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Introduction

Here we consider comparison results for linear elliptic and parabolic equations with singular potentials. Let Ω ⊂ R n be a smooth and bounded domain, and let a ∈ L 1 loc (Ω), a ≥ 0. To motivate the discussion assume initially that a(x) is smooth and bounded, and suppose that (1.1)

λ 1 = inf ϕ∈C 1 c (Ω) Ω |∇ϕ| 2 -a(x)ϕ 2 Ω ϕ 2 > 0,
i.e., the first eigenvalue for the problem

(1.2) -∆ϕ 1 -a(x)ϕ 1 = λ 1 ϕ 1 in Ω ϕ 1 = 0 on ∂Ω is positive. Since a is smooth, it is well known that (1.3) C -1 ζ 0 ≤ ϕ 1 ≤ Cζ 0
for some positive constant C, where ζ 0 is the solution of (1.4) -∆ζ 0a(x)ζ 0 = 1 in Ω

ζ 0 = 0 on ∂Ω.
Note that this problem is well posed and that ζ 0 > 0, since λ 1 > 0.

We can formulate condition (1.1) without any assumption on the smoothness of a. An interesting example is the so-called inverse-square potential

(1.5) a(x) = c |x| 2 ,
where n ≥ 3 and 0 < c ≤ (n-2) 2
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. An improved version of Hardy's inequality (see [BV] or [VZ]) shows that it satisfies (1.1). On the other hand, it just fails to belong to L n/2 (Ω) if 0 ∈ Ω, and therefore the standard elliptic regularity theory is not sufficient to conclude an estimate like (1.3). In fact, for this potential, there exists a constant α > 0 (more precisely α = (n -2)/2 -(n -2) 2 /4c) such that ζ 0 and ϕ 1 behave like |x| -α near the origin (see [Du]), so that (1.3) can be interpreted as : "ϕ 1 cannot have worse singularities than ζ 0 and vice-versa".

In this note we prove (1.3) under a slightly stronger condition than (1.1). We also want to extend the following version of the strong maximum principle for the heat equation (see e.g. [BCz] or [M]) : let T > 0 and u = u(x, t) ≥ 0 be a solution of u t -∆u = 0 in Ω × (0, T ) u = 0 on ∂Ω × (0, T ).

Then either u ≡ 0 or

(1.6) u(x, t) ≥ c(t)δ(x),
where c is a positive function of t ∈ (0, T ) and δ(x) = dist(x, ∂Ω). Using Hopf's boundary lemma on one hand, and elliptic regularity on the other, observe that for some C > 0,

C -1 δ ≤ ζ0 ≤ Cδ,
where ζ0 is the solution of

-∆ ζ0 = 1
in Ω ζ0 = 0 on ∂Ω.

So that (1.6) is equivalent to

(1.7) u(x, t) ≥ c(t) ζ0 (x).

We would like to extend (1.7) to the case where ζ0 is replaced by ζ 0 solving (1.4) and u > 0 solves

(1.8) u t -∆ua(x)u = 0 in Ω × (0, T ) u = 0 on ∂Ω × (0, T ).

Inequality (1.7) was already proven for the inverse-square potential in [BG] and the authors mentioned (see Remark 7.1 in [BG]) that their methods apply to potentials of the form a(x) = -∆φ/φ where φ satisfies a certain weighted Sobolev inequality.

In our proof, we derive a similar Sobolev inequality (see Lemma 4.1) under an almost optimal assumption on the potential a(x): see (2.1). As in [BG], we also make use of Moser iteration type arguments, but our approach is, we believe, simpler.

The comparison results obtained in this note are motivated by and apply to some semilinear parabolic equations studied in [DuN]. As we shall see, they also generalize to problems involving other boundary conditions and complement the results obtained in [D].

Main results

The assumption on the potential a(x) is the following: a ∈ L 1 loc (Ω), a ≥ 0 and there exists r > 2 such that (2.1) γ(a) := inf

ϕ∈C 1 c (Ω) Ω |∇ϕ| 2 -Ω a(x)ϕ 2 Ω |ϕ| r 2/r > 0.
Remark. Observe that if a satisfies (1.1) then for any small ǫ > 0, a ǫ := (1ǫ)a satisfies (2.1) with r = 2 * = 2n/(n -2) (when n = 2, pick any r ∈ (2, ∞)), by Sobolev's embedding. In particular, (1.1) can be seen as a limiting case of (2.1). We also observe that if n ≥ 3, the inverse square potential (1.5) satisfies (2.1), with r = 2 * if 0 ≤ c < (n-2) 2 4 and with any 2 < r < 2 * for c = (n-2) 2
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(see [BV,VZ]).

Before stating our results we clarify in what sense we consider the solutions to (1.2) and (1.4). This is necessary because in the context of weak solutions, or solutions in the sense of distributions, uniqueness may not hold in general, and (1.3) can fail. For example, in the case of the inverse square potential (1.5), when Ω is the unit ball B 1 (0) and 0 < c < (n-2) 2

4

, n ≥ 3 there is a positive solution u to (2.2)

   -∆u - c |x| 2 u = 0 in Ω u = 0 on ∂Ω,
which is smooth except at the origin and belongs to W 1,1 (Ω). This shows that uniqueness in general doesn't hold. Furthermore, there exists a solution ζ 0 of (1.4), smooth in Ω \ {0}, behaving like |x| -α ′ near the origin, where α ′ = (n -2)/2 + (n -2) 2 /4c, and a solution ϕ 1 of (1.2) which behaves like |x| -α where α = (n -2)/2 -(n -2) 2 /4c < α ′ . But then (1.3) would fail. For details, see [Du].

Hence we only consider solutions that belong to the Hilbert space H, defined as the completion of C ∞ c (Ω) with respect to the norm

(2.3) u 2 H = Ω |∇u| 2 - Ω a(x)u 2 .
This norm comes from an inner product (•|•) H in H, and with some abuse of notation we can write (u|v

) H = Ω ∇u • ∇v - Ω a(x)uv.
We denote by H * the dual of H. Observe that

H 1 0 (Ω) ⊂ H ⊂ L 2 (Ω) and therefore L 2 (Ω) ⊂ H * ⊂ H -1 (Ω). Definition. If f ∈ H * we say that u ∈ H is an H-solution of (2.4) -∆u -a(x)u = f in Ω u = 0 on ∂Ω if (u|v) H = f, v H * ,H
for all v ∈ H. With the obvious abuse of notation, this is equivalent to

Ω ∇u • ∇v - Ω a(x)uv = Ω f v for all v ∈ H.
From now on, we only deal with solutions in this sense, i.e. H-solutions.

