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COMPARISON RESULTS FOR PDE’S

WITH A SINGULAR POTENTIAL

Juan Dávila(1) and Louis Dupaigne(1),(2)

November 6, 2001

1. Introduction

Here we consider comparison results for linear elliptic and parabolic equations
with singular potentials. Let Ω ⊂ R

n be a smooth and bounded domain, and let
a ∈ L1

loc(Ω), a ≥ 0. To motivate the discussion assume initially that a(x) is smooth
and bounded, and suppose that

(1.1) λ1 = inf
ϕ∈C1

c (Ω)

∫

Ω

(

|∇ϕ|2 − a(x)ϕ2
)

∫

Ω
ϕ2

> 0,

i.e., the first eigenvalue for the problem

(1.2)

{−∆ϕ1 − a(x)ϕ1 = λ1ϕ1 in Ω

ϕ1 = 0 on ∂Ω

is positive. Since a is smooth, it is well known that

(1.3) C−1ζ0 ≤ ϕ1 ≤ Cζ0

for some positive constant C, where ζ0 is the solution of

(1.4)

{−∆ζ0 − a(x)ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω.

Note that this problem is well posed and that ζ0 > 0, since λ1 > 0.
We can formulate condition (1.1) without any assumption on the smoothness of

a. An interesting example is the so-called inverse-square potential

(1.5) a(x) =
c

|x|2 ,

where n ≥ 3 and 0 < c ≤ (n−2)2

4 . An improved version of Hardy’s inequality (see
[BV] or [VZ]) shows that it satisfies (1.1). On the other hand, it just fails to belong
to Ln/2(Ω) if 0 ∈ Ω, and therefore the standard elliptic regularity theory is not
sufficient to conclude an estimate like (1.3). In fact, for this potential, there exists

a constant α > 0 (more precisely α = (n − 2)/2 −
√

(n − 2)2/4 − c) such that ζ0

and ϕ1 behave like |x|−α near the origin (see [Du]), so that (1.3) can be interpreted
as : “ϕ1 cannot have worse singularities than ζ0 and vice-versa”.
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In this note we prove (1.3) under a slightly stronger condition than (1.1).
We also want to extend the following version of the strong maximum principle

for the heat equation (see e.g. [BCz] or [M]) : let T > 0 and u = u(x, t) ≥ 0 be a
solution of

{

ut − ∆u = 0 in Ω × (0, T )

u = 0 on ∂Ω × (0, T ).

Then either u ≡ 0 or

(1.6) u(x, t) ≥ c(t)δ(x),

where c is a positive function of t ∈ (0, T ) and δ(x) = dist(x, ∂Ω).
Using Hopf’s boundary lemma on one hand, and elliptic regularity on the other,

observe that for some C > 0,

C−1δ ≤ ζ̃0 ≤ Cδ,

where ζ̃0 is the solution of

{

−∆ζ̃0 = 1 in Ω

ζ̃0 = 0 on ∂Ω.

So that (1.6) is equivalent to

(1.7) u(x, t) ≥ c(t)ζ̃0(x).

We would like to extend (1.7) to the case where ζ̃0 is replaced by ζ0 solving (1.4)
and u > 0 solves

(1.8)

{

ut − ∆u − a(x)u = 0 in Ω × (0, T )

u = 0 on ∂Ω × (0, T ).

Inequality (1.7) was already proven for the inverse-square potential in [BG] and the
authors mentioned (see Remark 7.1 in [BG]) that their methods apply to potentials
of the form a(x) = −∆φ/φ where φ satisfies a certain weighted Sobolev inequality.
In our proof, we derive a similar Sobolev inequality (see Lemma 4.1) under an almost
optimal assumption on the potential a(x): see (2.1). As in [BG], we also make use
of Moser iteration type arguments, but our approach is, we believe, simpler.

The comparison results obtained in this note are motivated by and apply to
some semilinear parabolic equations studied in [DuN]. As we shall see, they also
generalize to problems involving other boundary conditions and complement the
results obtained in [D].

