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abstract. We consider ∆u = 0 in Ω, ∂u ∂ν = λf (u) on Γ 1 , u = 0 on Γ 2 where λ > 0, f (u) = e u or f (u) = (1 + u) p and Γ 1 , Γ 2 is a partition of ∂Ω and Ω ⊂ R N . We determine sharp conditions on the dimension N and p > 1 such that the extremal solution is bounded, where the extremal solution refers to the one associated to the largest λ for which a solution exists.
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Introduction

We study the semilinear boundary value problem

       ∆u = 0 in Ω ∂u ∂ν = λf (u) on Γ 1 u = 0 on Γ 2 (1) 
where λ > 0 is a parameter, f (u) is a nonlinear smooth function of u, Ω ⊂ R N is a smooth, bounded domain and Γ 1 , Γ 2 is a partition of ∂Ω into surfaces separated by a smooth interface. We will assume that f is smooth, nondecreasing, convex and f (0) > 0, (2)

lim u→∞ f (u) u = ∞, and (3) 
lim inf t→+∞ f (t)t f (t) > 1. ( 4 
)
1 Assumption (4) is not essential, but it simplifies some of the arguments and holds for the examples f (u) = e u , f (u) = (1 + u) p , p > 1.

We say that u is a weak solution of (1) if u ∈ W 1,1 (Ω), f (u) ∈ L 1 (Γ 1 ) and Ω u(-∆ϕ) = Γ1 λf (u)ϕ for all ϕ ∈ C 2 ( Ω) such that ϕ Γ2 ≡ 0 and ∂ϕ ∂ν Γ1 ≡ 0.

Problem (1) shares many properties with the following generalization of the socalled Gelfand's problem -∆u = λf (u) in Ω u = 0 on ∂Ω (5) which has been widely considered [START_REF] Brezis | Blow-up for ut -∆u = g(u) revisited[END_REF][START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF][START_REF] Cohen | Some positone problems suggested by nonlinear heat generation[END_REF][START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF][START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF][START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF]. In particular, the following result can be proved as in [START_REF] Brezis | Blow-up for ut -∆u = g(u) revisited[END_REF].

Proposition 1.1. There exists λ * ∈ (0, ∞) such that

• (1) has a smooth solution for 0 ≤ λ < λ * ,

• (1) has a weak solution for λ = λ * ,

• (1) has no solution for λ > λ * (even in the weak sense) . Moreover, for 0 ≤ λ < λ * there exists a minimal solution u λ which is bounded, positive and stable, in the sense that the linearized operator at u λ is positive, i.e.

inf ϕ∈C 1 (Ω),ϕ=0 on Γ2 Ω |∇ϕ| 2 dx -λ Γ1 f (u λ )ϕ 2 ds Γ1 ϕ 2 ds > 0. ( 6 
)
The monotone limit u * := lim λ λ * u λ is a weak solution for λ = λ * and satisfies

λ * Γ1 f (u * )ϕ 2 ≤ Ω |∇ϕ| 2 dx, ∀ϕ ∈ C 1 (Ω), ϕ = 0 on Γ 2 . ( 7 
)
We call u * the extremal solution of (1).

Remark 1.2. Under assumption (4) we have u * ∈ H 1 (Ω). The proof is analogous to the argument for (5) in [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF], so we skip it. Proposition 1.1 suggests the following natural question : is u * a bounded solution?

In the context of (5), no complete answer has been given yet. For the case f (u) = e u , that is the original Gelfand problem, it was shown by Joseph and Lundgren [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF] that if Ω is a ball, then u * is bounded if and only if N < 10. Crandall and Rabinowitz [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF] showed that if f (u) = e u and N < 10 then for any smooth and bounded domain, u * is bounded. Brezis and Vázquez [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] provided a different proof of the unboundedness of u * in the case Ω = B 1 and N ≥ 10 : they established in particular that a singular solution which is stable must be the extremal one. In applying this criterion in dimension N ≥ 10 they use Hardy's inequality valid for N ≥ 3 :

(8) (N -2) 2 4 R N ϕ 2 |x| 2 ≤ R N |∇ϕ| 2 , ∀ϕ ∈ C ∞ 0 (R N )
Other explicit nonlinearities, for instance f (u) = (1+u) p with p > 1, are considered in these references, but in the general case, little is known. In this direction, we mention the result of Nedev [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF], which asserts that for any function f satisfying (2) and (3), and any smooth bounded domain in R N , N ≤ 3, u * is bounded. This result has been extended by Cabré to the case N = 4 and Ω strictly convex [5]. Finally, Cabré and Capella [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF] showed that if Ω is a ball and N ≤ 9 then for any nonlinearity f satisfying (2),(3) the extremal solution is bounded.

Proving that u * is unbounded seems to be much more difficult. Besides the radial case Dávila and Dupaigne [START_REF] Dávila | Perturbing singular solutions of the Gelfand problem[END_REF] have shown that in domains that are small perturbations of a ball and for the nonlinearities e u and (1 + u) p the extremal solution is singular for large dimensions (N ≥ 11 and N > 2 + 4p p-1 + 4 p p-1 respectively).

Returning to (1), we are interested in determining whether the extremal solution u * is bounded or singular in the cases f (u) = e u and f (u) = (1 + u) p , p > 1.

Theorem 1.3. Let f (u) = e u . In any dimension N ≥ 10 there exists a domain

Ω ⊂ R N and a partition in smooth sets Γ 1 , Γ 2 of ∂Ω such that u * ∈ L ∞ (Ω).
The proof is an adaptation of the argument of Brezis and Vázquez [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF], using a stability criterion. In our case the singular solution has the form u 0 (x) = -log |x| for x ∈ ∂R N

+ and its linearized stability in dimension N ≥ 10 is obtained thanks to :

(9) R N + |∇ϕ| 2 ≥ H N ∂R N + ϕ 2 |x| , ∀ϕ ∈ C ∞ 0 (R N + ),
which holds for N ≥ 3 and where the best constant

H N := inf    R N + |∇ϕ| 2 ∂R N + ϕ 2 |x| : ϕ ∈ H 1 (R N + ), ϕ ∂R N + ≡ 0    (10) 
is given by

H N = 2 Γ( N 4 ) 2 Γ( N -2 4 ) 2 ∀N ≥ 3, ( 11 
)
where Γ is the Gamma function. Inequality ( 9) is known as Kato's inequality and a proof of it was given by Herbst [START_REF] Herbst | Spectral theory of the operator (p 2 + m 2 ) 1/2 -Ze 2 /r[END_REF].