Lemma 2.1. Suppose (1.1) holds and let f ∈ H * . Then there exists a unique H-solution u of (2.2). Furthermore,

u H = f H * ,
and if f ≥ 0 in the sense of distributions then u ≥ 0 a.e.

See a proof in [DuN].

We also have to precise how to obtain a first eigenfunction for the operator -∆a(x) with zero Dirichlet boundary data.

Lemma 2.2. Suppose a(x) ≥ 0 satisfies (2.1). Then H embeds compactly in L 2 (Ω). In particular the operator

L := -∆ -a(x) : D(L) ⊂ L 2 (Ω) → L 2 (Ω) where D(L) = {u ∈ H | -∆u -a(x)u ∈ L 2 (Ω) } has a positive first eigenvalue λ 1 = inf ϕ∈H\{0} Ω |∇ϕ| 2 -Ω a(x)ϕ 2 Ω ϕ 2 .
This quotient is attained at a positive ϕ 1 ∈ H that satisfies (1.2). Moreover λ 1 is a simple eigenvalue for -∆-a(x), and, if ϕ is a non-negative, non-trivial

H-solution of -∆ϕ -a(x)ϕ = λϕ in Ω ϕ = 0 on ∂Ω for some λ ∈ R, then λ = λ 1 .
Similarly, we can define H solutions of the evolution equation (1.8) with initial condition u(0) = u 0 ∈ L 2 (Ω) :

Definition. The operator L defined in Lemma 2.2 is a bounded below self-adjoint operator with dense domain and generates an analytic semigroup (S(t)) t≥0 in L 2 .

Hence for u 0 ∈ L 2 (Ω), there exists a unique u := S(t

)u 0 ∈ C([0, ∞), L 2 ) ∩ C 1 ((0, ∞), L 2 ) ∩ C((0, ∞); H) solving u t + Lu = 0 for t > 0 u(0) = u 0 ,
which we call the H-solution (or simply the solution) of (1.8) with initial condition

u(0) = u 0 ∈ L 2 (Ω).
The main results in this paper are the following.

Theorem 2.1. Assume a : Ω → [0, ∞) satisfies (2.1). Let ϕ 1 > 0 denote the first eigenfunction for the operator -∆a(x) with zero Dirichlet boundary condition, normalized by ϕ 1 L 2 (Ω) = 1 and ζ 0 denote the solution of (1.4). Then there exists C = C(Ω, γ(a), r) > 0 such that

C -1 ζ 0 ≤ ϕ 1 ≤ Cζ 0 .
Theorem 2.2. Assume that a : Ω → [0, ∞) satisfies (2.1). Let u 0 ∈ L 2 (Ω), u 0 ≥ 0, u 0 ≡ 0, and let u denote the solution of (1.8) with initial condition u 0 . Let ζ 0 denote again the solution of (1.4). Then

u(t) ≥ c(t)ζ 0
for some c(t) > 0 depending on u 0 , Ω, γ(a), r and t.

Corollary 2.3. Under the assumptions of Theorem 2.2, we have more precisely

u(t) ≥ c(t) Ω u 0 ζ 0 ζ 0 ,
where one can choose c(t) = e -K(t+1/t) for some K = K(Ω, γ(a), r) > 0.

Corollary 2.4. Assume a : Ω → [0, ∞) satisfies (2.1) and let u solve (2.4) for some f ≥ 0, then

u ≥ c Ω f ζ 0 ζ 0 ,
where c = c(Ω, γ(a), r).

Remarks.

• All of the previous results still hold for a sign-changing potential a(x) under additional hypothesis : Theorem 2.5. Suppose that a : Ω → R satisfies (2.1) and that

(2.5) a(x) = a + (x) -a -(x) a + , a -≥ 0 a + ∈ L 1 loc (Ω) and a -(x) ∈ L ∞ (Ω) .
Then Theorems 2.1 and 2.2 and Corollaries 2.3 and 2.4 still hold if the constants are allowed to also depend on a -.

• Theorem 2.2 and Corollary 2.3 can be extended under an even less restrictive hypothesis : suppose that for some

M = M (a) > 0, γ = γ(a) > 0 and r > 2, (2.6) γ Ω |ϕ| r 2/r ≤ Ω |∇ϕ| 2 -a(x)ϕ 2 + M ϕ 2 for all ϕ ∈ C ∞ c (Ω)
, and define H in this case as the completion of C ∞ c (Ω) under the norm

u 2 H = Ω |∇u| 2 -a(x)u 2 + M u 2 .
Theorem 2.6. Suppose that a(x) satisfies (2.5) and (2.6). Let u 0 ∈ L 2 (Ω), u 0 ≥ 0, u 0 ≡ 0, and let u denote the H-solution of (1.8) with initial condition u 0 . Then

u(t) ≥ c(t) Ω u 0 ϕ 1 ϕ 1 ,
where one can choose c(t) = e -K(t+1/t) for some K depending on Ω, γ(a), r, M and p, and where 0 < ϕ 1 ∈ H is the first eigenfunction for -∆a(x) normalized by ϕ 1 L 2 = 1.

In Section 7 we outline the proofs of these theorems and mention some examples of potentials satisfying (2.6) for which the stronger condition (2.1) may fail.

Observe that condition (2.6) implies the more standard inequality inf

ϕ∈C ∞ c (Ω) Ω |∇ϕ| 2 -a(x)ϕ 2 Ω ϕ 2 > -∞,
which is a necessary condition for the existence of global nonnegative solutions with exponential growth to the linear parabolic equation (1.8) (see Cabré and Martel [CM]).

• The method presented here for the parabolic problem also applies to equations with mixed boundary condition, extending a result of [D] to the parabolic case. Let Γ 1 , Γ 2 be a partition of ∂Ω, with Γ 1 = ∅. For simplicity we can assume that Γ 1 , Γ 2 are smooth, but this is not important.

In this context, let ζ denote the solution of

         -∆ ζ = 1 in Ω ζ = 0 on Γ 1 ∂ ζ ∂ν = 0 on Γ 2 ,
where ν denotes the unit outward normal vector to ∂Ω.