2. Main results

The assumption on the potential a(x) is the following: a ∈ L1
loc(Ω), a ≥ 0 and

there exists r > 2 such that

(2.1) γ(a) := inf
ϕ∈C1

c (Ω)

∫

Ω
|∇ϕ|2 −

∫

Ω
a(x)ϕ2

( ∫

Ω
|ϕ|r

)2/r
> 0.
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Remark. Observe that if a satisfies (1.1) then for any small ǫ > 0, aǫ := (1 − ǫ)a
satisfies (2.1) with r = 2∗ = 2n/(n − 2) (when n = 2, pick any r ∈ (2,∞)), by
Sobolev’s embedding. In particular, (1.1) can be seen as a limiting case of (2.1).

We also observe that if n ≥ 3, the inverse square potential (1.5) satisfies (2.1),

with r = 2∗ if 0 ≤ c < (n−2)2

4 and with any 2 < r < 2∗ for c = (n−2)2

4 (see [BV,VZ]).

Before stating our results we clarify in what sense we consider the solutions to
(1.2) and (1.4). This is necessary because in the context of weak solutions, or
solutions in the sense of distributions, uniqueness may not hold in general, and
(1.3) can fail. For example, in the case of the inverse square potential (1.5), when

Ω is the unit ball B1(0) and 0 < c < (n−2)2

4 , n ≥ 3 there is a positive solution u to

(2.2)







−∆u − c

|x|2 u = 0 in Ω

u = 0 on ∂Ω,

which is smooth except at the origin and belongs to W 1,1(Ω). This shows that
uniqueness in general doesn’t hold.

Furthermore, there exists a solution ζ0 of (1.4), smooth in Ω \ {0}, behaving like

|x|−α′

near the origin, where α′ = (n − 2)/2 +
√

(n − 2)2/4 − c, and a solution ϕ1

of (1.2) which behaves like |x|−α where α = (n−2)/2−
√

(n − 2)2/4 − c < α′. But
then (1.3) would fail. For details, see [Du].

Hence we only consider solutions that belong to the Hilbert space H, defined as
the completion of C∞

c (Ω) with respect to the norm

(2.3) ‖u‖2
H =

∫

Ω

|∇u|2 −
∫

Ω

a(x)u2.

This norm comes from an inner product (·|·)H in H, and with some abuse of notation
we can write

(u|v)H =

∫

Ω

∇u · ∇v −
∫

Ω

a(x)uv.

We denote by H∗ the dual of H. Observe that H1
0 (Ω) ⊂ H ⊂ L2(Ω) and therefore

L2(Ω) ⊂ H∗ ⊂ H−1(Ω).

Definition. If f ∈ H∗ we say that u ∈ H is an H-solution of

(2.4)

{−∆u − a(x)u = f in Ω

u = 0 on ∂Ω

if
(u|v)H = 〈f, v〉H∗,H

for all v ∈ H. With the obvious abuse of notation, this is equivalent to

∫

Ω

∇u · ∇v −
∫

Ω

a(x)uv =

∫

Ω

fv for all v ∈ H.

From now on, we only deal with solutions in this sense, i.e. H-solutions.
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Lemma 2.1. Suppose (1.1) holds and let f ∈ H∗. Then there exists a unique
H-solution u of (2.2). Furthermore,

‖u‖H = ‖f‖H∗ ,

and if f ≥ 0 in the sense of distributions then u ≥ 0 a.e.

See a proof in [DuN].
We also have to precise how to obtain a first eigenfunction for the operator

−∆ − a(x) with zero Dirichlet boundary data.

Lemma 2.2. Suppose a(x) ≥ 0 satisfies (2.1). Then H embeds compactly in
L2(Ω). In particular the operator L := −∆ − a(x) : D(L) ⊂ L2(Ω) → L2(Ω)
where D(L) = {u ∈ H | − ∆u − a(x)u ∈ L2(Ω) } has a positive first eigenvalue

λ1 = inf
ϕ∈H\{0}

∫

Ω
|∇ϕ|2 −

∫

Ω
a(x)ϕ2

∫

Ω
ϕ2

.

