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In this paper we study existence and nonexistence of solutions u ≥ 0 of the equation :

-∆u = c r 2 u + u p (1) 
in a ball B(0, R) of R N , N ≥ 3. Here r = |x|, p > 1 and the coefficient c satisfies the inequality 0 < c ≤ c 0 , where c 0 = (N -2) 2 /4 is the best constant in the Hardy inequality.

In this study an important role is played by the roots

α = α ± := (N -2)/2 ± √ c 0 -c of the equation α 2 -(N -2)α + c = 0. (2) 
Observe that α + > α -> 0.

Our main result asserts that nontrivial solutions of equation ( 1) exist if and only if p < p + where p + = 1 + 2/α -.

Theorem 1. Let 0 ≤ c ≤ c 0 . For any p ∈ (1, p + ), there exists a nontrivial solution to equation (1) with u p and u/r 2 belonging to L 1 (B R ) and (1) holds in D (B R ).

The proof of Theorem 1 is straightforward and elementary, except for the limiting value c = c 0 . The conclusion of Theorem 1 was known in many-but presumably not all-cases (see e.g. [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF]). Concerning nonexistence we have

Theorem 2. Let 0 < c ≤ c 0 , p ≥ p + . Assume u ∈ L p loc (B R \ {0}), u ≥ 0 satisfies -∆u - c r 2 u ≥ u p in D (B R \ {0}). Then u ≡ 0.
Theorem 2 is reminiscent of the nonexistence results of Brezis-Cabré [START_REF] Brezis | Some simple nonlinear PDE's without solutions[END_REF] concerning the so-called very weak solutions to the inequality

-∆u ≥ u p r 2 , u ≥ 0, u ∈ L p loc (B R \ {0}),
for any p > 1. The nonexistence aspect in (1) when p ≥ p + was first investigated by Pohozaev-Tesei [START_REF] Pohozaev | Nonexistence of local solutions to semilinear partial differential inequalities[END_REF]. However the concept of solution used there was stronger; our concept is the weakest possible. We also observe that Theorem 2 seems (formally) to contradict the Implicit Function Theorem since there is no solution of -∆u = (c/|x| 2 )u + u p + t, even when t > 0 is small. As observed in [START_REF] Brezis | Is there failure of the Inverse Function Theorem ?[END_REF], this is due to the lack of an appropriate functional space in which to apply the IFT.

Proof of Theorem 1.

Set p -= 1 + 2/α + and observe that

1 < p -< N + 2 N -2 < p + for any 0 < c < c 0 and lim c→0 p -= N N -2 , lim c→c 0 p -= N + 2 N -2 , lim c→0 p + = +∞, lim c→c 0 p + = N + 2 N -2 .
We distinguish three cases :

Case 1 : 0 ≤ c < c 0 and p < N+2 N-2 .
Here the existence of a positive solution u ∈ H 1 0 (B R ) of ( 1) is a standard and straightforward consequence of the Mountain Pass Theorem. In fact, one can find a radial solution by working in the class of radial functions.

Case 2 : 0 ≤ c < c 0 and p -< p < p + .
Here we have an explicit solution of (1) of the form u = A/r β with β = 2/(p -1), A > 0 given by

A p-1 = -β 2 + (N -2)β -c > 0,
because α -, α + are the roots of (2) and the restriction α -< β < α + is equivalent to the condition p -< p < p + . Since β < N -2, u satisfies (1) in the sense of D (B R ).

Case 3 : c = c 0 and 1 < p < p + = N+2 N-2 .
This case is a little more delicate : here we need the improved Hardy inequality which asserts that

B R |∇u| 2 ≥ c 0 B R u 2 r 2 + c q u 2 L q (B R ) ,
for any 1 ≤ q < 2N N -2 and u ∈ C ∞ 0 (B R ). See [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]. Let H be the Hilbert space obtained by completing C ∞ 0 (B R ) with respect to the scalar product

a(u, v) = B R ∇u • ∇v -c 0 B R uv/r 2 .
Clearly H is contained in every L q (B R ) with 1 ≤ q < 2N N -2 with continuous injection. Moreover the injection is compact. This fact is due to H. Brezis and the proof is presented in Lemmas 3.2, 3.3 of [START_REF] Dávila | Comparison principles for PDE's with a singular potential[END_REF]. We may then use the Mountain Pass Theorem in H and the (PS) condition is satisfied.

Proof of Theorem 2.

We will use the following lemma : Lemma 1. Let Σ ⊂⊂ Ω be a closed set of zero (newtonian) capacity and assume that u, f ∈ L 1 loc (Ω \ Σ) are two nonnegative functions such that

-∆u ≥ f in D (Ω \ Σ). Then u, f ∈ L 1 loc (Ω) and -∆u ≥ f in D (Ω).
Furthermore given any smooth subdomain

Ω ⊂⊂ Ω, if v ∈ L 1 (Ω ) is the solution of -∆v = f in Ω v = 0 on ∂Ω , in the sense that v(-∆φ) = f φ ∀φ ∈ C 2 ( Ω ) such that φ| ∂Ω ≡ 0, then u ≥ v a.e. in Ω . (3) 

Proof of Lemma 1

This lemma can be seen as a fairly easy consequence of Theorem 7.7 in [START_REF] Helms | Introduction to potential theory[END_REF]. It is also closely related to a result in [START_REF] Brezis | A note on isolated singularities for linear elliptic equations, Mathematical analysis and applications[END_REF]. We provide a proof for completeness. Let u k = min(u, k), k > 0, which by Kato's Lemma (see [START_REF] Kato | Schrödinger operators with singular potentials[END_REF]) satisfies