Theorem 2.7. Let u 0 ∈ L 2 (Ω), u 0 ≥ 0 and let u denote the solution to

             u t -∆u = 0 in Ω × (0, ∞) u = 0 on Γ 1 × (0, ∞) ∂u ∂ν = 0 on Γ 2 × (0, ∞) u(0) = u 0 in Ω. Then u(t) ≥ c(t) Ω u 0 ζ ζ,
where c(t) = e -K(t+1/t) for some

K = K(Ω, Γ 1 , Γ 2 ).
We omit its proof, which is a slight modification of the one given for Theorem 2.2.

Some preliminaries

We start this section with some preliminary results on the linear equation

(3.1) -∆u -a(x)u = f in Ω u = 0 on ∂Ω,
when the potential a(x) satisfies (2.1). As mentioned before all solutions to (3.1) are assumed to be in H.

Lemma 3.1. Assume that a(x) satisfies (2.1) and that f ∈ L 2 (Ω). Then the solution u to (3.1) satisfies

(3.2) Ω u(-∆ζ) = Ω a(x)uζ + Ω f ζ for all ζ ∈ C 2 (Ω), ζ = 0 on ∂Ω,
and all in the integrals in (3.2) exist and are finite.

In particular, by taking ζ = ζ to be the solution of

(3.3) -∆ ζ0 = 1 in Ω ζ0 = 0 on ∂Ω we conclude that a(x)u + f ∈ L 1 loc (Ω). Proof. By working with f + , f -we can assume that f ≥ 0. Let a k (x) = min(a(x), k), k > 0
and u k be the solution to (3.1) with the potential a(x) replaced by the potential a k (x). Then it is easy to check that u k is nondecreasing in k, and converges to u

in L 2 (Ω). Now take ζ ∈ C 2 (Ω), ζ = 0 on ∂Ω. Then (3.4) Ω u k (-∆ζ) = Ω a k (x)u k ζ + f ζ,
and note that here all the integrals are finite. By taking in particular ζ = ζ0 (where ζ0 is the solution of (3.3)), and using Fatou's lemma, we see that Ω a(x)u ζ0 exists and is finite. Given any ζ ∈ C 2 (Ω), ζ = 0 on ∂Ω, we can find C > 0 so that |ζ| ≤ C ζ0 . It follows that we can pass now to the limit in (3.4) and conclude that (3.2) holds. Lemma 3.2. Assume that a(x) satisfies (2.1) and let T : L 2 (Ω) → L 2 (Ω) be the operator defined by T f = u, where u is the H-solution to (3.1) (i.e. T = L -1 where L was defined in Lemma 2.2). Then T is compact.

Proof. Let (f j ) be a a bounded sequence in L 2 (Ω), and u j = T f j . Then u j is bounded in L r (Ω) by (2.1). Let ζ0 be the solution to (3.3). Then, by (3.2) we have

Ω a(x)u j ζ0 ≤ ζ0 L ∞ Ω |f j | + ζ0 C 2 Ω |u j |.
Therefore -∆u j = a(x)u j + f j is bounded in L 1 loc (Ω) and by the Gagliardo-Nirenberg inequality u j is bounded in W 1,1 loc (Ω). We conclude that for a subsequence (denoted the same), u j → u in L q (Ω) for some fixed 1 ≤ q < n n-1 , and a.e. To conclude that u j converges strongly in L 2 (Ω), let ε > 0 be given. Then by Egorov's theorem there exists E ⊂ Ω measurable with |E| ≤ ε so that

u j → u uniformly in Ω \ E. Hence lim sup Ω |u j -u| 2 ≤ lim sup Ω\E |u j -u| 2 + lim sup E |u j -u| 2 ≤ u j -u 2 L r |E| 1-2/r ≤ Cε 1-2/r
by the uniform bound of u j in L r (Ω).

To prove that the embedding H ⊂ L 2 (Ω) is compact we use the following result combined with the previous lemma.

Proof. Clearly if J is compact then JJ * is compact.

Let ε > 0. Then the map S ε := JJ * + εI : V → V is selfadjoint and coercive, in the sense that S ε y V ≥ ε y V . It follows that S ε is invertible. Therefore, given x ∈ H there is y ∈ V so that (3.5)

JJ * y + εy = Jx. But (J * y|x) H ≤ 1 2 x 2 H + 1 2 J * y 2 H
and so

(3.6) (J * y|x -J * y) H ≤ 1 2 x 2 H - 1 2 J * y 2 H ≤ 1 2 x 2 H . From (3.5) it follows that y = ǫ -1 (Jx -JJ * y)
Plugging this in (3.6), we obtain

(3.7) (J * (Jx -JJ * y)|x -J * y) H = JJ * y -Jx 2 V ≤ ε 2 x 2 H .
Now assume that JJ * is compact and let x j be a bounded sequence in H. Let M = sup j x j H and set ε k = 2 -2k for k = 1, 2, . . . . Take k = 1 and let y j = S -1 ε1 (Jx j ). Then y j is a bounded sequence and since JJ * is compact there is a subsequence and some z 1 ∈ V , so that JJ * y j → z 1 . Therefore, using (3.7) we see that there is some j 1 so that Jx j1z 1 V ≤ 2M

√ ε 1 = 2M . Using a diagonal argument one can find a subsequence j k and z k ∈ V so that Jx j lz k V ≤ 2 -k+1 M for all l ≥ k. This implies that z k+1z k V ≤ 2 -k+2 and therefore z k is a Cauchy sequence in V . Thus z k converges, and so Jx j k is also convergent.

We are now in a position to prove Lemma 2.2.

Proof of Lemma 2.2. Take V = L 2 (Ω), H = H and denote by J : H → L 2 (Ω) the canonical injection. We see that T = JJ * , where T f = u, and u is the H-solution to (3.1). By Lemma 3.2 JJ * is compact and hence by Lemma 3.3 the embedding

H ⊂ L 2 (Ω) is compact.
Since T is selfadjoint and compact, L = T -1 has a smallest eigenvalue. This eigenvalue is simple, which can be proved in the same way as for smooth elliptic operators.