This quotient is attained at a positive ϕ1 ∈ H that satisfies (1.2). Moreover λ1 is a
simple eigenvalue for −∆−a(x), and, if ϕ is a non-negative, non-trivial H-solution
of

{−∆ϕ − a(x)ϕ = λϕ in Ω

ϕ = 0 on ∂Ω

for some λ ∈ R, then λ = λ1.

Similarly, we can define H solutions of the evolution equation (1.8) with initial
condition u(0) = u0 ∈ L2(Ω) :

Definition. The operator L defined in Lemma 2.2 is a bounded below self-adjoint
operator with dense domain and generates an analytic semigroup (S(t))t≥0 in L2.

Hence for u0 ∈ L2(Ω), there exists a unique u := S(t)u0 ∈ C([0,∞), L2) ∩
C1((0,∞), L2) ∩ C((0,∞);H) solving

{

ut + Lu = 0 for t > 0

u(0) = u0,

which we call the H-solution (or simply the solution) of (1.8) with initial condition
u(0) = u0 ∈ L2(Ω).

The main results in this paper are the following.

Theorem 2.1. Assume a : Ω → [0,∞) satisfies (2.1). Let ϕ1 > 0 denote the first
eigenfunction for the operator −∆ − a(x) with zero Dirichlet boundary condition,
normalized by ‖ϕ1‖L2(Ω) = 1 and ζ0 denote the solution of (1.4). Then there exists
C = C(Ω, γ(a), r) > 0 such that

C−1ζ0 ≤ ϕ1 ≤ Cζ0.
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Theorem 2.2. Assume that a : Ω → [0,∞) satisfies (2.1). Let u0 ∈ L2(Ω),
u0 ≥ 0, u0 6≡ 0, and let u denote the solution of (1.8) with initial condition u0. Let
ζ0 denote again the solution of (1.4). Then

u(t) ≥ c(t)ζ0

for some c(t) > 0 depending on u0, Ω, γ(a), r and t.

Corollary 2.3. Under the assumptions of Theorem 2.2, we have more precisely

u(t) ≥ c(t)

(
∫

Ω

u0ζ0

)

ζ0,

where one can choose c(t) = e−K(t+1/t) for some K = K(Ω, γ(a), r) > 0.

Corollary 2.4. Assume a : Ω → [0,∞) satisfies (2.1) and let u solve (2.4) for
some f ≥ 0, then

u ≥ c

(
∫

Ω

fζ0

)

ζ0,

where c = c(Ω, γ(a), r).

Remarks.

• All of the previous results still hold for a sign-changing potential a(x) under
additional hypothesis :

Theorem 2.5. Suppose that a : Ω → R satisfies (2.1) and that

(2.5)

{

a(x) = a+(x) − a−(x) a+, a− ≥ 0

a+ ∈ L1
loc(Ω) and a−(x) ∈ L

∞

(Ω) .

Then Theorems 2.1 and 2.2 and Corollaries 2.3 and 2.4 still hold if the constants
are allowed to also depend on a−.

• Theorem 2.2 and Corollary 2.3 can be extended under an even less restrictive
hypothesis : suppose that for some M = M(a) > 0, γ = γ(a) > 0 and r > 2,

(2.6) γ
(

∫

Ω

|ϕ|r
)2/r

≤
∫

Ω

(

|∇ϕ|2 − a(x)ϕ2 + Mϕ2
)

for all ϕ ∈ C∞
c (Ω), and define H in this case as the completion of C∞

c (Ω) under
the norm

‖u‖2
H =

∫

Ω

(

|∇u|2 − a(x)u2 + Mu2
)

.

Theorem 2.6. Suppose that a(x) satisfies (2.5) and (2.6). Let u0 ∈ L2(Ω), u0 ≥ 0,
u0 6≡ 0, and let u denote the H-solution of (1.8) with initial condition u0. Then

u(t) ≥ c(t)

(
∫

Ω

u0ϕ1

)

ϕ1,
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where one can choose c(t) = e−K(t+1/t) for some K depending on Ω, γ(a), r, M
and p, and where 0 < ϕ1 ∈ H is the first eigenfunction for −∆ − a(x) normalized
by ‖ϕ1‖L2 = 1.