We will give here a different proof of this result which offers a sharper version, analogous to improvements of (8) found by Brezis and Vázquez [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] or Vázquez and Zuazua [START_REF] Vázquez | The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential[END_REF] (see also [START_REF] Barbatis | A unified approach to improved L p Hardy inequalities with best constants[END_REF][START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF][START_REF] Dávila | Comparison results for PDEs with a singular potential[END_REF][START_REF] Gazzola | Hardy inequalities with optimal constants and remainder terms[END_REF][START_REF] Vázquez | The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential[END_REF] for other improved versions of the Hardy inequality (8)) :

Theorem 1.4. Let B = B 1 (0) be the unit ball in R N , N ≥ 3. Then for any 1 ≤ q < 2 there exists c = c(N, q) > 0 such that R N + ∩B |∇ϕ| 2 ≥ H N ∂R N + ∩B ϕ 2 |x| + c ϕ 2 W 1,q (R N + ∩B) , ∀ϕ ∈ C ∞ 0 (R N + ∩ B),
As a converse to Theorem 1.3 we prove :

Theorem 1.5. Let f (u) = e u , N ≤ 9 and suppose Ω ⊂ R N
+ is open, bounded and satisfies:

• ∂Ω = Γ 1 ∪ Γ 2 , where Γ 1 ⊂ ∂R N + and Γ 2 ⊂ R N +
• Ω is symmetric with respect to the hyperplanes x 1 = 0, . . . , x N -1 = 0, and • Ω is convex with respect to all directions x 1 , . . . , x N -1 . Then the extremal solution u * of (1) belongs to L ∞ (Ω).

Remark 1.6. In order to prove Theorem 1.5, one is at first tempted to imitate the classical argument of Crandall and Rabinowitz [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF]: roughly speaking, one uses the stability inequality [START_REF] Chipot | Shafrir Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF] and the equation (1) with test functions of the form ϕ = e ju , j ≥ 1. This does not lead to the optimal dimension N = 9 but applies to general domains (see Proposition 1.7 below). We use instead test functions ϕ, which are not functions of u, but which have the expected behavior of e ju near a singular point, assuming it exists.

Proposition 1.7. Let f (u) = e u and assume Ω ⊂ R N is a smooth bounded domain such that ∂Ω = Γ 1 ∪ Γ 2 , where Γ 1 ⊂ ∂R N

+ and Γ 2 ⊂ R N + . Assume further that N < 6. Then the extremal solution u * of (1) belongs to L ∞ (Ω).

This raises the following question

Open Problem 1. Does Theorem 1.5 hold in any smooth bounded domain

Ω ⊂ R N + such that ∂Ω = Γ 1 ∪ Γ 2 , where Γ 1 ⊂ ∂R N + and Γ 2 ⊂ R N + ? Next we look at (1) in the case f (u) = (1 + u) p , p > 1. Given 0 < α < N -1 define (12) w α (x) = ∂R N + K(x, y)|y| -α dy for x ∈ R N + ,
where K(x, y) = 2x N N ω N |x -y| -N is the Green's function for the Dirichlet problem in R N + (see e.g. [START_REF] Evans | Partial differential equations[END_REF]). Clearly,

w α > 0 in R N + . Moreover w α is harmonic in R N + and w α extends to a function belonging to C ∞ (R N + \ {0}) with w α (x) = |x| -α for all x ∈ ∂R N + \ {0}. ( 13 
)
It is not difficult to verify that for some constant C(N, α) we have

∂w α ∂ν (x) = C(N, α)|x| -α-1 ∀x ∈ ∂R N + \ {0}.
In Section 2 we shall show that

C(N, α) = 2 Γ( α 2 + 1 2 )Γ( N -1 2 -α 2 ) Γ( α 2 )Γ( N -2 2 -α 2 ) . (14) 
A heuristic calculation shows that for (1) with nonlinearity f (u) = (1 + u) p , the expected behavior of a solution u which is singular at 0 ∈ ∂Ω should be u(x) ∼ |x| 1 p-1 . The boundedness of u * is then related to the value of C(N, 1 p-1 ). Observe that C(N, 1 p-1 ) is defined for p > N N -1 . In the sequel, when writing C(N, 1 p-1 ) we will implicitly assume that this condition holds.

Theorem 1.8. Consider (1) with f (u) = (1 + u) p . Assume Ω ⊂ R N + is a bounded domain such that ∂Ω = Γ 1 ∪ Γ 2 , where Γ 1 ⊂ ∂R N
+ and Γ 2 ⊂ R N + and such that the following condition holds

• Ω is convex with respect to x and

• Π N (Ω) = Γ 1 , where Π N is the projection on ∂R N + . If p C(N, 1 p-1 ) > H N or 1 < p < N N -2 then u * is bounded. In the above, Ω is said to be convex with respect to x if (tx , x N ) + ((1 - t)y , x N ) ∈ Ω whenever t ∈ [0, 1], x = (x , x N ) ∈ Ω and y = (y , x N ) ∈ Ω. Π N is defined by Π N (x , x N ) = x N for all x = (x , x N ) ∈ R N + .
Remark 1.9. It is not difficult to verify that the same result holds if

• Ω is convex with respect to all directions x 1 , . . . , x N -1 and

• Ω is symmetric with respect to the hyperplanes x 1 = 0, . . . , x N -1 = 0.

Theorem 1.10.

Consider (1) with f (u) = (1 + u) p . If p C(N, 1 p-1 ) ≤ H N and p ≥ N N -2 there exists a domain Ω such that u * is singular. Remark 1.11. The condition p C(N, 1 p-1
) ≤ H N is not enough to guarantee that the extremal solution is singular for some domain. Actually this condition can hold for some values of p in the range N N -1 < p < N N -2 . In this case a singular solution exists in some domains, but it does not correspond to the extremal one. See Theorem 6.2 in [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] for a similar phenomenon.

The organization of the paper is as follows. In Section 2 we derive formula ( 14) and we prove Theorem 1.4 in Section 3. In Section 4 we analyze the exponential case and give a proof of Theorems 1.3 and 1.5. The proofs of Theorems 1.8 and 1.10 are given in Section 5.

Computation of C(N, α)

We write

x = (x , x N ) ∈ R N + with x ∈ R N -1 , x N > 0.
It follows from ( 12) and a simple change of variables that

w α (x , x N ) = w α (e(x ), x N )
for all rotations e ∈ O(N -1).

and similarly

w α (Rx , Rx N ) = R -α w α (x , x N ). ( 15 
)
Differentiating with respect to x N yields

∂w α ∂x N (Rx , Rx N ) = R -α-1 ∂w α ∂x N (x , x N ). Let x ∈ ∂R N + , x = (x , 0) and plug R = 1 |x| = 1 |x | in the previous formula to find ∂w α ∂ν (x) = - ∂w α ∂x N (x , 0) = |x| -α-1 - ∂w α ∂x N x |x | , 0 . Define C(N, α) = - ∂w α ∂x N x |x | , 0 (16) 
and observe that it is independent of x ∈ R N -1 .