In fact, let ϕ 1 ≡ 0 be a nonnegative minimizer of (3.8)

λ 1 = inf ϕ∈C 1 c (Ω) Ω |∇ϕ| 2 -a(x)ϕ 2 Ω ϕ 2
, which exists by compactness of T . By the standard arguments of the calculus of variations, ϕ 1 satisfies (1.2) and by a version of the strong maximum principle (see e.g. [BC]), ϕ 1 > 0. Now let ϕ denote another eigenfunction for λ 1 . Then for any µ ∈ R we have that ψ = ϕ 1µϕ satisfies the equation

(3.9) -∆ψ -a(x)ψ = λ 1 ψ in Ω ψ = 0 on ∂Ω.
Now, because ψ satisfies (3.9), if ψ ≡ 0 then it minimizes (3.8). Then also |ψ| minimizes (3.8) and therefore satisfies the equation (3.9). Since

-∆|ψ| = a(x)|ψ| + λ 1 |ψ| ≥ 0 in Ω |ψ| = 0 on ∂Ω,
by the strong maximum principle (see [BC]), we conclude that if ψ ≡ 0 then |ψ| > cδ a.e. in Ω, where c > 0. This combined with the fact that ψ ∈ W 1,1 loc (Ω) (by Lemma 3.1) shows that either ψ > 0 or ψ < 0 in Ω (assuming Ω connected, see for example [CH]). That is, for any µ ∈ R either ϕ ≥ µϕ 1 or ϕ ≤ µϕ 1 . Setting

µ 0 = sup{µ : ϕ ≥ µϕ 1 } we see that ϕ = µ 0 ϕ 1 .
The last two lemmas of this section will allow us to reduce the proofs of the main results of this paper to the case of a bounded potential. Define (3.10)

a k = min(a, k), k > 0.
We denote by λ k 1 , ϕ k 1 , ζ k 0 the first eigenvalue, first eigenfunction and solution of (1.4) associated with the potential a k , which are all defined in the usual sense, since a k is bounded. Let ζ 0 be the solution to (1.4) in the sense of Lemma 2.1. Since a satisfies (2.1) (hence (1.1)), it is easy to check that

ζ k 0 → ζ 0 in L 2 (Ω). Lemma 3.4. Normalize ϕ k 1 by ϕ k 1 L 2 (Ω) = 1. Then λ k 1 → λ 1 and ϕ k 1 → ϕ 1 in H as k → ∞
, where λ 1 is given by (1.1) and ϕ 1 is given by Lemma 2.2, normalized so that ϕ 1 L 2 (Ω) = 1.

Proof. Observe that

(3.11) λ k 1 = inf ϕ∈C ∞ c (Ω) Ω |∇ϕ| 2 -Ω a k (x)ϕ 2 Ω ϕ 2
is non-increasing as k increases. Therefore the limit lim

k→∞ λ k 1 exists. We claim that lim k→∞ λ k 1 = λ 1 .
Indeed, note that λ 1 ≤ λ k 1 for all k, and also that for any

ϕ ∈ C ∞ c (Ω) (3.12) Ω a k (x)ϕ 2 → Ω a(x)ϕ 2 by monotone convergence. Take now ϕ ∈ C ∞ c (Ω) with ϕ L 2 = 1. Then λ k 1 ≤ Ω |∇ϕ| 2 -a k (x)ϕ 2 ,
and using (3.12) we see that

lim sup λ k 1 ≤ Ω |∇ϕ| 2 -a(x)ϕ 2 .
Taking the infimum over ϕ we obtain

lim sup λ k 1 ≤ λ 1 .
Recall that we normalize ϕ k 1 by ϕ k 1 L 2 = 1 and so (3.13)

Ω |∇ϕ k 1 | 2 - Ω a k (x)|ϕ k 1 | 2 = λ k 1 → λ 1 as k → ∞.
In particular ϕ k 1 is bounded in H and by Lemma 2.2 we can find a subsequence such that ϕ k 1 → ϕ 1 in L 2 (Ω). We observe that ϕ 1 ≥ 0 and

ϕ 1 L 2 = 1. Claim. ϕ 1 minimizes (3.14) λ 1 = Ω |∇ϕ| 2 -Ω a(x)ϕ 2 Ω ϕ 2 .
Indeed, testing the equation for

ϕ k 1 with ϕ ∈ C ∞ c (Ω), ϕ ≥ 0 we find Ω ∇ϕ k 1 • ∇ϕ - Ω a k (x)ϕ k 1 ϕ = λ k 1 Ω ϕ k 1 ϕ
and therefore

Ω ∇ϕ k 1 • ∇ϕ - Ω a(x)ϕ k 1 ϕ ≤ λ k 1 Ω ϕ k 1 ϕ.
Taking limits on both sides, we obtain

Ω ∇ϕ 1 • ∇ϕ - Ω a(x)ϕ 1 ϕ ≤ λ 1 Ω ϕ 1 ϕ.
By density this is true for all ϕ ∈ H, ϕ ≥ 0 and taking ϕ = ϕ 1 we find that

Ω |∇ϕ 1 | 2 -Ω a(x)ϕ 2 1 Ω ϕ 2 1 ≤ λ 1
and the claim is proved.

Then the standard arguments of the calculus of variations show that ϕ 1 satisfies (1.2), and hence ϕ 1 is indeed the first eigenfunction of -∆a(x). The strong convergence

ϕ k 1 → ϕ 1 in H, is a consequence of ϕ H = λ 1 ≤ ϕ k 1 H ≤ λ k 1 .
The first inequality follows from the definition of λ 1 and the second from the fact that a k ≤ a. This implies that ϕ k 1 H → ϕ H .

Lemma 3.5. It suffices to prove Theorems 2.1 and 2.2 and Corollaries 2.3 and 2.4 in the case where the potential a(x) is bounded.

Proof. We only give the argument for Theorem 2.1, which can be easily carried out for the other results. Let a ≥ 0 be any potential satisfying (2.1) and a k its truncation defined by (3.10). Observe that inf

ϕ∈C 1 c (Ω) Ω |∇ϕ| 2 -Ω a k (x)ϕ 2 Ω |ϕ| r 2/r ≥ γ(a).
So if Theorem 2.1 holds for bounded potentials, we must have

(3.15) C -1 ζ k 0 ≤ ϕ k 1 ≤ Cζ k 0 ,
where ζ k 0 , ϕ k 1 were defined at the beginning of this section and

C = C(Ω, γ(a)) > 0 is independent of k. Since ζ k 0 → ζ 0 in L 2
and Lemma 3.4 holds, we can pass to the limit in (3.15).