In Section 7 we outline the proofs of these theorems and mention some examples
of potentials satisfying (2.6) for which the stronger condition (2.1) may fail.

Observe that condition (2.6) implies the more standard inequality

inf
ϕ∈C∞

c (Ω)

∫

Ω
|∇ϕ|2 − a(x)ϕ2

∫

Ω
ϕ2

> −∞,

which is a necessary condition for the existence of global nonnegative solutions with
exponential growth to the linear parabolic equation (1.8) (see Cabré and Martel
[CM]).

• The method presented here for the parabolic problem also applies to equations
with mixed boundary condition, extending a result of [D] to the parabolic case. Let
Γ1, Γ2 be a partition of ∂Ω, with Γ1 6= ∅. For simplicity we can assume that Γ1, Γ2

are smooth, but this is not important.
In this context, let ζ̄ denote the solution of



















−∆ζ̄ = 1 in Ω

ζ̄ = 0 on Γ1

∂ζ̄

∂ν
= 0 on Γ2,

where ν denotes the unit outward normal vector to ∂Ω.

Theorem 2.7. Let u0 ∈ L2(Ω), u0 ≥ 0 and let u denote the solution to



























ut − ∆u = 0 in Ω × (0,∞)

u = 0 on Γ1 × (0,∞)

∂u

∂ν
= 0 on Γ2 × (0,∞)

u(0) = u0 in Ω.

Then

u(t) ≥ c(t)
(

∫

Ω

u0ζ̄
)

ζ̄,

where c(t) = e−K(t+1/t) for some K = K(Ω, Γ1, Γ2).

We omit its proof, which is a slight modification of the one given for Theorem 2.2.

3. Some preliminaries

We start this section with some preliminary results on the linear equation

(3.1)

{−∆u − a(x)u = f in Ω

u = 0 on ∂Ω,

when the potential a(x) satisfies (2.1). As mentioned before all solutions to (3.1)
are assumed to be in H.
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Lemma 3.1. Assume that a(x) satisfies (2.1) and that f ∈ L2(Ω). Then the
solution u to (3.1) satisfies

(3.2)

∫

Ω

u(−∆ζ) =

∫

Ω

a(x)uζ +

∫

Ω

fζ

for all ζ ∈ C2(Ω), ζ = 0 on ∂Ω, and all in the integrals in (3.2) exist and are finite.

In particular, by taking ζ = ζ̃ to be the solution of

(3.3)

{

−∆ζ̃0 = 1 in Ω

ζ̃0 = 0 on ∂Ω

we conclude that a(x)u + f ∈ L1
loc(Ω).

Proof. By working with f+, f− we can assume that f ≥ 0. Let

ak(x) = min(a(x), k), k > 0

and uk be the solution to (3.1) with the potential a(x) replaced by the potential
ak(x). Then it is easy to check that uk is nondecreasing in k, and converges to u
in L2(Ω). Now take ζ ∈ C2(Ω), ζ = 0 on ∂Ω. Then

(3.4)

∫

Ω

uk(−∆ζ) =

∫

Ω

ak(x)ukζ + fζ,

and note that here all the integrals are finite. By taking in particular ζ = ζ̃0 (where

ζ̃0 is the solution of (3.3)), and using Fatou’s lemma, we see that
∫

Ω
a(x)uζ̃0 exists

and is finite. Given any ζ ∈ C2(Ω), ζ = 0 on ∂Ω, we can find C > 0 so that

|ζ| ≤ Cζ̃0. It follows that we can pass now to the limit in (3.4) and conclude that
(3.2) holds. ¤

Lemma 3.2. Assume that a(x) satisfies (2.1) and let T : L2(Ω) → L2(Ω) be the
operator defined by Tf = u, where u is the H-solution to (3.1) (i.e. T = L−1 where
L was defined in Lemma 2.2). Then T is compact.

Proof. Let (fj) be a a bounded sequence in L2(Ω), and uj = Tfj . Then uj is

bounded in Lr(Ω) by (2.1). Let ζ̃0 be the solution to (3.3). Then, by (3.2) we have
∫

Ω

a(x)uj ζ̃0 ≤ ‖ζ̃0‖L∞

∫

Ω

|fj | + ‖ζ̃0‖C2

∫

Ω

|uj |.

