ≤ ε,

where x = (x′, xN ) ∈ RN−1
+ × R+, r = |x′|. With the test function

ϕ = ηϕ̃

where η ∈ C∞0 (RN ), 0 ≤ η ≤ 1, η ≡ 1 in B1(0) and η ≡ 0 outside of B2(0) and a
suitable choice of a one obtains (42). We omit the details.

4. The exponential case

We need the following result that characterizes extremal singular solutions be-
longing to H1(Ω), see [4, Theorem 3.1 ]. The proof is an adaptation of the one in
this reference.

Lemma 4.1. Assume that v ∈ H1(Ω) is an unbounded solution of (1) for some
λ > 0. Assume furthermore the stability condition

λ

∫
Γ1

f ′(v)ϕ2 ≤
∫

Ω

|∇ϕ|2 ∀ϕ ∈ C1(Ω), ϕ = 0 on Γ2.(43)

Then λ = λ∗ and v = u∗.

Remark 4.2. We have not shown that there is a unique weak solution of (1) when
λ = λ∗. A result of Martel [20] guarantees that this is indeed the case for problem
(5) and this was used by Brezis and Vázquez in the proof of [4, Theorem 3.1 ]. In
our context, we take u∗ = limλ↗λ∗ uλ as the definition of the extremal solution.
Knowing that u∗ ∈ H1(Ω), the proof of [4, Theorem 3.1] shows that λ = λ∗ and
v = u∗.

To prove Theorems 1.3 and 1.5 it will be convenient to study the function u0

defined by

u0(x) =
∫
∂RN

+

K(x, y) log
1
|y|

dy for x ∈ RN+ ,(44)

where as before K(x, y) = 2xN

NωN
|x− y|−N . Then u0 is harmonic in RN+ and

u0(x) = log
1
|x|

for x ∈ ∂RN+ , x 6= 0.

Note that

u0(Rx) = u0(x) + log
1
R
.

Let r = |x′|. Then

u0(x′, xN ) = v(
xN
r

) + log
1
r
,(45)

for some v : [0,∞) → R such that v(0) = 0. We see that
∂u0

∂ν
= − ∂u0

∂xN

∣∣
xN=0

= −1
r
v′(0)

so
∂u0

∂ν
= λ0,Ne

u0 on ∂RN+ ,
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where we let

λ0,N = −v′(0).

Let

Ω0 = {x ∈ RN+ : u0(x) > 0}
Γ1 = ∂Ω ∩ ∂RN+ Γ2 = ∂Ω \ ∂RN+ .

The boundary ∂Ω0 is not smooth itself but Γ1, Γ2 are, and it can be checked that
Proposition 1.1 still holds in this case.

It can be verified that Ω0 can be written as Ω0 = {(x′, xN ) ∈ RN−1×R+ : |x′| <
ev(xN/|x′|)}.

Lemma 4.3. We have

λ0,N =

{
(N − 3)

√
πΓ( N

2 −
3
2 )

2Γ( N
2 −1)

if N ≥ 4,

1 if N = 3.

Proof. We give details for N ≥ 4, the case N = 3 being similar. We need to
compute v′(0). Calculating ∆u0 in terms of v (see (45)) we obtain that v satisfies

(1 + t2)v′′(t) + (4−N)tv′(t) + 3−N = 0

and thus v′ is given by

v′(t) = (N − 3)(1 + t2)
N−4

2

∫ t

0

(1 + s2)
2−N

2 ds+ (1 + t2)
N−4

2 v′(0).

Integrating and using v(0) = 0 yields

v(t) = (N − 3)
∫ t

0

(1 + τ2)
N−4

2

∫ τ

0

(1 + s2)
2−N

2 ds dτ + v′(0)
∫ t

0

(1 + τ2)
N−4

2 dτ.

(46)

We look at the asymptotics of the two integrals above, as t → ∞. For the second
integral, we have

lim
t→∞

∫ t
0
(1 + τ2)

N−4
2 dτ

tN−3
=

(1 + t2)
N−4

2

(N − 3)tN−4
=

1
N − 3

.