Proof of Theorem 2.1

By Lemma 3.5 in the previous section it is enough to establish the result in the case that a(x) is bounded.

The main idea is to consider the function

w = ϕ 1 ζ 0
and notice that it satisfies (formally) an elliptic equation

(4.1) -∇ • (ζ 2 0 ∇w) = λ 1 ϕ 1 ζ 0 -ϕ 1 in Ω ζ 2 0 ∇w • ν = 0 on ∂Ω,
where ν denotes the outer unit normal to the boundary ∂Ω. Then we will use Moser's iteration argument, combined with a Sobolev inequality to prove that w is bounded.

Step 1. Formal derivation of an iteration formula: there exists q > 2 and C > 0 such that for all j ≥ 1 (4.2)

Ω ζ 2 0 w qj 2/q ≤ Cj Ω ζ 2 0 w 2j .
Proof. Multiplying (4.1) by w 2j-1 where j ≥ 1, and integrating by parts we obtain:

(4.3) 2j -1 j 2 Ω ζ 2 0 |∇w j | 2 = Ω (λ 1 ϕ 1 ζ 0 -ϕ 1 )w 2j-1 ≤ λ 1 Ω ζ 2 0 w 2j .
Now we use the next lemma, which is a kind of Sobolev inequality.

Lemma 4.1. Assume u satisfies

(4.4) -∆u -a(x)u = c(x)u + f in Ω u = 0 on ∂Ω, where c, f ∈ L ∞ (Ω), f ≥ 0, f ≡ 0.
Assume also that a satisfies (2.1). Then for any 2 ≤ q ≤ r there is a constant C > 0 depending only Ω, r, γ(a), c L ∞ and f such that

Ω u s |ϕ| q 2/q ≤ C Ω u 2 |∇ϕ| 2 + ϕ 2 for all ϕ ∈ C 1 (Ω)
, where s is given by the relation

(4.5) s r = q -2 r -2 .
(A proof of this lemma is given in Step 4.)

Proof of Step 1 continued. Taking u = ζ 0 , f ≡ 1, c ≡ 0 and s = 2, by Lemma 4.1 there is q = 2 1 + r-2 r > 2 and C > 0 such that (4.6) Ω ζ 2 0 |ϕ| q 2/q ≤ C Ω ζ 2 0 (|∇ϕ| 2 + ϕ 2 )
for all ϕ ∈ C 1 (Ω). This applied to ϕ = w j and combined with (4.3) yields (4.2).

Step 2.

(4.7)

ϕ 1 ≤ Cζ 0 .
Proof. We iterate (4.2): define µ = q/2 > 1 and j k = 2µ k , for k = 0, 1, . . . . Let

θ k = Ω ζ 2 0 w j k 1/j k .
Then (4.2) can be rewritten as

θ k+1 ≤ Cµ k 1/µ k θ k .
Using this recursively yields

θ k ≤ Cθ 0 = C Ω ζ 2 0 1/2 < ∞ for all k = 0, 1, 2, . . . with C independent of k. But lim k→∞ θ k = sup Ω w (because ζ 0 > 0 in Ω)
and this shows that w ≤ C.

Step 3. Justification of Step 1 To be rigorous, we need to justify the derivation of (4.2), which has been formal only. One possible approach is the following.

Proof of (4.2). Consider the family of smooth domains

Ω ε = x ∈ R n | dist(x, Ω) < ε ,
where ε > 0 is small. Let ζ ε 0 be the solution to

(4.8) -∆ζ ε 0 -a(x)ζ ε 0 = 1 in Ω ε ζ ε 0 = 0 on ∂Ω ε ,
where a is extended by 0 outside Ω. Then ζ ε 0 ց ζ 0 as ε → uniformly in Ω (because we have a uniform bound in C 1,α (Ω).) Furthermore, ζ ε 0 ≥ c ε > 0 in Ω, by the strong maximum principle. Letting ), w ε = 0 on ∂Ω, and all the formal computations done with w apply rigorously to w ε so that (4.2) holds for w ε in place of w and ζ ε 0 in place of ζ 0 . It is then easy to pass to the limit as ε → 0, using e.g. monotone convergence.

w ε = ϕ 1 ζ ε 0 , it follows that w ε ∈ C 1,α (Ω
Step 4. Proof of Lemma 4.1

First observe that u ≥ cδ for some c > 0 (see Brezis and Cabré [BC] for example), and recall Hardy's inequality

Ω ψ 2 δ 2 ≤ C Ω |∇ψ| 2 for all ψ ∈ C 1 c (Ω),
where δ(x) = dist(x, ∂Ω). Using this with ψ = δϕ as in [D] it is easy to check that (4.9)

Ω ϕ 2 ≤ C Ω δ 2 (|∇ϕ| 2 + ϕ 2 )
for all ϕ ∈ C 1 (Ω). This shows that (4.10)

Ω ϕ 2 ≤ C Ω u 2 |∇ϕ| 2 + ϕ 2 .
The next step consists in proving (4.11)

Ω |uϕ| r 2/r ≤ C Ω u 2 |∇ϕ| 2 + ϕ 2 for all ϕ ∈ C 1 (Ω).
To achieve this, note that by (2.1) we have (4.12)

Ω |uϕ| r 2/r ≤ C Ω |∇(uϕ)| 2 - Ω a(x)(uϕ) 2 . But (4.13) Ω |∇(uϕ)| 2 = Ω u 2 |∇ϕ| 2 + Ω ∇u∇(uϕ 2 )
and, multiplying (4.4) by uϕ 2 and integrating we get

(4.14) Ω ∇u∇(uϕ 2 ) - Ω a(x)(uϕ) 2 = Ω c(x)u 2 ϕ 2 + Ω f uϕ 2 .
Combining (4.12), (4.13) and (4.14) we find

Ω |uϕ| r 2/r ≤ C Ω u 2 |∇ϕ| 2 + Ω c(x)u 2 ϕ 2 + Ω f uϕ 2 .
The last two terms in the right hand side can be estimated by

Ω c(x)u 2 ϕ 2 + Ω f uϕ 2 ≤ c L ∞ Ω u 2 ϕ 2 + f L ∞ Ω u 2 ϕ 2 1/2 Ω ϕ 2 1/2 ≤ C Ω u 2 |∇ϕ| 2 + ϕ 2
by (4.10). This proves (4.11). Finally, we interpolate (4.10) and (4.11): by Hölder's inequality

Ω u s |ϕ| q ≤ Ω u r |ϕ| r λ Ω ϕ 2 1-λ
if λ and s are chosen so that

s = λr and rλ + 2(1 -λ) = q.
This gives the relation (4.5) and proves the lemma.