Using [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse square potential[END_REF] and the radial symmetry of w in the variables x , there exists a function

v : [0, ∞) → R such that w α (x , x N ) = |x | -α w α ( x |x | , x N |x | ) = |x | -α v( x N |x | ). ( 17 
) Writing r = |x |, t = x N |x | , we have r -α v(t) = w α (x , rt), ∀x ∈ R N -1 , |x | = r.
The equation ∆w = 0 is equivalent to

(1 + t 2 )v (t) + (2α + 4 -N )tv (t) + α(α -N + 3)v(t) = 0, t > 0, (18) 
while [START_REF] Dávila | Perturbing singular solutions of the Gelfand problem[END_REF] implies

v(0) = 1.
The initial condition for v is related to ( 16)

v (0) = -C(N, α).
In addition to these initial conditions we remark that w α is a smooth function in R N

+ and this together with [START_REF] Gazzola | Hardy inequalities with optimal constants and remainder terms[END_REF] implies that lim

t→∞ v(t)t α exists. ( 19 
)
Using the change of variables z = it with i the imaginary unit and defining the new unknown h(z) := v(-iz) equation ( 18) becomes

(1 -z 2 )h (z) -(2α + 4 -N )zh (z) -α(α -N + 3)h(z) = 0, ( 20 
)
with initial conditions lim t>0, t→0 h(it) = 1, lim t>0, t→0 h (it) = iC(N, α). ( 21 
)
On the other hand [START_REF] Joseph | Quasilinear Dirichlet problems driven by positive sources[END_REF] 

implies lim t∈R, t→∞ h(it)t α exists. ( 22 
)
The substitution

g(z) = (1 -z 2 ) α 2 + 1 2 -N 4 h(z) (23) 
transforms equation ( 20) into

(1 -z 2 )g (z) -2zg (z) + ν(ν + 1) - µ 2 1 -z 2 g(z) = 0, ( 24 
) with µ = α + 2 -N 2 , ν = N -4 2 . ( 25 
)
The general solution to (24) is well known. Indeed, equation (24) belongs to the class of Legendre's equations. Following [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], two linearly independent solutions of (24) are given by the Legendre functions P µ ν (z), Q µ ν (z), which are defined in C \ {-1, 1} and analytic in C \ (-∞, 1] (see [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]). Moreover the limits of P µ ν (z), Q µ ν (z) on both sides of (-1, 1) exist and we shall use the notation

P µ ν (x + i0) = lim z→x,Re(z)>0 P µ ν (z), -1 < x < 1, P µ ν (x -i0) = lim z→x,Re(z)<0 P µ ν (z), -1 < x < 1, (26) 
and a similar notation for Q µ ν . The solution g of ( 24) is therefore given by

g(z) = c 1 P µ ν (z) + c 2 Q µ ν (z)
, for appropriate constants c 1 , c 2 . These constants are determined by the initial conditions [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF], which imply:

(27) c 1 P µ ν (0 + i0) + c 2 Q µ ν (0 + i0) = 1, (28) c 1 d dz P µ ν (0 + i0) + c 2 d dz Q µ ν (0 + i0) = iC(N, α).
In order to evaluate C(N, α), we use also condition [START_REF] Vázquez | The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential[END_REF], which is equivalent to lim t→∞, t∈R 

(c 1 P µ ν (it) + c 2 Q µ ν (it))t
P µ ν (z) ∼ z ν as |z| → ∞ Q µ ν (z) ∼ z -ν-1
as |z| → ∞ This and ( 23),(29) imply that c 1 = 0 and we obtain from ( 27),( 28)

C(N, α) = -i d dz Q µ ν (0 + i0) Q µ ν (0 + i0) (30) 
From the properties and formulas in [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] the following values can be deduced:

(31) Q 0 ν (0 + i0) = -i2 µ-1 π 1 2 e iµπ-iν π 2 Γ( ν 2 + µ 2 + 1 2 ) Γ( ν 2 -µ 2 + 1) (32) d dz Q 0 ν (0 + i0) = 2 µ π 1 2 e iµπ-iν π 2 Γ( ν 2 + µ 2 + 1) Γ( ν 2 -µ 2 + 1
2 ) The relations (30),(31),(32) and the values (25) yield formula [START_REF] Dávila | Nonlinear problems with solutions exhibiting a free boundary on the boundary[END_REF].

Improved Kato inequality

We begin with some remarks on (9). Remark 3.1. a) The singular weight 1 |x| in the right-hand side of (9) is optimal, in the sense that it may not be replaced by 1 |x| α with α > 1. This can be easily seen by choosing ϕ ∈ H

1 (R N + ) such that ϕ(x) = |x| -N -2 2 + α-1 2
in a neighborhood of the origin.

Moreover, the infimum in (10) is not achieved.

b) In dimension N = 2 the infimum (10) is zero, see [START_REF] Dávila | Nonlinear problems with solutions exhibiting a free boundary on the boundary[END_REF]. Nonetheless, if the test-functions ϕ are required to vanish on the half line x 1 > 0 then the infimum has been computed in [START_REF] Dávila | Nonlinear problems with solutions exhibiting a free boundary on the boundary[END_REF] :

inf    R 2 + |∇ϕ| 2 ∂R 2 + ϕ 2 |x| : ϕ ∈ H 1 (R 2 + ), ϕ(x 1 , 0) = 0 if x 1 > 0, ϕ ∂R 2 + ≡ 0    = 1 π (33) c) Using Stirling's formula it is easy to see that H N = N -3 2 + O( 1 N ) as N → ∞. (34) d) The estimates N -3 2 ≤ H N ≤ (N -3) 2 + 1 2 (35)
can be obtained in a more straightforward way using particular test functions. We give a proof of this at the end of Section 3. Also observe that (34) could be deduced from (35).