And for the first integral,

lim
t→∞

∫ t
0
(1 + τ2)

N−4
2
∫ τ
0

(1 + s2)
2−N

2 ds dτ

tN−3
= lim
t→∞

(1 + t2)
N−4

2
∫ t
0
(1 + s2)

2−N
2 ds

(N − 3)tN−4

=
1

N − 3

∫ ∞

0

(1 + s2)
2−N

2 ds

=
1

N − 3

√
πΓ(N2 −

3
2 )

2Γ(N2 − 1)
.

Going back to (46), we obtain that

v(t) =

(√
πΓ(N2 −

3
2 )

2Γ(N2 − 1)
+

v′(0)
N − 3

)
tN−3 + o(tN−3).
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Now, recall that for xN > 0, limr→0 v(xN/r) + log 1
r = u0(0, xN ) ∈ R exists and is

finite. Hence, we must have

v′(0) = −(N − 3)
√
πΓ(N2 −

3
2 )

2Γ(N2 − 1)
.

�

Proof of Theorem 1.3. We have shown that u0 defined in (44) is a solution to
(1) with Ω = Ω0 and λ = λ0,N . This solution satisfies the stability condition (43)
if and only if (by scaling)

λ0,N

∫
∂RN

+

ϕ2

|x|
≤
∫

RN
+

|∇ϕ|2, ∀ϕ ∈ C1
0 (RN+ \ {0}).

In the Appendix we prove that

HN ≥ λ0,N if and only if N ≥ 10(47)

and this completes the proof of the theorem. �

Proof of Theorem 1.5.
We prove the theorem by contradiction, assuming that u∗ is unbounded. We use

an idea of Crandall and Rabinowitz [11], but with different test functions.
Let φ(x) =

∫
∂RN

+
K(x, y)|y|2−N+εdy and ψ(x) =

∫
∂RN

+
K(x, y)|y| 2−N+ε

2 dy. Then,

∂φ

∂ν
= Kφ|x|1−N+ε ∂ψ

∂ν
= Kψ|x|

−N+ε
2 ,(48)

where the constants Kφ, Kψ are given by

Kφ = λ0,Nε+O(ε2) and Kψ = HN +O(ε).

Indeed, since u0 and φ are harmonic in Ω,∫
∂Ω

u0
∂φ

∂ν
=
∫
∂Ω

φ
∂u0

∂ν
.

Clearly,
∫
Γ2

∣∣φ∂u0
∂ν

∣∣ ≤ C, for some constant C independent of ε. So

Kφ

∫ 1

0

ln
(

1
r

)
1
r
r2−N+εrN−2dr = λ0,N

∫ 1

0

1
r
r2−N+εrN−2dr+O(1) =

λ0,N

ε
+O(1).

Now,
∫ 1

0
ln 1

r r
−1+εdr = 1

ε2 so we end up with

Kφ = λ0,Nε+O(ε2).

Similarly, since ψ and w (defined in (12)) are harmonic in Ω, we have∫
∂Ω

w
∂ψ

∂ν
=
∫
∂Ω

ψ
∂w

∂ν
.

As before the boundary terms on Γ2 are bounded independently of ε so

Kψ

∫ 1

0

r−1+εdr = HN

∫ 1

0

r−1+εdr +O(1).

Hence,
Kψ = HN +O(ε).
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Multiplying the equation (1) by φ and integrating by parts twice yields∫
∂Ω

u∗
∂φ

∂ν
= λ∗

∫
∂Ω

φeu
∗
.(49)

Let η ∈ C∞(RN ) be such that η ≡ 1 in BR(0) where R > 0 is small and fixed, and
η = 0 on Γ2. Using the stability condition (7) with ηψ yields

λ∗
∫

Γ1∩BR(0)

eu
∗
ψ2 ≤

∫
Ω

|∇(ηψ)|2 =
∫
∂Ω

∂

∂ν
(ηψ)(ηψ)−

∫
Ω

(ηψ)∆(ηψ)

≤
∫

Γ1∩BR(0)

∂ψ

∂ν
ψ + C(50)

where the constant C does not depend on ε. Since ψ2 = φ on ∂RN+ combining (49)
and (50) we obtain ∫

∂Ω

u∗
∂φ

∂ν
≤
∫

Γ1∩BR(0)

∂ψ

∂ν
ψ + C.