Step 5.

ζ 0 ≤ Cϕ 1
Proof. This time we consider the quotient

w = ζ 0 ϕ 1 which satisfies: -∇ • (ϕ 2 1 ∇w) = ϕ 1 -λ 1 ϕ 1 ζ 0 in Ω ϕ 2 1 ∇w • ν = 0 on ∂Ω.
Again we multiply this equation by ϕ = w 2j-1 to find

2j -1 j 2 Ω ϕ 2 1 |∇w j | 2 = Ω (ϕ 1 -λ 1 ϕ 1 ζ 0 )w 2j-1 ≤ Ω ϕ 1 w 2j-1 .
Here we use (4.7) to conclude that

ϕ 1 w 2j-1 ≤ Cζ 0 w 2j-1 = Cϕ 1 w 2j ,
and so

(4.15) Ω ϕ 2 1 |∇w j | 2 ≤ Cj Ω ϕ 1 w 2j .
Letting ϕ = w j and using consecutively Hölder's inequality and Lemma 4.1 (with u = ϕ 1 , f ≡ 0, c = λ 1 , s = 0 and q = 2), it follows from (4.15) that

Ω ϕ 2 1 |∇ϕ| 2 ≤ Cj Ω ϕ 2 1 ϕ 2 1/2 Ω ϕ 2 1/2 ≤ Cj Ω ϕ 2 1 ϕ 2 1/2 Ω ϕ 2 1 ϕ 2 + |∇ϕ| 2 1/2 .
And by Young's inequality,

Ω ϕ 2 1 |∇ϕ| 2 ≤ Cj 2 Ω ϕ 2 1 ϕ 2 + 1/2 Ω ϕ 2 1 ϕ 2 + |∇ϕ| 2 so that (4.16) Ω ϕ 2 1 |∇ϕ| 2 ≤ Cj 2 Ω ϕ 2 1 ϕ 2 . Using Lemma 4.1 with u = ϕ 1 , f ≡ 0, c = λ 1 and s = 2, we obtain a constant q = 2 1 + r-2 r > 2 and C > 0 such that Ω ϕ 2 1 w qj 2/q ≤ C Ω ϕ 2 1 |∇w j | 2 + w 2j .
Combining with (4.16) we obtain (4.17)

Ω ϕ 2 1 w qj 2/q ≤ Cj 2 Ω ϕ 2 1 w 2j .
An iteration argument as in Step 2 then shows that sup Ω w ≤ C.

As in

Step 3, we need to justify the derivation of (4.17) by an approximation argument. This time however, it is more convenient to consider

Ω ε := x ∈ Ω | dist(x, ∂Ω) > ε , let ζ ε 0 solve (4.8
) and do all of the above computations in Ω ε in place of Ω. We leave the details to the reader.

Proof of Theorem 2.2

As in the elliptic case, using Lemma 3.5, it is enough to establish the result for bounded a(x).

Let u be the solution of (1.8) and ζ 0 be the solution of (1.4). We note that u(t) ≥ c(t)δ for some positive function c(t) (see [BCz]). We will replace u(t) with u(tτ ) where τ > 0 is fixed, and so we can assume

u(t) ≥ cδ for t ∈ [0, T ],
where T > 0 is fixed and c > 0 is independent of t for t ∈ [0, T ]. By (4.9) we have then

(5.1)

Ω ϕ 2 ≤ C Ω u(t) 2 |∇ϕ| 2 + ϕ 2
for t ∈ [0, T ], with C independent of t. Since by Theorem 2.1

ζ 0 ≤ Cϕ 1 ,
where ϕ 1 denotes the first eigenfunction for -∆a(x), it is enough to show that for some constant C we have ϕ 1 ≤ Cu(t).

We will work with v = e -λ1t ϕ 1 , which satisfies

∂ t v -∆v -a(x)v = 0 in Ω × (0, ∞) v = 0 on ∂Ω × (0, ∞).
Set w = v u and note that it satisfies formally (5.2)

u 2 w t -∇ • u 2 ∇w = 0 in Ω × (0, T ) u 2 ∇w • ν = 0 on ∂Ω × (0, T ). We claim that w(t) ≤ Ct -β for t ∈ [0, T ],
where β, C > 0 are independent of t.

To accomplish this, we follow the idea in the paper by Brezis and Cazenave [START_REF] Brezis | A nonlinear heat equation with singular initial data[END_REF], which is inspired by a work of Fabes and Stroock [FS]. To simplify the exposition, we first work formally with (5.2).

First, for j ≥ 1 and t ∈ [0, T ] we define the quantity

θ j (t) = Ω u(t) 2 w(t) j .
We also use the notation ϕ = w j .

Our first step is to derive Claim 1.

(5.3)

θ ′ 2j (t) + 2 uϕ 2 H + 2 j -1 j Ω u 2 |∇ϕ| 2 = 0,
where • H was defined in (2.3).

Proof of (5.3). Multiplying (5.2) by w 2j-1 we find

(5.4) 1 2j Ω u 2 w 2j t + 2j -1 j 2 Ω u 2 |∇w j | 2 = 0.
Then observe that (5.5)

d dt θ 2j (t) = θ 2j (t) ′ = 2 Ω uu t ϕ 2 + Ω u 2 ϕ 2 t .
Hence by (5.4) and using (5.5) we obtain

(5.6) 1 2j θ ′ 2j -2 Ω uu t ϕ 2 + 2j -1 j 2 Ω u 2 |∇w j | 2 = 0.
Now we multiply (1.8) by uϕ 2 and integrate on Ω. This gives the relation

Ω uu t ϕ 2 + Ω ∇u∇(uϕ 2 ) - Ω au 2 ϕ 2 = 0.
Therefore

Ω uu t ϕ 2 = Ω au 2 ϕ 2 - Ω ∇u∇(uϕ 2 ) = Ω au 2 ϕ 2 - Ω |∇(uϕ)| 2 + Ω u 2 |∇ϕ| 2 .
Substituting the expression uu t ϕ 2 from the previous equation in (5.6) yields (5.3).

