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On a semilinear elliptic equation with inverse-square
potential

Haı̈m Brezis ∗†, Louis Dupaigne ∗ and Alberto Tesei ‡

In this paper we study existence and nonexistence of solutions u ≥ 0 of the equation :

−∆u =
c

r2
u + up (1)

in a ball B(0, R) of RN , N ≥ 3. Here r = |x|, p > 1 and the coefficient c satisfies the
inequality 0 < c ≤ c0, where c0 = (N −2)2/4 is the best constant in the Hardy inequality.

In this study an important role is played by the roots

α = α± := (N − 2)/2±
√

c0 − c

of the equation
α2 − (N − 2)α + c = 0. (2)

Observe that α+ > α− > 0.
Our main result asserts that nontrivial solutions of equation (1) exist if and only if

p < p+ where
p+ = 1 + 2/α−.

Theorem 1. Let 0 ≤ c ≤ c0. For any p ∈ (1, p+), there exists a nontrivial solution to equation
(1) with up and u/r2 belonging to L1(BR) and (1) holds in D′(BR).

The proof of Theorem 1 is straightforward and elementary, except for the limiting
value c = c0. The conclusion of Theorem 1 was known in many–but presumably not
all– cases (see e.g. [12]). Concerning nonexistence we have

Theorem 2. Let 0 < c ≤ c0, p ≥ p+. Assume u ∈ Lp
loc(BR \ {0}), u ≥ 0 satisfies

−∆u− c

r2
u ≥ up

in D′(BR \ {0}). Then u ≡ 0.
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Theorem 2 is reminiscent of the nonexistence results of Brezis-Cabré [2] concerning
the so-called very weak solutions to the inequality

−∆u ≥ up

r2
, u ≥ 0, u ∈ Lp

loc(BR \ {0}),

for any p > 1. The nonexistence aspect in (1) when p ≥ p+ was first investigated by
Pohozaev-Tesei [11]. However the concept of solution used there was stronger; our
concept is the weakest possible.

We also observe that Theorem 2 seems (formally) to contradict the Implicit Function
Theorem since there is no solution of−∆u = (c/|x|2)u+up + t, even when t > 0 is small.
As observed in [1], this is due to the lack of an appropriate functional space in which to
apply the IFT.

Proof of Theorem 1.

Set p− = 1 + 2/α+ and observe that

1 < p− <
N + 2

N − 2
< p+ for any 0 < c < c0 and

lim
c→0

p− =
N

N − 2
, lim

c→c0
p− =

N + 2

N − 2
,

lim
c→0

p+ = +∞, lim
c→c0

p+ =
N + 2

N − 2
.

We distinguish three cases :

Case 1 : 0 ≤ c < c0 and p < N+2
N−2

.

Here the existence of a positive solution u ∈ H1
0 (BR) of (1) is a standard and straight-

forward consequence of the Mountain Pass Theorem. In fact, one can find a radial solu-
tion by working in the class of radial functions.

Case 2 : 0 ≤ c < c0 and p− < p < p+.

Here we have an explicit solution of (1) of the form u = A/rβ with β = 2/(p − 1),
A > 0 given by

Ap−1 = −β2 + (N − 2)β − c > 0,

because α−, α+ are the roots of (2) and the restriction α− < β < α+ is equivalent to the
condition p− < p < p+. Since β < N − 2, u satisfies (1) in the sense of D′(BR).
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Case 3 : c = c0 and 1 < p < p+ = N+2
N−2

.

This case is a little more delicate : here we need the improved Hardy inequality
which asserts that ∫

BR

|∇u|2 ≥ c0

∫
BR

u2

r2
+ cq‖u‖2

Lq(BR),

for any 1 ≤ q < 2N
N−2

and u ∈ C∞
0 (BR). See [5]. Let H be the Hilbert space obtained by

completing C∞
0 (BR) with respect to the scalar product

a(u, v) =

∫
BR

∇u · ∇v − c0

∫
BR

uv/r2.

Clearly H is contained in every Lq(BR) with 1 ≤ q < 2N
N−2

with continuous injection.
Moreover the injection is compact. This fact is due to H. Brezis and the proof is pre-
sented in Lemmas 3.2, 3.3 of [7]. We may then use the Mountain Pass Theorem in H and
the (PS) condition is satisfied.

Proof of Theorem 2.

We will use the following lemma :

Lemma 1. Let Σ ⊂⊂ Ω be a closed set of zero (newtonian) capacity and assume that u, f ∈
L1

loc(Ω \ Σ) are two nonnegative functions such that

−∆u ≥ f in D′(Ω \ Σ).

Then u, f ∈ L1
loc(Ω) and

−∆u ≥ f in D′(Ω).

Furthermore given any smooth subdomain Ω′ ⊂⊂ Ω, if v ∈ L1(Ω′) is the solution of{
−∆v = f in Ω′

v = 0 on ∂Ω′,

in the sense that∫
v(−∆φ) =

∫
fφ ∀φ ∈ C2(Ω̄′) such that φ|∂Ω′ ≡ 0,

then
u ≥ v a.e. in Ω′. (3)
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Proof of Lemma 1
This lemma can be seen as a fairly easy consequence of Theorem 7.7 in [9]. It is also

closely related to a result in [4]. We provide a proof for completeness. Let uk = min(u, k),
k > 0, which by Kato’s Lemma (see [10]) satisfies

−∆uk ≥ fk in D′(Ω \ Σ), (4)

where fk := fχ{u<k}. Since −∆uk is a nonnegative distribution on Ω \ Σ, it extends
to a nonnegative measure on Ω \ Σ. Since uk is bounded, it follows from a Gagliardo-
Nirenberg-type inequality that uk ∈ H1

loc(Ω \ Σ). We show next that in fact uk ∈ H1
loc(Ω).