Using (48) we arrive at

Kφ

∫
Γ1∩BR(0)

u∗|x|1−N+ε ≤ Kψ

∫
Γ1∩BR(0)

|x|1−N+ε + C

and thus ∫
Γ1∩BR(0)

u∗|x|1−N+ε ≤ ωN−1
HN

λ0,N

1
ε2

+O(
1
ε
),(51)

where ωN−1 is the area of the N − 1 dimensional sphere.
Next we claim that for any given 0 < σ < 1 there exists r(σ) > 0 such that

u∗(x) ≥ (1− σ) log
1
|x|

∀x ∈ Γ1, |x| ≤ r(σ).(52)

Observe first that for all 0 < λ < λ∗ the minimal solution uλ is symmetric in the
variables x1, . . . , xN−1 by uniqueness of the minimal solution and it achieves its
maximum at the origin by the moving plane method (see Proposition 5.2 in [7]).

Assume by contradiction that (52) is false. Then there exists σ > 0 and a
sequence xk ∈ Γ1 with xk → 0 such that

u∗(xk) < (1− σ) log
1
|xk|

.(53)

Let sk = |xk| and choose 0 < λk < λ∗ such that

max
Ω

uλk
= uλk

(0) = log
1
sk
.(54)

Note that λk → λ∗, otherwise uλk
would remain bounded. Let

vk(x) =
uλk

(skx)
log 1

sk

x ∈ Ωk ≡
1
sk

Ω.



EXTREMAL SOLUTION OF BOUNDARY REACTION 15

Then 0 ≤ vk ≤ 1, vk(0) = 1, ∆vk = 0 in Ωk and
∂vk
∂ν

(x) =
1

log 1
sk

skλk exp(uλk
(skx))

≤ λk

log 1
sk

→ 0.

by (54). By elliptic regularity vk → v uniformly on compact sets of RN+ to a function
v satisfying 0 ≤ v ≤ 1, v(0) = 1, ∆v = 0 in RN+ , ∂v

∂ν = 0 on ∂RN+ . Extending v

evenly to RN we deduce that v ≡ 1. Since |xk| = sk we deduce that

uλk
(xk)

log 1
sk

→ 1,

which contradicts (53).
Going back to (51) and using (52) we find

(1− σ)
∫ r(σ)

0

log
1
r
rε−1 dr ≤ Kψ

Kφ

1
ε

+ C =
HN

λ0,N

1
ε2

+O(
1
ε
).(55)

Integrating

(1− σ)
(

1
ε2
r(σ)ε +

1
ε
r(σ)ε log

1
r(σ)

)
≤ HN

λ0,N

1
ε2

+O(
1
ε
).

Letting ε→ 0 yields

(1− σ) ≤ HN

λ0,N
.

As σ is arbitrarily small we deduce HN

λ0,N
≥ 1 which by (47) forces N ≥ 10, a

contradiction. �

Proof of Proposition 1.7. Let indeed u = uλ be the minimal solution of (1).
Working as in [11] we take ϕ = eju − 1, j > 0 in (6) and multiply (1) by ψ = e2ju−1.
We obtain

λ

j2

∫
Γ1

eu
(
eju − 1

)2
ds ≤ λ

2j

∫
Γ1

eu
(
e2ju − 1

)
ds.

It follows that(
1
j
− 1

2

)∫
Γ1

e(2j+1)u ds ≤ 2
j

∫
Γ1

e(j+1)u ds

≤ 2
j

∫
Γ1∩A

e(j+1)u ds+
2
j

∫
Γ1∩B

e(j+1)u ds,

where A = [(1/j − 1/2)e(2j+1)u < 4
j e

(j+1)u] and B = [(1/j − 1/2)e(2j+1)u ≥
4
j e

(j+1)u]. Given j ∈ (0, 2), we see that u remains uniformly bounded on A, while

2
j

∫
Γ1∩B

e(j+1)u ds ≤ 1
2

(
1
j
− 1

2

)∫
Γ1

e(j+1)u ds.