Let us explain first informally the idea behind the proof of Theorem 1.4, assuming for a moment that a minimizer w ∈ H 1 (R N + ) of ( 10) exists. w then satisfies the associated Euler-Lagrange equation:

(36)      ∆w = 0 in R N + , ∂w ∂ν = H N w |x| on ∂R N + .
Elementary changes of variables show that given R > 0 and a rotation e ∈ O(N -1),

w R := R 2-N 2 w(Rx)
and w e := w(e(x ), x N ) are also minimizers of [START_REF] Cohen | Some positone problems suggested by nonlinear heat generation[END_REF]. Thus it is natural to assume w = w R = w e for all R > 0 and e ∈ O(N -1). In particular a constant multiple of w solves

∆w = 0 in R N + , w = |x| -N -2 2 on ∂R N + . Unfortunately, such a function w does not belong to H 1 (R N + ). Let w = w α with α = N -2 2
as defined in [START_REF] Dávila | Comparison results for PDEs with a singular potential[END_REF]. Observe that C(N, N -2

2 ) = H N by ( 16) and hence w is indeed a solution of(36).

Following an idea of Brezis and Vázquez (equation (4.6) on page 453 of [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]), we restate [START_REF] Cabré | Layer solutions in a halfspace for boundary reactions[END_REF] in terms of the new variable v = ϕ/w. Proof of Theorem 1.4.

When N ≥ 3, C ∞ 0 (R N + \ {0}) is dense in H 1 (R N + ). So it suffices to prove (9) for ϕ ∈ C ∞ 0 (R N + \ {0}
). Fix such a ϕ ≡ 0 and let w be the function defined by [START_REF] Dávila | Comparison results for PDEs with a singular potential[END_REF]. Notice that, on supp ϕ, w is smooth and bounded from above and from below by some positive constants. Hence v := ϕ w ∈ C ∞ 0 (R N + ) is well defined. Now, ϕ = vw, ∇ϕ = v∇w + w∇v and

|∇ϕ| 2 = v 2 |∇w| 2 + w 2 |∇v| 2 + 2vw∇v∇w. Integrating R N + |∇ϕ| 2 = R N + v 2 |∇w| 2 + R N + w 2 |∇v| 2 + 2 R N + vw∇v∇w
and by Green's formula

R N + v 2 |∇w| 2 = ∂R N + v 2 w ∂w ∂ν - R N + w∇(v 2 ∇w) = ∂R N + v 2 w ∂w ∂ν -2 R N + wv∇w∇v, since w is harmonic in R N + . Thus, (37) 
R N + |∇ϕ| 2 = R N + w 2 |∇v| 2 + ∂R N + v 2 w ∂w ∂ν = R N + w 2 |∇v| 2 + ∂R N + ϕ 2 w ∂w ∂ν .
But by [START_REF] Evans | Partial differential equations[END_REF] ∂w ∂ν (x)

w(x) = H N |x| for x ∈ ∂R N + and hence, (38) 
R N + |∇ϕ| 2 ≥ H N ∂R N + ϕ 2 |x| + R N + w 2 |∇v| 2 ∀ϕ ∈ H 1 (R N + ).
The second term in the right hand side of the above inequality yields the improvement of Kato's inequality when ϕ has support in the unit ball. Now we assume ϕ ∈ C ∞ 0 (R N + \ {0} ∩ B) and, as before, set v = ϕ w . Our aim is to prove that given 1 ≤ q < 2 there exists C > 0 such that (39)

I := R N + w 2 |∇v| 2 ≥ 1 C ϕ W 1,q .
In spherical coordinates

I = 1 0 r N -1 S + 1 w 2 (rθ)|∇v(rθ)| 2 dθ dr where S + 1 = S 1 ∩ R N + and S 1 = {x ∈ R N / |x| = 1} is the sphere of radius 1. From (15) we have w(x) ≥ 1 C |x| -N -2 2
for some C > 0 and all x ∈ B ∩ R N + . Hence

I ≥ 1 C 1 0 r S + 1 |∇v(rθ)| 2 dθ dr.
Let us compute the Sobolev norm of ϕ :

ϕ q W 1,q = R N + ∩B |∇ϕ| q dx = 1 0 r N -1 S + 1 |∇ϕ(rθ)| q dθ dr = 1 0 r N -1 S + 1 |∇v(rθ) w(rθ) + ∇w(rθ) v(rθ)| q dθ dr ≤ C q 1 0 r N -1 S + 1 |∇v(rθ)| q |w(rθ)| q + |∇w(rθ)| q |v(rθ)| q dθ dr.
Define

I 1 := 1 0 r N -1 S + 1 |∇v(rθ)| q |w(rθ)| q dθ dr I 2 := 1 0 r N -1 S + 1 |∇w(rθ)| q |v(rθ)| q dθ dr. Since w(x) ≤ C|x| -N -2 2
we have by Hölder's inequality

I 1 ≤ C 1 0 r N -1-(N -2)q 2 S + 1 |∇v(rθ)| q dθ dr ≤ C 1 0 r S + 1 |∇v(rθ)| 2 dθdr q 2 1 0 r (N -1-N q 2 + q 2 ) 2 2-q dr 2-q 2 = CI q 2 , ( 40 
) since q < 2.
Using |∇w(x)| ≤ C|x| -N 2 we estimate I 2 :

I 2 ≤ C S + 1 1 0 r N -1-N q 2 |v(rθ)| q dr dθ.
From the classical Hardy inequality

1 0 r γ |f (r)| p dr ≤ p γ + 1 p 1 0 r γ+p |f (r)| p dr (p ≥ 1, γ > -1, f ∈ C ∞ 0 (0, 1)) we deduce 1 0 r N -1-N q 2 |v(rθ)| q dr ≤ C 1 0 r N -1-N q 2 +q |∇v(rθ)| q dr
and therefore

I 2 ≤ C S + 1 1 0 r N -1-N q 2 +q |∇v(rθ)| q dr dθ.
Hölder's inequality yields

I 2 ≤ C S + 1 1 0 r|∇v(rθ)| 2 dr dθ q 2 S + 1 1 0 r (N -1-N q 2 + q 2 ) 2 2-q dr dθ 1-q 2 = CI q 2 , (41) 
where we have used q < 2. Gathering ( 40) and (41) we conclude that (39) holds. Now we pass to the proof of item (d) of Remark 3.1. Proof of (35). We shall first show the inequality

N -3 2 ≤ H N , ∀N ≥ 4.
One may assume that u = u(r, t) where r = |(x 1 , . . . , x N -1 )| and t = x N . Then

∂R N + u 2 |x| = (N -1)ω N -1 ∞ 0 u(r, 0) 2 r N -3 dr, where ω N -1 is the volume of the unit ball in R N -1 . But u(r, 0) = -2 ∞ 0 u(r, t) ∂u ∂t (r, t) dt.
So,

∂R n + u 2 |x| = -2(N -1)ω N -1 ∞ 0 ∞ 0 u(r, t) ∂u ∂t (r, t)r N -3 dr dt ≤ 2(N -1)ω N -1 ∞ 0 ∞ 0 u(r, t) 2 r N -4 dr 1/2 ∞ 0 ∂u ∂t (r, t) 2 r N -2 dr 1/2
dt.