-∆u k ≥ f k in D (Ω \ Σ), (4) 
where f k := f χ {u<k} . Since -∆u k is a nonnegative distribution on Ω \ Σ, it extends to a nonnegative measure on Ω \ Σ. Since u k is bounded, it follows from a Gagliardo-Nirenberg-type inequality that u k ∈ H 1 loc (Ω \ Σ). We show next that in fact u k ∈ H 1 loc (Ω). We first take a nonnegative function φ ∈ C ∞ 0 (Ω) and a sequence φ n ∈ C ∞ 0 (Ω \ Σ) converging to φ in H 1 (Ω). This is always possible since cap Ω (Σ) = 0 (take e.g. φ n = φ(1-χ n ) where χ n = 1 near Σ and χ n H 1 → 0 = cap Ω (Σ)). We then have, with

C k = e k , |∇u k | 2 φ 2 n ≤ C k e -u k |∇u k | 2 φ 2 n = -C k φ 2 n ∇(e -u k ) • ∇u k = C k 2 e -u k φ n ∇φ n • ∇u k + e -u k ∆u k φ 2 n ≤ 2C 2 k e -u k |∇φ n | 2 + 1 2 e -u k |∇u k | 2 φ 2 n , so that |∇(u k φ n )| 2 ≤ C k |∇φ n | 2 .
Passing to the limit as n → ∞ in the above inequality implies that

u k ∈ H 1 loc (Ω). We next show that -∆u k ≥ f k in D (Ω). (5) 
Take φ and φ n as above so that by (4),

u k (-∆φ n ) ≥ f k φ n . (6) 
Now, as n → ∞,

u k (-∆φ n ) = ∇u k ∇φ n → ∇u k ∇φ = -u k ∆φ.
Passing to the limit in [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse-square potential[END_REF] as n → ∞, we thus obtain [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF].

In particular u k is superharmonic in Ω and given almost any x ∈ Ω and any ball B ⊂ Ω centered at x, we have

u k (x) ≥ 1 |B| B u k (y) dy. (7) 
Now, since u ∈ L 1 loc (Ω \ Σ) (and |Σ| = 0), u k → u a.e. in Ω as k → ∞ and u is finite almost everywhere. By Fatou's Lemma we then conclude from (7) that for almost every ball B, B u < ∞, which means that u ∈ L 1 loc (Ω). Using this information, we can now easily pass to the limit in [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF] and conclude that f ∈ L 1 loc (Ω) and that

-∆u ≥ f in D (Ω).
It only remains to prove (3). We let ρ n be a standard smooth mollifier and let u n = u * ρ n , f n = f * ρ n so that for n large enough -∆u n ≥ f n and u n ≥ 0 in Ω . By the Maximum Principle

u n ≥ v n in Ω , where v n solves -∆v n = f n in Ω v n = 0 on ∂Ω . As n → ∞, u n → u in L 1 (Ω ), f n → f in L 1 (Ω ) and (by Lemma 4 in [3]) v n → v in L 1 (Ω )
, which yields the desired conclusion.

Proof of Theorem 2

We argue by contradiction and assume that u ≡ 0. By Lemma 1, u ∈ L p loc (B R ), u/r 2 ∈ L 1 loc (B R ) and by the mean-value formula for superharmonic functions, given R ∈ (0, R), there exists > 0 such that u ≥ a.e. in B R . Let λ := q-1 /2 > 0 and v 0 be the solution of

-∆v 0 = λ in B R v 0 = 0 on ∂B R .
Once more by Lemma 1, we have

0 ≤ v 0 ≤ u. (8) 
Next, for n ≥ 1, define inductively v n by

-∆v n = c |x| 2 v n-1 + 1 2 v p n-1 + λ in B R v n = 0 on ∂B R .
In order to have a well-defined solution v n (in the sense of Lemma 4 in [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF]) it suffices to prove that f

:= c |x| 2 v n-1 + 1 2 v p n-1 ∈ L 1 (B R ).
When n = 0, this follows from (8) and Lemma 1 which implies that c

|x| 2 u + 1 2 u p ∈ L 1 (B R ). Assume now that v n-1 ∈ L 1 (B R ) is well-defined. Using the Maximum Principle, it is easy to see that 0 ≤ v 0 ≤ v 1 ≤ • • • ≤ v n-1 ≤ u, whence f ∈ L 1 (B R ) and by the Maximum Principle again 0 ≤ v n-1 ≤ v n ≤ u.
By monotone convergence, letting v := lim n→∞ v n , we have that

   -∆v = c |x| 2 v + 1 2 v p + λ in B R v = 0 on ∂B R , in the sense that given any φ ∈ C 2 ( BR ) such that φ| ∂B R ≡ 0, v(-∆φ) = c |x| 2 vφ + 1 2 v p φ + λ φ.
This contradicts Theorem 1 of [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse-square potential[END_REF].

Remark 1. Theorems 1 and 2 extend to more general situations-for example, when u p is replaced by |x| -β u q . Assume 0 < c ≤ c 0 and set q + = 1 + 2-β α -, where α -is as above. The conclusions of Theorems 1 and 2 remain valid with p + replaced by q + . Remark 2. The argument presented in the proof of Theorem 2 may be used to provide a slightly simpler proof of Theorem 1 in [START_REF] Brezis | Some simple nonlinear PDE's without solutions[END_REF]. Remark 3. Theorem 2 can be extended to problems of the type -∆u = c dist(x, Σ) 2 u + u p , where c > 0 is a small constant, Σ is a smooth compact manifold of codimension k ≥ 3 and p is larger than some critical exponent, which can be computed explicitly in terms of k and c. The argument is the same as in the proof of Theorem 2 except that the result of [START_REF] Dupaigne | A nonlinear elliptic PDE with the inverse-square potential[END_REF] is replaced by a result from [START_REF] Dupaigne | Semilinear elliptic PDE's with a singular potential[END_REF].
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