We conclude that eu is bounded in L2j+1(∂Ω) independently of λ. If 2j+1 > N−1
we obtain by elliptic estimates a bound for u in Cα(Ω), for some α ∈ (0, 1). Thus
if N < 6 we can choose j ∈ (0, 2) such that N − 1 < 2j+1 < 5 and obtain a bound
for u in Cα(Ω) independent of λ. However, for N = 6, 7, 8 or 9, this argument does
not prove that u∗ ∈ L∞(Ω). �
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5. The power case

Proof of Theorem 1.8. We shall give here the proof of the case pC(N, 1
p−1 ) >

HN . If p < N
N−2 , the boundedness of u∗ follows from standard techniques, using

the Sobolev trace embedding theorem H1(Ω) → L
2(N−1)

N−2 (∂Ω).
Let v = C(N, 1

p−1 )
1

p−1w 1
p−1

. Then v satisfies
∆v = 0 in RN+
∂v

∂ν
= vp on ∂RN+ .

Observe that pvp−1 =
pC(N, 1

p−1 )

|x| > HN

|x| on ∂RN+ \ {0} and hence

inf

∫
∂RN

+
|∇ϕ|2 − p

∫
∂RN

+
vp−1ϕ2∫

∂RN
+
ϕ2

= −∞(56)

where the infimum is taken over the functions ϕ ∈ C∞0 (RN+ ) that do not vanish
identically on ∂RN+ .

Assume that u∗ is singular. For R > 0 and 0 < λ < λ∗ let

uR(x) = λ
1

p−1R
1

p−1uλ(Rx+ xλ),

where xλ denotes a point of maximum of uλ. Observe that since uλ is positive and
harmonic in Ω, xλ ∈ Γ1.

For 0 < λ < λ∗, we chooseR such that uR(0) = 1 i.e. such that λ
1

1−pR
1

p−1uλ(xλ) =
1. Since uλ(xλ) →∞ as λ ↑ λ∗ we have R→ 0 as λ ↑ λ∗.

Then uR verifies 
∆uR = 0 in ΩR
∂uR
∂ν

= (λ
1

p−1R
1

p−1 + uR)p on ΓR1

uR = 0 on ΓR2 ,

where

ΩR = (Ω− xλ)/R, ΓR1 = (Γ1 − xλ)/R, ΓR2 = (Γ2 − xλ)/R.

Furthermore uR satisfies the stability condition∫
ΩR

|∇ϕ|2 ≥ p

∫
ΓR

1

(λ
1

p−1R
1

p−1 + uR)p−1ϕ2 ∀ϕ ∈ C∞0 (ΩR ∪ ΓR1 ).

Let

φ(R) = sup{r > 0 /Br ∩ ∂RN+ ⊂ ΓR1 }.

The moving plane method implies that the distance of the point xλ ∈ Γ1 to Γ1∩Γ2

stays bounded away from zero, see [7] for this method in the context of non-linear
Neumann condition. Thus implies that

φ(R) → +∞ as R→ 0.(57)

Step 1. We have

uR ≤ v in ΓR1 ∩Bφ(R).(58)
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Proof. Suppose not. Define

r0 = sup{ r > 0 | r < φ(R), uR ≤ v in Br ∩ ΓR1 }.

Since v is singular at 0, r0 > 0 and we have uR ≤ v in Br0 ∩ ΓR1 . Furthermore,
there exists x0 ∈ ∂RN+ such that |x0| = r0 and uR(x0, 0) = v(x0, 0).

Let x ∈ ΓR1 be such that |x| = r0. If uR(x, 0) = v(x, 0) then ∂v
∂ν (x, 0) = v(x, 0)p <

(λ
1

1−pR
1

p−1 + uR(x, 0))p = ∂uR

∂ν (x, 0) and hence for some δx > 0

∂v

∂xN
(y, t) >

∂uR
∂xN

(y, t) |y − x|2 + t2 < δ2x.(59)

It follows that for some mx > 0 (and decreasing if necessary δx)

uR(y, t) < v(y, t), if |y − x|2 + t2 < δ2x, t > m( |y| − r0), t > 0.(60)

Indeed, because of (59) and uR(y, 0) ≤ v(y, 0) for |y| ≤ r0 we immediately obtain

uR(y, t) < v(y, t) for |y − x|2 + t2 < δ2x, |y| ≤ r0, t > 0.