We first take a nonnegative function φ ∈ C∞
0 (Ω) and a sequence φn ∈ C∞

0 (Ω \ Σ) con-
verging to φ in H1(Ω). This is always possible since capΩ(Σ) = 0 (take e.g. φn = φ(1−χn)
where χn = 1 near Σ and ‖χn‖H1 → 0 = capΩ(Σ)). We then have, with Ck = ek,∫

|∇uk|2φ2
n ≤ Ck

∫
e−uk |∇uk|2φ2

n = −Ck

∫
φ2

n∇(e−uk) · ∇uk

= Ck

(
2

∫
e−ukφn∇φn · ∇uk +

∫
e−uk∆ukφ

2
n

)
≤ 2C2

k

∫
e−uk |∇φn|2 +

1

2

∫
e−uk |∇uk|2φ2

n,

so that ∫
|∇(ukφn)|2 ≤ C ′

k

∫
|∇φn|2.

Passing to the limit as n →∞ in the above inequality implies that uk ∈ H1
loc(Ω).

We next show that
−∆uk ≥ fk in D′(Ω). (5)

Take φ and φn as above so that by (4),∫
uk(−∆φn) ≥

∫
fkφn. (6)

Now, as n →∞,∫
uk(−∆φn) =

∫
∇uk∇φn →

∫
∇uk∇φ = −

∫
uk∆φ.

Passing to the limit in (6) as n →∞, we thus obtain (5).
In particular uk is superharmonic in Ω and given almost any x ∈ Ω and any ball

B ⊂ Ω centered at x, we have

uk(x) ≥ 1

|B|

∫
B

uk(y) dy. (7)

Now, since u ∈ L1
loc(Ω\Σ) (and |Σ| = 0), uk → u a.e. in Ω as k →∞ and u is finite almost

everywhere. By Fatou’s Lemma we then conclude from (7) that for almost every ball B,
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∫
B

u < ∞,

which means that u ∈ L1
loc(Ω). Using this information, we can now easily pass to the

limit in (5) and conclude that f ∈ L1
loc(Ω) and that

−∆u ≥ f in D′(Ω).

It only remains to prove (3). We let ρn be a standard smooth mollifier and let un =
u ∗ ρn, fn = f ∗ ρn so that for n large enough −∆un ≥ fn and un ≥ 0 in Ω′. By the
Maximum Principle

un ≥ vn in Ω′,

where vn solves {
−∆vn = fn in Ω′

vn = 0 on ∂Ω′.

As n → ∞, un → u in L1(Ω′), fn → f in L1(Ω′) and (by Lemma 4 in [3]) vn → v in
L1(Ω′), which yields the desired conclusion.

�

Proof of Theorem 2
We argue by contradiction and assume that u 6≡ 0. By Lemma 1, u ∈ Lp

loc(BR),
u/r2 ∈ L1

loc(BR) and by the mean-value formula for superharmonic functions, given
R′ ∈ (0, R), there exists ε > 0 such that u ≥ ε a.e. in BR′ . Let λ := εq−1/2 > 0 and v0 be
the solution of {

−∆v0 = λ in BR′

v0 = 0 on ∂BR′ .

Once more by Lemma 1, we have
0 ≤ v0 ≤ u. (8)

Next, for n ≥ 1, define inductively vn by{
−∆vn = c

|x|2 vn−1 + 1
2
vp

n−1 + λ in BR′

vn = 0 on ∂BR′ .

In order to have a well-defined solution vn (in the sense of Lemma 4 in [3]) it suffices
to prove that f := c

|x|2 vn−1 + 1
2
vp

n−1 ∈ L1(BR′). When n = 0, this follows from (8) and
Lemma 1 which implies that c

|x|2 u + 1
2
up ∈ L1(BR′). Assume now that vn−1 ∈ L1(BR′) is

well-defined. Using the Maximum Principle, it is easy to see that

0 ≤ v0 ≤ v1 ≤ · · · ≤ vn−1 ≤ u,

whence f ∈ L1(BR′) and by the Maximum Principle again 0 ≤ vn−1 ≤ vn ≤ u.
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By monotone convergence, letting v := limn→∞ vn, we have that−∆v =
c

|x|2
v +

1

2
vp + λ in BR′

v = 0 on ∂BR′ ,

in the sense that given any φ ∈ C2(B̄R′) such that φ|∂BR′ ≡ 0,∫
v(−∆φ) =

∫
c

|x|2
vφ +

1

2

∫
vpφ + λ

∫
φ.

This contradicts Theorem 1 of [6].
�

Remark 1. Theorems 1 and 2 extend to more general situations– for example, when up is re-
placed by |x|−βuq. Assume 0 < c ≤ c0 and set q+ = 1 + 2−β

α−
, where α− is as above. The

conclusions of Theorems 1 and 2 remain valid with p+ replaced by q+.

Remark 2. The argument presented in the proof of Theorem 2 may be used to provide a slightly
simpler proof of Theorem 1 in [2].

Remark 3. Theorem 2 can be extended to problems of the type

−∆u =
c

dist(x, Σ)2
u + up,

where c > 0 is a small constant, Σ is a smooth compact manifold of codimension k ≥ 3 and p
is larger than some critical exponent, which can be computed explicitly in terms of k and c. The
argument is the same as in the proof of Theorem 2 except that the result of [6] is replaced by a
result from [8].
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