Therefore −∆uj = a(x)uj + fj is bounded in L1
loc(Ω) and by the Gagliardo-

Nirenberg inequality uj is bounded in W 1,1
loc (Ω). We conclude that for a subsequence

(denoted the same), uj → u in Lq(Ω) for some fixed 1 ≤ q < n
n−1 , and a.e. To

conclude that uj converges strongly in L2(Ω), let ε > 0 be given. Then by Egorov’s
theorem there exists E ⊂ Ω measurable with |E| ≤ ε so that uj → u uniformly in
Ω \ E. Hence

lim sup

∫

Ω

|uj − u|2 ≤ lim sup

∫

Ω\E

|uj − u|2 + lim sup

∫

E

|uj − u|2

≤ ‖uj − u‖2
Lr |E|1−2/r

≤ Cε1−2/r

by the uniform bound of uj in Lr(Ω). ¤

To prove that the embedding H ⊂ L2(Ω) is compact we use the following result
combined with the previous lemma.
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Lemma 3.3. Let H, V be real Hilbert spaces and J : H → V be a bounded, linear,
map. Then J is compact if and only if JJ∗ is compact.

Proof. Clearly if J is compact then JJ∗ is compact.
Let ε > 0. Then the map Sε := JJ∗ + εI : V → V is selfadjoint and coercive, in

the sense that ‖Sεy‖V ≥ ε‖y‖V . It follows that Sε is invertible. Therefore, given
x ∈ H there is y ∈ V so that

(3.5) JJ∗y + εy = Jx.

But

(J∗y|x)H ≤ 1

2
‖x‖2

H +
1

2
‖J∗y‖2

H

and so

(3.6) (J∗y|x − J∗y)H ≤ 1

2
‖x‖2

H − 1

2
‖J∗y‖2

H ≤ 1

2
‖x‖2

H.

From (3.5) it follows that
y = ǫ−1(Jx − JJ∗y)

Plugging this in (3.6), we obtain

(3.7) (J∗(Jx − JJ∗y)|x − J∗y)H = ‖JJ∗y − Jx‖2
V ≤ ε

2
‖x‖2

H.

Now assume that JJ∗ is compact and let xj be a bounded sequence in H. Let M =
supj ‖xj‖H and set εk = 2−2k for k = 1, 2, . . . . Take k = 1 and let yj = S−1

ε1
(Jxj).

Then yj is a bounded sequence and since JJ∗ is compact there is a subsequence
and some z1 ∈ V , so that JJ∗yj → z1. Therefore, using (3.7) we see that there is
some j1 so that ‖Jxj1 −z1‖V ≤ 2M

√
ε1 = 2M . Using a diagonal argument one can

find a subsequence jk and zk ∈ V so that ‖Jxjl
− zk‖V ≤ 2−k+1M for all l ≥ k.

This implies that ‖zk+1 − zk‖V ≤ 2−k+2 and therefore zk is a Cauchy sequence in
V . Thus zk converges, and so Jxjk

is also convergent. ¤

We are now in a position to prove Lemma 2.2.

Proof of Lemma 2.2. Take V = L2(Ω), H = H and denote by J : H → L2(Ω) the
canonical injection. We see that T = JJ∗, where Tf = u, and u is the H-solution
to (3.1). By Lemma 3.2 JJ∗ is compact and hence by Lemma 3.3 the embedding
H ⊂ L2(Ω) is compact.

Since T is selfadjoint and compact, L = T−1 has a smallest eigenvalue. This
eigenvalue is simple, which can be proved in the same way as for smooth elliptic
operators.

In fact, let ϕ1 6≡ 0 be a nonnegative minimizer of

(3.8) λ1 = inf
ϕ∈C1

c (Ω)

∫

Ω

(

|∇ϕ|2 − a(x)ϕ2
)

∫

Ω
ϕ2

,

which exists by compactness of T . By the standard arguments of the calculus of
variations, ϕ1 satisfies (1.2) and by a version of the strong maximum principle (see
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e.g. [BC]), ϕ1 > 0. Now let ϕ denote another eigenfunction for λ1. Then for any
µ ∈ R we have that ψ = ϕ1 − µϕ satisfies the equation

(3.9)

{−∆ψ − a(x)ψ = λ1ψ in Ω

ψ = 0 on ∂Ω.