If (60) is false, then there are sequences yk → x, tk → 0 with |yk| > r0 and
tk

|yk−x| →∞ such that v(yk, tk) ≤ uR(yk, tk). Then by the mean value theorem
there exists a point ξk in the segment from (yk, tk) to (x, 0) such that ∇(v(ξk) −
uR(ξk)) · wk ≤ 0 where wk is the unit vector wk = (yk−x,tk)

‖wk‖ . Taking the limit we
obtain ∂

∂xN
(v(x, 0)−uR(x, 0)) ≤ 0 which contradicts (59) (recall that ∂

∂ν = − ∂
∂xN

).
This proves (60).

Suppose x ∈ ΓR1 is such that |x| = r0 and uR(x, 0) < v(x, 0). The by continuity
there is δx > 0 such that (60) still holds.

Then by compactness for some δ > 0 and m > 0 we have

uR(x, t) < v(x, t), if ( |x| − r0)2 + t2 < δ2, t > m( |x| − r0), t > 0.(61)

Now consider

z(x, t) = ρα(sin(α(θ − θ0)) + b(θ − θ0)2),

where (ρ, θ) are polar coordinates around (r0, 0) i.e.

|x| = r0 + ρ cos(θ), t = ρ sin(θ).

We choose θ0 ∈ (0, π2 ) is close enough to π
2 so that tan θ0 > m. The parameters α,

b are chosen later on.
We shall use the maximum principle to prove that for sufficiently small δ > 0,

ε > 0 we have

v(x, 0)− uR(x, 0) ≥ εz(x, 0), r0 − δ < |x| < r0.

We have

∆z =
ρα−2

r0 + ρ cos(θ)

[
2br0 + α2br0(θ − θ0)2 + ρ

(
− (N − 2)α sin(θ) cos(α(θ − θ0))

− 2b(N − 2) sin(θ)(θ − θ0) + 2b cos(θ) + (N − 2)α cos(θ) sin(α(θ − θ0))

+ bα(α+N − 2) cos(θ)(θ − θ0)2
)]

= ρα−2
(
2b+ α2b(θ − θ0)2 +O(ρ)

)
, as ρ→ 0(62)
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and, observing that for θ = π we are on ∂RN+
∂z

∂ν
=

1
ρ

∂z

∂θ

∣∣∣∣
θ=π

= ρα−1(α cos(α(π − θ0)) + 2b(π − θ0)).

But π − θ0 >
π
2 . We fix 0 < α < 1 close enough to 1 such that cos(α(π − θ0)) < 0,

and then take b > 0 small enough so that α cos(α(π − θ0)) + 2b(π − θ0) < 0. Thus,
setting

a ≡ −(α cos(α(π − θ0)) + 2b(π − θ0)) > 0,

we have
∂z

∂ν
= −aρα−1 for ρ > 0 small.

On the other hand, by (62)

∆z ≥ ρα−2 (2b+O(ρ)) as ρ→ 0(63)

uniformly for θ0 < θ < π. Now consider the region

D = { (x, t) | (|x| − r0)2 + t2 < δ2, t > m(|x| − r0), t > 0 } = { (ρ, θ) | 0 < ρ < δ, θ0 < θ < π }

and write ∂D = S1 ∪ S2 ∪A where

S1 = { (ρ, θ) | 0 < ρ < δ, θ = θ0 }, S2 = { (ρ, θ) | 0 < ρ < δ, θ = π }

and

A = { (ρ, θ) | ρ = δ, θ0 < θ < π }.