Claim 2. ¿From (5.3) immediately follows that θ ′ 2j (t) ≤ 0 and therefore (5.7) θ j (t) ≤ θ j (0) for all t ∈ [0, T ] and j ≥ 2.

Claim 3. There is constant C such that

(5.8) θ ′ 2j (t) + 1 C θ 2j (t) 1+γ θ j (0) 2γ ≤ θ 2j (t) for t ∈ [0, T ],
where γ > 0 depends only on r.

Proof. By Hölder's inequality

θ 2j (t) = Ω u 2 ϕ 2 ≤ Ω (uϕ) r 2 3r-4 Ω ϕ 2 r-2 3r-4 Ω u 2 ϕ 2r-4 3r-4 .
Now we use assumption (2.1) and (5.1) to get

θ 2j (t) ≤ C uϕ r 3r-4 H Ω u 2 |∇ϕ| 2 + ϕ 2 r-2 3r-4 Ω u 2 ϕ 2r-4 3r-4 = C uϕ r 3r-4 H Ω u 2 |∇ϕ| 2 + θ 2j (t) r-2 3r-4 θ j (t)
2r-4 3r-4 .

And by Young's inequality,

(5.9)

θ 2j (t) ≤ C uϕ 2 H + Ω u 2 |∇ϕ| 2 + θ 2j (t) 2r-2 3r-4 θ j (t) 2r-4 3r-4 . Let γ = 3r -4 2r -2 -1 > 0,
so that by (5.9) and (5.7)

(5.10)

θ 2j (t) 1+γ ≤ C uϕ 2 H + Ω u 2 |∇ϕ| 2 + θ 2j (t) θ j (0) 2γ . Rearranging (5.10) yields 1 C θ 2j (t) 1+γ θ j (0) 2γ -θ 2j (t) ≤ uϕ 2 H + Ω u 2 |∇ϕ| 2 ,
and combining the last expression with (5.3) we obtain (5.8). Claim 4. Using (5.8) we have

(5.11) θ 2j (t) ≤ Ct -1/γ θ j (0) 2 t ∈ [0, T ].
The derivation of this estimate has been formal only but, as in Step 3 of Section 4, we can make it rigorous using the same approximation argument on Ω. Claim 5. Iterating (5.11) we find

w(t) L ∞ ≤ Ct -1/2γ for t ∈ [0, T ].
Indeed, for k = 1, 2, . . . set t k = t(1 -2 -k+1 ) and j k = 2 k . Then t k+1t k = 2 -k t. So from (5.11) we have (5.12)

θ j k+1 (t k+1 ) = θ 2j k (t k + 2 -k t) ≤ C2 k/γ t -1/γ θ j k (t k ) 2 .
But recall that θ j (t) = Ω u(t) 2 w(t) j , so from (5.12) we have

Ω u(t k+1 ) 2 w(t k+1 ) 2 k+1 1/2 k+1 ≤ C2 k/γ t -1/γ 1/2 k+1 Ω u(t k ) 2 w(t k ) 2 k 1/2 k ≤ C ′ t -1 γ k+1 j=2 2 -j Ω u(0) 2 w(0) 2 1/2 . Letting k → ∞ we find sup Ω w ≤ C ′ t -1/2γ ϕ 1 L 2 .

Proof of Corollaries 2.3 and 2.4

Again, it is enough to reduce to the case where a(x) is bounded.

Step 1. A first estimate involving δ(x) = dist(x, ∂Ω).

Using a fine version of the maximum principle for the heat equation (see [BCz] for the time dependence of the constant and [M] for the dependence to the initial condition), we have that

u(t) ≥ e -K/t Ω u 0 δ δ(x) for t ∈ [0, T ],
where K = K(Ω, T ) > 0. Letting µ 1 > 0 and ψ 1 > 0 be the first eigenvalue and eigenfunction of the Laplace operator (with zero boundary condition) and possibly increasing the constant K, it follows that

u(t) ≥ e -K/t Ω u 0 δ ψ 1 (x) for t ∈ [0, 1],
where

K = K(Ω). Now let v(t) = e µ1-K Ω u 0 δ e -µ1t ψ 1 (x). Then v t -∆v = 0 v(1) ≤ u(1).
So by the maximum principle u(t) ≥ v(t) for t ∈ (1, ∞) and we finally obtain

(6.1) u(t) ≥ e -K(t+1/t) Ω u 0 δ δ(x) for t ∈ [0, ∞),
where K = K(Ω).

Step 2. An estimate for u x0 = S(t)δ x0 .

First, looking carefully at the previous section, we see that if u ≥ 0 solves (1.8) and u(t) ≥ δ(x) for t ∈ [0, T ], then (6.2) u(t) ≥ Ct β e -λ1t ζ 0 for t ∈ [0, T ],

where C and β depend only on Ω and γ(a).

Next, fix a ball B ⊂⊂ Ω and for x 0 ∈ B, let δ x0 denote the Dirac mass supported by {x 0 } and u x0 the solution of (1.8) with initial condition u 0 = δ x0 . Given t 0 > 0, we have by (6.1), u x0 (t 0 ) ≥ δ(x 0 )e -K(t0+1/t0) δ(x) ≥ e -K ′ (t0+1/t0) δ(x), where K ′ depends only on Ω. Hence, for t ∈ [0, T ] u x0 (t + t 0 ) ≥ e -K ′ (t0+1/t0) S(t)δ(x) ≥ ce -K ′ (t0+1/t0) S(t)ψ 1 (x) ≥ ce -K ′ (t0+1/t0) e -µ1t ψ 1 (x) ≥ ce -K(t0+1/t0+T ) δ(x), Theorem 7.1. Let Σ be a smooth manifold of codimension k = 2 embedded in R n and d(x) = dist(x, Σ).

• If Σ is compact then for any ǫ > 0 and 2 < r < 2n/(n -2), there exist C(ǫ) > 0, γ > 0 such that

C(ǫ) Ω ϕ 2 + Ω |∇ϕ| 2 - (k -2 -ǫ) 2 4 Ω ϕ 2 d 2 ≥ γ Ω |ϕ| r 2/r
for all ϕ ∈ C ∞ c (Ω \ Σ). •If Σ is oriented then for some r > 2, there exist C, γ > 0 such that

C Ω ϕ 2 + Ω |∇ϕ| 2 - (k -2) 2 4 Ω ϕ 2 d 2 ≥ γ Ω |ϕ| r 2/r
for all ϕ ∈ C ∞ c (Ω \ Σ).