We use now the inequality

∞ 0 u(r, t) 2 r N -4 dr ≤ 4 (N -3) 2 ∞ 0 ∂u ∂r (r, t) 2 r N -2 dr,
which is one of the classical version of Hardy's inequality (in dimension N -1). We obtain

∂R N + u 2 |x| ≤ 4 N -3 (N -1)ω N -1 ∞ 0 ∞ 0 ∂u ∂r (r, t) 2 r N -2 dr 1 2 ∞ 0 ∂u ∂t (r, t) 2 r N -2 dr 1 2 dt ≤ 2 N -3 (N -1)ω N -1 ∞ 0 ∞ 0 ∂u ∂t 2 + ∂u ∂r 2 r N -2 dr dt = 2 N -3 R N + |∇u| 2 .
To prove

H N ≤ (N -3) 2 + 1 2 , ( 42 
)
we consider, for fixed a > 0 and ε ↓ 0, the function

φ(r, x N ) = r 2-N 2 e -ax N /r if r > ε ε 2-N 2 e -ax N /ε if r ≤ ε, where x = (x , x N ) ∈ R N -1 + × R + , r = |x |. With the test function ϕ = η φ where η ∈ C ∞ 0 (R N ), 0 ≤ η ≤ 1, η ≡ 1 in B 1 ( 
0) and η ≡ 0 outside of B 2 (0) and a suitable choice of a one obtains (42). We omit the details.

The exponential case

We need the following result that characterizes extremal singular solutions belonging to H 1 (Ω), see [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]Theorem 3.1 ]. The proof is an adaptation of the one in this reference. Lemma 4.1. Assume that v ∈ H 1 (Ω) is an unbounded solution of (1) for some λ > 0. Assume furthermore the stability condition

λ Γ1 f (v)ϕ 2 ≤ Ω |∇ϕ| 2 ∀ϕ ∈ C 1 (Ω), ϕ = 0 on Γ 2 . ( 43 
)
Then λ = λ * and v = u * . Remark 4.2. We have not shown that there is a unique weak solution of (1) when λ = λ * . A result of Martel [START_REF] Martel | Uniqueness of weak extremal solutions of nonlinear elliptic problems[END_REF] guarantees that this is indeed the case for problem (5) To prove Theorems 1.3 and 1.5 it will be convenient to study the function u 0 defined by

u 0 (x) = ∂R N + K(x, y) log 1 |y| dy for x ∈ R N + , ( 44 
)
where as before K(x, y)

= 2x N N ω N |x -y| -N . Then u 0 is harmonic in R N + and u 0 (x) = log 1 |x| for x ∈ ∂R N + , x = 0.
Note that

u 0 (Rx) = u 0 (x) + log 1 R . Let r = |x |. Then u 0 (x , x N ) = v( x N r ) + log 1 r , ( 45 
) for some v : [0, ∞) → R such that v(0) = 0. We see that ∂u 0 ∂ν = - ∂u 0 ∂x N x N =0 = - 1 r v (0) so ∂u 0 ∂ν = λ 0,N e u0 on ∂R N + ,
where we let

λ 0,N = -v (0). Let Ω 0 = {x ∈ R N + : u 0 (x) > 0} Γ 1 = ∂Ω ∩ ∂R N + Γ 2 = ∂Ω \ ∂R N
+ . The boundary ∂Ω 0 is not smooth itself but Γ 1 , Γ 2 are, and it can be checked that Proposition 1.1 still holds in this case.

It can be verified that Ω 0 can be written as

Ω 0 = {(x , x N ) ∈ R N -1 × R + : |x | < e v(x N /|x |) }. Lemma 4.3. We have λ 0,N = (N -3) √ πΓ( N 2 -3 2 ) 2Γ( N 2 -1) if N ≥ 4, 1 if N = 3.
Proof. We give details for N ≥ 4, the case N = 3 being similar. We need to compute v (0). Calculating ∆u 0 in terms of v (see ( 45)) we obtain that v satisfies

(1 + t 2 )v (t) + (4 -N )tv (t) + 3 -N = 0
and thus v is given by

v (t) = (N -3)(1 + t 2 ) N -4 2 t 0 (1 + s 2 ) 2-N 2 ds + (1 + t 2 ) N -4 2 v (0).
Integrating and using v(0) = 0 yields

v(t) = (N -3) t 0 (1 + τ 2 ) N -4 2 τ 0 (1 + s 2 ) 2-N 2 ds dτ + v (0) t 0 (1 + τ 2 ) N -4 2 
dτ.

(

) 46 
We look at the asymptotics of the two integrals above, as t → ∞. For the second integral, we have

lim t→∞ t 0 (1 + τ 2 ) N -4 2 dτ t N -3 = (1 + t 2 ) N -4 2 (N -3)t N -4 = 1 N -3 .
And for the first integral,

lim t→∞ t 0 (1 + τ 2 ) N -4 2 τ 0 (1 + s 2 ) 2-N 2 ds dτ t N -3 = lim t→∞ (1 + t 2 ) N -4 2 t 0 (1 + s 2 ) 2-N 2 ds (N -3)t N -4 = 1 N -3 ∞ 0 (1 + s 2 ) 2-N 2 ds = 1 N -3 √ πΓ( N 2 -3 2 ) 2Γ( N 2 -1)
.

Going back to (46), we obtain that

v(t) = √ πΓ( N 2 -3 2 ) 2Γ( N 2 -1) + v (0) N -3 t N -3 + o(t N -3 ).
Now, recall that for x N > 0, lim r→0 v(x N /r) + log 1 r = u 0 (0, x N ) ∈ R exists and is finite. Hence, we must have

v (0) = -(N -3) √ πΓ( N 2 -3 2 ) 2Γ( N 2 -1)
.

Proof of Theorem 1.3. We have shown that u 0 defined in ( 44) is a solution to [START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] with Ω = Ω 0 and λ = λ 0,N . This solution satisfies the stability condition (43) if and only if (by scaling)

λ 0,N ∂R N + ϕ 2 |x| ≤ R N + |∇ϕ| 2 , ∀ϕ ∈ C 1 0 (R N + \ {0}).
In the Appendix we prove that

H N ≥ λ 0,N if and only if N ≥ 10 (47)
and this completes the proof of the theorem.

Proof of Theorem 1.5.