By (63) and choosing δ > 0 smaller if necessary we achieve ∆z > 0 in D. On S1

we have z = 0 and v − uR > 0. Now we seek ε > 0, δ > 0 smaller than before such
that

inf
S2

(
∂v

∂ν
− ∂uR

∂ν
) ≥ ε sup

S2

∂z

∂ν
= −aεδα−1

and

inf
A

(v − uR) > ε sup
A
z = εδαC1

where C1 = sin(α(π − θ0)) + b(π − θ0)2. Writing K = − infS2(
∂v
∂ν −

∂uR

∂ν ) <∞ and
c0 = infA(v − uR) > 0 we first choose δ > 0 small such that

δ
K

a
<

c0
C1

and then ε such that δ1−αKa ≤ ε < c0
C1
δ−α.

The calculations above and the maximum principle then yield v−uR ≥ εz in D,
which was the desired conclusion. Now this implies that v−uR is not differentiable
at (x0, 0), a contradiction.

Step 2. We let λ ↑ λ∗ and hence R → 0. Since 0 ≤ uR ≤ uR(0) = 1, uR → u
uniformly on compact sets of R̄N+ and u satisfies

∆u = 0 in RN+
∂u

∂ν
= up on ∂RN+

(64)
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and

u(0) = 1.

Also, u satisfies ∫
RN

+

|∇ϕ|2 ≥ p

∫
∂RN

+

up−1ϕ2 ∀ϕ ∈ C∞0 (RN+ ).(65)

By (57) and the previous step we deduce

u ≤ v in ∂RN+ .

Let

µ = sup
∂RN

+

u

v
≤ 1(66)

We claim that µ = 1. Let indeed

ũ(x) = c1

∫
∂RN

+

u(y)p

|x− y|N−2
dy x ∈ ∂RN+ .

Then ũ is harmonic in RN+ and agrees with u on ∂RN+ . Since u is bounded by 1 and
ũ is bounded, we see that ũ − u must be a constant. But then, since ũ(x, 0) → 0
and u(x, 0) → 0 as |x| → ∞ we see that u ≡ ũ.

Thus

u(x) =
∫
∂RN

+

u(y)p

|x− y|N−2
dy ≤ c1µ

p

∫
∂RN

+

v(y)p

|x− y|N−2
dy = µpv(x) x ∈ ∂RN+ .

This implies µ ≤ µp and since µ 6= 0, we conclude µ = 1.

Step 3. Observe that the supremum in (66) is not attained. Otherwise v−u would
achieve a minimum at a point x ∈ ∂RN+ , where the normal derivative would be zero.
By Hopf’s lemma, we would have u ≡ v, which is impossible since u is bounded
and v is not. Let xk ∈ ∂RN+ be such that |xk| → ∞ and u(xk)

v(xk) → 1. Let

uk(x) = |xk|
1

p−1u(|xk|x).

Since v is invariant under the above transformation we have uk ≤ v in ∂RN+ . Thus,
for a subsequence we have uk → u0 and u0 solves (64). Since uk( xk

|xk| ) → v(y) where
y = lim xk

|xk| , again using Hopf’s lemma we see that u0 ≡ v. But u0 satisfies the
condition (65), contradicting (56).

Proof of Theorem 1.10. Set u = w 1
p−1

− 1 so that

∆u = 0 in RN+(67)
∂u

∂ν
= C(N, 1

p−1 )(1 + u)p on ∂RN+(68)

Let Ω = {x ∈ RN+ |u(x) > 0}, Γ1 = ∂Ω∩∂RN+ , Γ2 = ∂Ω\∂RN+ . Then u is a singular
solution to (67), (68) with

u = 0 on Γ2.
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To apply Lemma 4.1 we need to verify that u ∈ H1(Ω). We are assuming that
pC(N, 1

p−1 ) ≤ HN and p ≥ N
N−2 . Actually we must have p > N

N−2 . For this it is
convenient to observe that :

C(N,α) = C(N,N − 2− α) ∀0 < α < N − 2(69)

α 7→ C(N,α) is increasing for 0 < α < N−2
2 .(70)

Property (69) is direct from (16) and we leave (70) to the appendix. From these
properties we deduce that p > N

N−2 and therefore u ∈ H1(Ω). This solution satisfies
the stability condition (43) if and only if (by scaling)

pC(N, 1
p−1 )

∫
∂RN

+

ϕ2

|x|
≤
∫

RN
+

|∇ϕ|2, ∀ϕ ∈ C1
0 (RN+ \ {0})

which is guaranteed by Kato’s inequality (9). Thus we may apply Lemma 4.1 and
conclude that u is the extremal solution.