Now, because ψ satisfies (3.9), if ψ 6≡ 0 then it minimizes (3.8). Then also |ψ|
minimizes (3.8) and therefore satisfies the equation (3.9). Since

{

−∆|ψ| = a(x)|ψ| + λ1|ψ| ≥ 0 in Ω

|ψ| = 0 on ∂Ω,

by the strong maximum principle (see [BC]), we conclude that if ψ 6≡ 0 then |ψ| > cδ

a.e. in Ω, where c > 0. This combined with the fact that ψ ∈ W 1,1
loc (Ω) (by

Lemma 3.1) shows that either ψ > 0 or ψ < 0 in Ω (assuming Ω connected, see
for example [CH]). That is, for any µ ∈ R either ϕ ≥ µϕ1 or ϕ ≤ µϕ1. Setting
µ0 = sup{µ : ϕ ≥ µϕ1} we see that ϕ = µ0ϕ1. ¤

The last two lemmas of this section will allow us to reduce the proofs of the main
results of this paper to the case of a bounded potential. Define

(3.10) ak = min(a, k), k > 0.

We denote by λk
1 , ϕk

1 , ζk
0 the first eigenvalue, first eigenfunction and solution of (1.4)

associated with the potential ak, which are all defined in the usual sense, since ak

is bounded. Let ζ0 be the solution to (1.4) in the sense of Lemma 2.1. Since a
satisfies (2.1) (hence (1.1)), it is easy to check that ζk

0 → ζ0 in L2(Ω).

Lemma 3.4. Normalize ϕk
1 by ‖ϕk

1‖L2(Ω) = 1. Then

λk
1 → λ1 and ϕk

1 → ϕ1 in H

as k → ∞, where λ1 is given by (1.1) and ϕ1 is given by Lemma 2.2, normalized
so that ‖ϕ1‖L2(Ω) = 1.

Proof. Observe that

(3.11) λk
1 = inf

ϕ∈C∞

c (Ω)

∫

Ω
|∇ϕ|2 −

∫

Ω
ak(x)ϕ2

∫

Ω
ϕ2

is non-increasing as k increases. Therefore the limit lim
k→∞

λk
1 exists. We claim that

lim
k→∞

λk
1 = λ1.

Indeed, note that λ1 ≤ λk
1 for all k, and also that for any ϕ ∈ C∞

c (Ω)

(3.12)

∫

Ω

ak(x)ϕ2 →
∫

Ω

a(x)ϕ2
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by monotone convergence. Take now ϕ ∈ C∞
c (Ω) with ‖ϕ‖L2 = 1. Then

λk
1 ≤

∫

Ω

|∇ϕ|2 − ak(x)ϕ2,

and using (3.12) we see that

lim sup λk
1 ≤

∫

Ω

|∇ϕ|2 − a(x)ϕ2.

Taking the infimum over ϕ we obtain

lim supλk
1 ≤ λ1.

Recall that we normalize ϕk
1 by ‖ϕk

1‖L2 = 1 and so

(3.13)

∫

Ω

|∇ϕk
1 |2 −

∫

Ω

ak(x)|ϕk
1 |

2
= λk

1 → λ1 as k → ∞.

In particular ϕk
1 is bounded in H and by Lemma 2.2 we can find a subsequence

such that ϕk
1 → ϕ1 in L2(Ω). We observe that ϕ1 ≥ 0 and ‖ϕ1‖L2 = 1.

Claim. ϕ1 minimizes

(3.14) λ1 =

∫

Ω
|∇ϕ|2 −

∫

Ω
a(x)ϕ2

∫

Ω
ϕ2

.