We prove the theorem by contradiction, assuming that u * is unbounded. We use an idea of Crandall and Rabinowitz [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF], but with different test functions.

Let

φ(x) = ∂R N + K(x, y)|y| 2-N +ε dy and ψ(x) = ∂R N + K(x, y)|y| 2-N +ε 2
dy. Then,

∂φ ∂ν = K φ |x| 1-N +ε ∂ψ ∂ν = K ψ |x| -N +ε 2 , (48) 
where the constants K φ , K ψ are given by

K φ = λ 0,N ε + O(ε 2 ) and K ψ = H N + O(ε).
Indeed, since u 0 and φ are harmonic in Ω,

∂Ω u 0 ∂φ ∂ν = ∂Ω φ ∂u 0 ∂ν .
Clearly, Γ2 φ ∂u0 ∂ν ≤ C, for some constant C independent of ε. So

K φ 1 0 ln 1 r 1 r r 2-N +ε r N -2 dr = λ 0,N 1 0 1 r r 2-N +ε r N -2 dr+O(1) = λ 0,N ε +O(1). Now, 1 0 ln 1 r r -1+ε dr = 1 ε 2 so we end up with K φ = λ 0,N ε + O(ε 2 ).
Similarly, since ψ and w (defined in [START_REF] Dávila | Comparison results for PDEs with a singular potential[END_REF]) are harmonic in Ω, we have

∂Ω w ∂ψ ∂ν = ∂Ω ψ ∂w ∂ν .
As before the boundary terms on Γ 2 are bounded independently of ε so

K ψ 1 0 r -1+ε dr = H N 1 0 r -1+ε dr + O(1).
Hence,

K ψ = H N + O(ε).
Multiplying the equation ( 1) by φ and integrating by parts twice yields

∂Ω u * ∂φ ∂ν = λ * ∂Ω φe u * . (49) Let η ∈ C ∞ (R N ) be such that η ≡ 1 in B R (0)
where R > 0 is small and fixed, and η = 0 on Γ 2 . Using the stability condition [START_REF] Chipot | Shafrir Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF] with ηψ yields

λ * Γ1∩B R (0) e u * ψ 2 ≤ Ω |∇(ηψ)| 2 = ∂Ω ∂ ∂ν (ηψ)(ηψ) - Ω (ηψ)∆(ηψ) ≤ Γ1∩B R (0) ∂ψ ∂ν ψ + C (50)
where the constant C does not depend on ε. Since ψ 2 = φ on ∂R N

+ combining (49) and ( 50) we obtain

∂Ω u * ∂φ ∂ν ≤ Γ1∩B R (0) ∂ψ ∂ν ψ + C.
Using (48) we arrive at

K φ Γ1∩B R (0) u * |x| 1-N +ε ≤ K ψ Γ1∩B R (0) |x| 1-N +ε + C and thus Γ1∩B R (0) u * |x| 1-N +ε ≤ ω N -1 H N λ 0,N 1 ε 2 + O( 1 ε ), (51) 
where ω N -1 is the area of the N -1 dimensional sphere.

Next we claim that for any given 0 < σ < 1 there exists r(σ) > 0 such that

u * (x) ≥ (1 -σ) log 1 |x| ∀x ∈ Γ 1 , |x| ≤ r(σ). (52) 
Observe first that for all 0 < λ < λ * the minimal solution u λ is symmetric in the variables x 1 , . . . , x N -1 by uniqueness of the minimal solution and it achieves its maximum at the origin by the moving plane method (see Proposition 5.2 in [START_REF] Chipot | Shafrir Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF]).

Assume by contradiction that (52) is false. Then there exists σ > 0 and a sequence

x k ∈ Γ 1 with x k → 0 such that u * (x k ) < (1 -σ) log 1 |x k | . ( 53 
) Let s k = |x k | and choose 0 < λ k < λ * such that max Ω u λ k = u λ k (0) = log 1 s k . (54) Note that λ k → λ * , otherwise u λ k would remain bounded. Let v k (x) = u λ k (s k x) log 1 s k x ∈ Ω k ≡ 1 s k Ω. Then 0 ≤ v k ≤ 1, v k (0) = 1, ∆v k = 0 in Ω k and ∂v k ∂ν (x) = 1 log 1 s k s k λ k exp(u λ k (s k x)) ≤ λ k log 1 s k → 0. by (54). By elliptic regularity v k → v uniformly on compact sets of R N + to a function v satisfying 0 ≤ v ≤ 1, v(0) = 1, ∆v = 0 in R N + , ∂v ∂ν = 0 on ∂R N + . Extending v evenly to R N we deduce that v ≡ 1. Since |x k | = s k we deduce that u λ k (x k ) log 1 s k → 1,
which contradicts (53). Going back to (51) and using (52) we find

(1 -σ) r(σ) 0 log 1 r r ε-1 dr ≤ K ψ K φ 1 ε + C = H N λ 0,N 1 ε 2 + O( 1 ε 
). ( 55)

Integrating (1 -σ) 1 ε 2 r(σ) ε + 1 ε r(σ) ε log 1 r(σ) ≤ H N λ 0,N 1 ε 2 + O( 1 ε ). 
Letting ε → 0 yields

(1 -σ) ≤ H N λ 0,N .
As σ is arbitrarily small we deduce H N λ 0,N ≥ 1 which by (47) forces N ≥ 10, a contradiction. Proof of Proposition 1.7. Let indeed u = u λ be the minimal solution of (1). Working as in [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF] we take ϕ = e ju -1, j > 0 in [START_REF] Cabré | Regularity of radial minimizers and extremal solutions of semilinear elliptic equations[END_REF] and multiply (1) by ψ = e 2ju -1. We obtain λ j 2

Γ1

e u e ju -1 2 ds ≤ λ 2j Γ1 e u e 2ju -1 ds.

It follows that 1 j - 1 2 Γ1 e (2j+1)u ds ≤ 2 j Γ1 e (j+1)u ds ≤ 2 j Γ1∩A e (j+1)u ds + 2 j Γ1∩B e (j+1)u ds,
where A = [(1/j -1/2)e (2j+1)u < 4 j e (j+1)u ] and B = [(1/j -1/2)e (2j+1)u ≥ 4 j e (j+1)u ]. Given j ∈ (0, 2), we see that u remains uniformly bounded on A, while 2 j Γ1∩B e (j+1)u ds ≤ 1 2

1 j - 1 2 
Γ1 e (j+1)u ds.