�

Appendix

Proof of (47). We have HN = 2
[

Γ(N
4 )

Γ(N
4 −

1
2 )

]2
= 2f(N/4)2 where f(z) = Γ(z)

Γ(z− 1
2 )

and

similarly we have λ0,N =
√
πN−3

2

Γ(N
2 −

3
2 )

Γ(N
2 −1) =

√
π

Γ(N
2 −

1
2 )

Γ(N
2 −1) =

√
πf
(
N
2 −

1
2

)
. Then

HN

λ0,N
=

2f(N/4)2
√
πf
(
N
2 −

1
2

) .
Since H10 = 9π

8 > λ0,10 = 35π
32 it follows that

H10

λ0,10
> 1.

On the other hand

H9

λ0,9
=

(
5Γ( 1

4 )2

12π

)2

16
5

≈ 3.039
3.333

< 1.

Let us compute

d

dx

f(x4 )2

f
(
x
2 −

1
2

) =
1
2f(x4 )f ′(x4 )f

(
x
2 −

1
2

)
− 1

2f(x4 )2f ′
(
x
2 −

1
2

)
f
(
x
2 −

1
2

)2
=

f(x4 )2

2f
(
x
2 −

1
2

) [f ′(x4 )
f(x4 )

−
f ′
(
x
2 −

1
2

)
f
(
x
2 −

1
2

) ]
Recall that

Γ′(z) = ψ0(z)Γ(z), where ψ0(z) = −

(
1
z

+ γ +
∞∑
n=1

(
1

n+ z
− 1
n

))
.

In particular, ψ0 is a positive increasing function on ]Ξ,∞[ where Ξ ≈ 1.4 is the
unique zero of ψ0 in R+, and

f ′(z) =
[
ψ0(z)− ψ0

(
z − 1

2

)]
Γ(z)

Γ(z − 1
2 )

> 0 for z ∈]1/2,∞[.
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Calculating

d

dx

f ′(x)
f(x)

= ψ′0(x)− ψ′0(x−
1
2
) =

∞∑
n=0

1
(n+ x)2

− 1
(n+ x− 1

2 )2
< 0 for x >

1
2
.

So f ′(x)
f(x) is decreasing for x > 1

2 and it follows that f ′( x
4 )

f( x
4 ) −

f ′( x
2−

1
2 )

f( x
2−

1
2 )

> 0 for x > 2.

Hence
HN > λ0,N only for N ≥ 10.
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[9] X. Cabré, J. Solà-Morales, Layer solutions in a halfspace for boundary reactions, Preprint,

2005.
[10] D. S. Cohen and H. B. Keller, Some positone problems suggested by nonlinear heat generation,

J. Math. Mech. 16 (1967), 1361–1376.

[11] M.G. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive

solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975),
207–218.

[12] J. Dávila, L. Dupaigne, Comparison results for PDEs with a singular potential, Proc. Roy.

Soc. Edinburgh Sect. A 133 (2003), 61–83.
[13] J. Dávila, L. Dupaigne, Perturbing singular solutions of the Gelfand problem. Submitted,

2006.

[14] J. Dávila, M. Montenegro, Nonlinear problems with solutions exhibiting a free boundary on
the boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 303–330.

[15] L. Dupaigne, A nonlinear elliptic PDE with the inverse square potential, J. Anal. Math. 86
(2002), 359–398.

[16] L.C. Evans. Partial differential equations. Graduate Studies in Mathematics, 19. American

Mathematical Society, Providence, RI, 1998.
[17] F. Gazzola, H.-C. Grunau, E. Mitidieri, Hardy inequalities with optimal constants and re-

mainder terms, Trans. Amer. Math. Soc. 356 (2004), 2149–2168.
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