• If Σ is such that ∆d k-2 ≤ 0 in D ′ (Ω \ Σ), then for any 2 < r < 2n/(n -2) there exists γ > 0 such that

Ω |∇ϕ| 2 - (k -2) 2 4 Ω ϕ 2 d 2 ≥ γ Ω |ϕ| r 2/r
for all ϕ ∈ C ∞ c (Ω \ Σ).

•In particular if Σ = ∂Ω and Ω is convex then for any 2 < r < 2n/(n -2) there exists γ > 0 such that

Ω |∇ϕ| 2 - 1 4 Ω ϕ 2 d 2 ≥ γ Ω |ϕ| r 2/r
for all ϕ ∈ C ∞ c (Ω).

The fourth inequality was discovered with γ = 0 by Marcus, Mizel and Pinchover [MMP], and Matskevich and Sobolevskii [MSo]. It was then improved by Brezis and Marcus [BM] to the case γ > 0 and r = 2. The general case for the third and fourth inequalities is due to Barbatis, Filippas and Tertikas. See [BFT]. We will prove the two others in a forthcoming publication.

Observe that the first two inequalities in Theorem 7.1 provide examples of potentials for which (2.6) holds whereas (2.1) may fail. We now describe how to adapt the methods of this paper to prove Theorems 2.5 and 2.6.

Outline of the proof of Theorem 2.5. The proof of our results can be adapted to the case of a sign-changing potential a = a +a -satisfying (2.1) and (2.5). To do so, one just needs to replace the Laplace operator -∆ by -∆ + a -(x), whenever it occurs. One must make sure that the two following properties remain true :

Strong maximum principle in the elliptic case. Suppose that (2.1) and (2.5) hold and that for given say smooth f ≥ 0 and u ≥ 0, we have 

-

  ∆u + a -(x)u ≥ f in Ω u ≥ 0 on ∂Ω Then, letting δ(x) = dist(x, ∂Ω), there exists c = c(Ω, a - L ∞ ) > 0 such that u ≥ c Ω f (x)δ(x)dx δ
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where K = K(Ω). Using (6.2), we obtain for t ∈ [0, T ] u x0 (t + t 0 ) ≥ Ct β e -λ1t e -K(t0+1/t0+T ) ζ 0 , so that, choosing t = T = t 0 u x0 (2t 0 ) ≥ e -K ′′ (t0+1/t0) ζ 0 , where K ′′ depends solely on Ω and γ(a). Since t 0 > 0 was chosen arbitrarily, we finally obtain for all t > 0 (6.3) u x0 (t) ≥ e -K ′′ (t+1/t) ζ 0 .

Step 3. Let u B be the solution of (1.8) with initial condition u 0 = χ B . Proceeding as in the previous step, we can show that (6.4)

Now, let u be the solution of (1.8) with arbitrary initial condition u 0 ∈ L 2 (Ω), u 0 ≥ 0. Using (6.3), we then have for

In other words,

Hence, using (6.4), it follows that

), which completes the proof of Corollary 2.3.

For Corollary 2.4, one just needs to apply Corollary 2.3 and Duhamel's principle : if u solves (2.4) then

Further results and open problems.

In this section, we question the optimality of our assumption (2.1) on the potential a(x). As we shall see, potentials of the form a

is the distance function to an embedded manifold Σ ⊂ R n , do not necessarily satisfy our assumption (2.1) but its weaker version (2.6). As stated in Theorem 2.6, some comparison results can still be obtained. The outline of the proofs of Theorems 2.5 and 2.6 is then given. Finally, we ask whether pointwise estimates for the Green's function of the operator -∆a(x) can be obtained.

First, we state the following generalized Hardy inequalities :

Strong maximum principle in the parabolic case. Suppose that (2.1) and (2.5) hold and that for given say smooth u 0 ≥ 0 and u ≥ 0, we have

where c(t) = e -K(t+1/t) .

The elliptic maximum principle can be obtained by combining Lemma 3.4 of [GT] and the methods of [BC]. For the parabolic case, one must first obtain an inequality of the form

This can be done as in [BCz], provided the heat kernel of the operator ∂ t -∆+a -(x) is bounded below by a Gaussian in R n . For the derivation of the Gaussian bound, see e.g. [Da]. To get the full inequality, one then has to repeat the arguments of [M], much as we did in Section 6.

Proof of Theorem 2.6. Pick M > 0 so that (2.6) holds and let ã(x) = a(x) -M . Since a satisfies (2.6), ã satisfies (2.1). Set ũ = e -M t u where u solves (1.8) with initial condition u 0 ≥ 0 and observe that ũ satisfies (1.8) with a replaced by ã.

Combining Theorem 2.1 and Corollary 2.4 (which hold for ã by Theorem 2.5) and observing that -∆a(x) and -∆ã(x) have the same first eigenfunction, it follows that ũ(t) ≥ c(t) Ω u 0 ϕ 1 ϕ 1 and the estimate follows for u.

The Green's function

Another direction interesting to pursue concerns the Green's function for the operator -∆a(x). We assume here that a(x) satisfies (2.1). Let G k be the Green's function for the operator -∆a k (x) where a k (x) = min(a(x), k), that is

where δ x denotes the Dirac measure at some x ∈ Ω. Then one can prove the following Lemma 7.2. We have G k ≥ 0 and the sequence G k is non-decreasing and bounded in L 1 (Ω × Ω). Therefore it converges to a function

Then, as a consequence of the comparison result in Corollary 2.4 we have the following Corollary 7.3. There exists a constant c > 0 depending on Ω, r, γ(a) such that G(x, y) ≥ cζ 0 (x)ζ 0 (y) a.e. in Ω × Ω.

We have not investigated the possibility of establishing pointwise upper bounds for G. For the special case of the inverse square potential a(x) = c/|x| 2 , in dimension n ≥ 3 and with 0 < c < (n -2) 2 /4, Milman and Semenov [MS] established upper and lower bounds for the heat kernel associated to the operator -∆a(x), from which upper bounds for the Green's function can be derived.