We conclude that e u is bounded in L 2j+1 (∂Ω) independently of λ. If 2j + 1 > N -1 we obtain by elliptic estimates a bound for u in C α (Ω), for some α ∈ (0, 1). Thus if N < 6 we can choose j ∈ (0, 2) such that N -1 < 2j + 1 < 5 and obtain a bound for u in C α (Ω) independent of λ. However, for N = 6, 7, 8 or 9, this argument does not prove that u * ∈ L ∞ (Ω).

Proof. Suppose not. Define

r 0 = sup{ r > 0 | r < φ(R), u R ≤ v in B r ∩ Γ R 1 }. Since v is singular at 0, r 0 > 0 and we have u R ≤ v in B r0 ∩ Γ R 1 . Furthermore, there exists x 0 ∈ ∂R N + such that |x 0 | = r 0 and u R (x 0 , 0) = v(x 0 , 0). Let x ∈ Γ R 1 be such that |x| = r 0 . If u R (x, 0) = v(x, 0) then ∂v ∂ν (x, 0) = v(x, 0) p < (λ 1 1-p R 1 p-1 + u R (x, 0)) p = ∂u R
∂ν (x, 0) and hence for some

δ x > 0 ∂v ∂x N (y, t) > ∂u R ∂x N (y, t) |y -x| 2 + t 2 < δ 2 x . (59) 
It follows that for some m x > 0 (and decreasing if necessary

δ x ) u R (y, t) < v(y, t), if |y -x| 2 + t 2 < δ 2 x , t > m( |y| -r 0 ), t > 0. (60)
Indeed, because of (59) and u R (y, 0) ≤ v(y, 0) for |y| ≤ r 0 we immediately obtain u R (y, t) < v(y, t) for |y -x| 2 + t 2 < δ 2

x , |y| ≤ r 0 , t > 0. If (60) is false, then there are sequences y k → x, t k → 0 with |y k | > r 0 and

t k |y k -x| → ∞ such that v(y k , t k ) ≤ u R (y k , t k ).
Then by the mean value theorem there exists a point ξ k in the segment from (y k , t k ) to (x, 0) such that ∇(v(ξ k )u R (ξ k )) • w k ≤ 0 where w k is the unit vector w k = (y k -x,t k ) w k

. Taking the limit we obtain ∂ ∂x N (v(x, 0) -u R (x, 0)) ≤ 0 which contradicts (59) (recall that ∂ ∂ν = -∂ ∂x N ). This proves (60).

Suppose x ∈ Γ R 1 is such that |x| = r 0 and u R (x, 0) < v(x, 0). The by continuity there is δ x > 0 such that (60) still holds.

Then by compactness for some δ > 0 and m > 0 we have

u R (x, t) < v(x, t), if ( |x| -r 0 ) 2 + t 2 < δ 2 , t > m( |x| -r 0 ), t > 0. (61) Now consider z(x, t) = ρ α (sin(α(θ -θ 0 )) + b(θ -θ 0 ) 2 ),
where (ρ, θ) are polar coordinates around (r 0 , 0) i.e. |x| = r 0 + ρ cos(θ), t = ρ sin(θ).

We choose θ 0 ∈ (0, π 2 ) is close enough to π 2 so that tan θ 0 > m. The parameters α, b are chosen later on.

We shall use the maximum principle to prove that for sufficiently small δ > 0, ε > 0 we have

v(x, 0) -u R (x, 0) ≥ εz(x, 0), r 0 -δ < |x| < r 0 . We have ∆z = ρ α-2 r 0 + ρ cos(θ) 2br 0 + α 2 br 0 (θ -θ 0 ) 2 + ρ -(N -2)α sin(θ) cos(α(θ -θ 0 )) -2b(N -2) sin(θ)(θ -θ 0 ) + 2b cos(θ) + (N -2)α cos(θ) sin(α(θ -θ 0 )) + bα(α + N -2) cos(θ)(θ -θ 0 ) 2 = ρ α-2 2b + α 2 b(θ -θ 0 ) 2 + O(ρ) , as ρ → 0 (62)
and, observing that for θ = π we are on ∂R N

+ ∂z ∂ν = 1 ρ ∂z ∂θ θ=π = ρ α-1 (α cos(α(π -θ 0 )) + 2b(π -θ 0 )).
But π -θ 0 > π 2 . We fix 0 < α < 1 close enough to 1 such that cos(α(π -θ 0 )) < 0, and then take b > 0 small enough so that α cos(α(π -θ 0 )) + 2b(π -θ 0 ) < 0. Thus, setting

a ≡ -(α cos(α(π -θ 0 )) + 2b(π -θ 0 )) > 0,
we have ∂z ∂ν = -aρ α-1 for ρ > 0 small.

On the other hand, by (62) ∆z ≥ ρ α-2 (2b + O(ρ)) as ρ → 0 (63) uniformly for θ 0 < θ < π. Now consider the region

D = { (x, t) | (|x| -r 0 ) 2 + t 2 < δ 2 , t > m(|x| -r 0 ), t > 0 } = { (ρ, θ) | 0 < ρ < δ, θ 0 < θ < π } and write ∂D = S 1 ∪ S 2 ∪ A where S 1 = { (ρ, θ) | 0 < ρ < δ, θ = θ 0 }, S 2 = { (ρ, θ) | 0 < ρ < δ, θ = π } and A = { (ρ, θ) | ρ = δ, θ 0 < θ < π }.
By (63) and choosing δ > 0 smaller if necessary we achieve ∆z > 0 in D. On S 1 we have z = 0 and v -u R > 0. Now we seek ε > 0, δ > 0 smaller than before such that inf

S2 ( ∂v ∂ν - ∂u R ∂ν ) ≥ ε sup S2 ∂z ∂ν = -aεδ α-1 and inf A (v -u R ) > ε sup A z = εδ α C 1 where C 1 = sin(α(π -θ 0 )) + b(π -θ 0 ) 2 . Writing K = -inf S2 ( ∂v ∂ν -∂u R ∂ν ) < ∞ and c 0 = inf A (v -u R ) > 0 we first choose δ > 0 small such that δ K a < c 0 C 1
and then ε such that δ 1-α K a ≤ ε < c0 C1 δ -α . The calculations above and the maximum principle then yield v -u R ≥ εz in D, which was the desired conclusion. Now this implies that v -u R is not differentiable at (x 0 , 0), a contradiction.

Step 2. We let λ ↑ λ * and hence R → 0. Since 0

≤ u R ≤ u R (0) = 1, u R → u uniformly on compact sets of RN + and u satisfies    ∆u = 0 in R N + ∂u ∂ν = u p on ∂R N + (64) 
and

u(0) = 1.
Also, u satisfies

R N + |∇ϕ| 2 ≥ p ∂R N + u p-1 ϕ 2 ∀ϕ ∈ C ∞ 0 (R N + ). (65) 
By (57) and the previous step we deduce

u ≤ v in ∂R N + . Let µ = sup ∂R N + u v ≤ 1 (66) We claim that µ = 1. Let indeed ũ(x) = c 1 ∂R N + u(y) p |x -y| N -2 dy x ∈ ∂R N + .
Then ũ is harmonic in R N + and agrees with u on ∂R N + . Since u is bounded by 1 and ũ is bounded, we see that ũ -u must be a constant. But then, since ũ(x, 0) → 0 and u(x, 0) → 0 as |x| → ∞ we see that u ≡ ũ. Thus

u(x) = ∂R N + u(y) p |x -y| N -2 dy ≤ c 1 µ p ∂R N + v(y) p |x -y| N -2 dy = µ p v(x) x ∈ ∂R N + .
This implies µ ≤ µ p and since µ = 0, we conclude µ = 1.

Step 3. Observe that the supremum in (66) is not attained. Otherwise v -u would achieve a minimum at a point x ∈ ∂R N + , where the normal derivative would be zero. By Hopf's lemma, we would have u ≡ v, which is impossible since u is bounded and v is not. Let x k ∈ ∂R N + be such that |x k | → ∞ and u(x k ) v(x k ) → 1. Let

u k (x) = |x k | 1 p-1 u(|x k |x).
Since v is invariant under the above transformation we have u k ≤ v in ∂R N + . Thus, for a subsequence we have u k → u 0 and u 0 solves (64). Since u k ( x k |x k | ) → v(y) where y = lim x k |x k | , again using Hopf's lemma we see that u 0 ≡ v. But u 0 satisfies the condition (65), contradicting (56). To apply Lemma 4.1 we need to verify that u ∈ H 1 (Ω). We are assuming that pC(N, 1 p-1 ) ≤ H N and p ≥ N N -2 . Actually we must have p > N N -2 . For this it is convenient to observe that : C(N, α) = C(N, N -2 -α) ∀0 < α < N -2 (69) α → C(N, α) is increasing for 0 < α < N -2 2 . (70) Property ( 69) is direct from ( 16) and we leave (70) to the appendix. From these properties we deduce that p > N N -2 and therefore u ∈ H 1 (Ω). This solution satisfies the stability condition (43) if and only if (by scaling) pC(N, 1 p-1 )

∂R N + ϕ 2 |x| ≤ R N + |∇ϕ| 2 , ∀ϕ ∈ C 1 0 (R N + \ {0})
which is guaranteed by Kato's inequality [START_REF] Cabré | Layer solutions in a halfspace for boundary reactions[END_REF]. Thus we may apply Lemma 4.1 and conclude that u is the extremal solution.

Appendix

Proof of (47). We have

H N = 2 Γ( N 4 ) Γ( N 4 - 1 
2 ) 2 = 2f (N/4) 2 where f (z) = Γ(z) Γ(z-1

2 ) and similarly we have

λ 0,N = √ π N -3 2 Γ( N 2 -3 2 ) Γ( N 2 -1) = √ π Γ( N 2 -1 2 ) Γ( N 2 -1) = √ πf N 2 -1 2 .
Then

H N λ 0,N = 2f (N/4) 2 √ πf N 2 -1 2
.

Since H 10 = 9π 8 > λ 0,10 = 35π 32 it follows that H 10 λ 0,10 > 1.

On the other hand Let us compute

d dx f ( x 4 ) 2 f x 2 -1 2 = 1 2 f ( x 4 )f ( x 4 )f x 2 -1 2 -1 2 f ( x 4 ) 2 f x 2 -1 2 f x 2 -1 2 2 = f ( x 4 ) 2 2f x 2 -1 2 f ( x 4 ) f ( x 4 ) - f x 2 -1 2 f x 2 -1 2
Recall that Γ (z) = ψ 0 (z)Γ(z), where ψ 0 (z) = -

1 z + γ + ∞ n=1 1 n + z - 1 n .
In particular, ψ 0 is a positive increasing function on ]Ξ, ∞[ where Ξ ≈ 1.4 is the unique zero of ψ 0 in R + , and

f (z) = ψ 0 (z) -ψ 0 z - 1 2 Γ(z) Γ(z -1 2 ) > 0 for z ∈]1/2, ∞[. Calculating d dx f (x) f (x) = ψ 0 (x) -ψ 0 (x - 1 2 ) = ∞ n=0 1 (n + x) 2 - 1 (n + x -1 2 ) 2 < 0 for x > 1 2 .
So f (x) f (x) is decreasing for x > 1 2 and it follows that

f ( x 4 ) f ( x 4 ) - f ( x 2 -1 2 ) f ( x 2 -1 2 )
> 0 for x > 2.

Hence

H N > λ 0,N only for N ≥ 10.

N 2 - 1

 21 exists. (29)But according to[START_REF]Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] Formulas 8.1.3, 8.1.5] 

  and this was used by Brezis and Vázquez in the proof of [4, Theorem 3.1 ]. In our context, we take u * = lim λ λ * u λ as the definition of the extremal solution. Knowing that u * ∈ H 1 (Ω), the proof of [4, Theorem 3.1] shows that λ = λ * and v = u * .

Proof of Theorem 1 . 10 . 1 -

 1101 Set u = w 1 p-{x ∈ R N + | u(x) > 0}, Γ 1 = ∂Ω ∩ ∂R N + , Γ 2 = ∂Ω \ ∂R N + .Then u is a singular solution to (67), (68) with u = 0 on Γ 2 .
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The power case

Proof of Theorem 1.8. We shall give here the proof of the case p C(N, 1 p-1 ) > H N . If p < N N -2 , the boundedness of u * follows from standard techniques, using the Sobolev trace embedding theorem

Observe that

where the infimum is taken over the functions ϕ ∈ C ∞ 0 (R N + ) that do not vanish identically on

where x λ denotes a point of maximum of u λ . Observe that since u λ is positive and harmonic in Ω, x λ ∈ Γ 1 .

For 0 < λ < λ * , we choose R such that u R (0) = 1 i.e. such that λ

The moving plane method implies that the distance of the point x λ ∈ Γ 1 to Γ 1 ∩ Γ 2 stays bounded away from zero, see [START_REF] Chipot | Shafrir Existence of positive solutions of a semilinear elliptic equation in R n + with a nonlinear boundary condition[END_REF] for this method in the context of non-linear Neumann condition. Thus implies that φ(R) → +∞ as R → 0. (57)

Step 1. We have