Indeed, testing the equation for ϕk
1 with ϕ ∈ C∞

c (Ω), ϕ ≥ 0 we find
∫

Ω

∇ϕk
1 · ∇ϕ −

∫

Ω

ak(x)ϕk
1ϕ = λk

1

∫

Ω

ϕk
1ϕ

and therefore
∫

Ω

∇ϕk
1 · ∇ϕ −

∫

Ω

a(x)ϕk
1ϕ ≤ λk

1

∫

Ω

ϕk
1ϕ.

Taking limits on both sides, we obtain
∫

Ω

∇ϕ1 · ∇ϕ −
∫

Ω

a(x)ϕ1ϕ ≤ λ1

∫

Ω

ϕ1ϕ.

By density this is true for all ϕ ∈ H, ϕ ≥ 0 and taking ϕ = ϕ1 we find that
∫

Ω
|∇ϕ1|2 −

∫

Ω
a(x)ϕ2

1
∫

Ω
ϕ2

1

≤ λ1

and the claim is proved.
Then the standard arguments of the calculus of variations show that ϕ1 satisfies

(1.2), and hence ϕ1 is indeed the first eigenfunction of −∆ − a(x). The strong
convergence ϕk

1 → ϕ1 in H, is a consequence of

‖ϕ‖H = λ1 ≤ ‖ϕk
1‖H ≤ λk

1 .

The first inequality follows from the definition of λ1 and the second from the fact
that ak ≤ a. This implies that ‖ϕk

1‖H → ‖ϕ‖H . ¤
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Lemma 3.5. It suffices to prove Theorems 2.1 and 2.2 and Corollaries 2.3 and
2.4 in the case where the potential a(x) is bounded.

Proof. We only give the argument for Theorem 2.1, which can be easily carried
out for the other results. Let a ≥ 0 be any potential satisfying (2.1) and ak its
truncation defined by (3.10). Observe that

inf
ϕ∈C1

c (Ω)

∫

Ω
|∇ϕ|2 −

∫

Ω
ak(x)ϕ2

( ∫

Ω
|ϕ|r

)2/r
≥ γ(a).

So if Theorem 2.1 holds for bounded potentials, we must have

(3.15) C−1ζk
0 ≤ ϕk

1 ≤ Cζk
0 ,

where ζk
0 , ϕk

1 were defined at the beginning of this section and C = C(Ω, γ(a)) > 0
is independent of k. Since ζk

0 → ζ0 in L2 and Lemma 3.4 holds, we can pass to the
limit in (3.15). ¤

4. Proof of Theorem 2.1

By Lemma 3.5 in the previous section it is enough to establish the result in the
case that a(x) is bounded.

The main idea is to consider the function

w =
ϕ1

ζ0

and notice that it satisfies (formally) an elliptic equation

(4.1)

{

−∇ · (ζ2
0∇w) = λ1ϕ1ζ0 − ϕ1 in Ω

ζ2
0∇w · ν = 0 on ∂Ω,

where ν denotes the outer unit normal to the boundary ∂Ω. Then we will use
Moser’s iteration argument, combined with a Sobolev inequality to prove that w is
bounded.

Step 1. Formal derivation of an iteration formula: there exists q > 2 and
C > 0 such that for all j ≥ 1

(4.2)
(

∫

Ω

ζ2
0wqj

)2/q

≤ Cj

∫

Ω

ζ2
0w2j .

Proof. Multiplying (4.1) by w2j−1 where j ≥ 1, and integrating by parts we obtain:

(4.3)
2j − 1

j2

∫

Ω

ζ2
0 |∇wj |2 =

∫

Ω

(λ1ϕ1ζ0 − ϕ1)w
2j−1 ≤ λ1

∫

Ω

ζ2
0w2j .

Now we use the next lemma, which is a kind of Sobolev inequality.
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Lemma 4.1. Assume u satisfies

(4.4)

{−∆u − a(x)u = c(x)u + f in Ω

u = 0 on ∂Ω,

where c, f ∈ L∞(Ω), f ≥ 0, f 6≡ 0. Assume also that a satisfies (2.1). Then for
any 2 ≤ q ≤ r there is a constant C > 0 depending only Ω, r, γ(a), ‖c‖L∞ and f
such that

(

∫

Ω

us|ϕ|q
)2/q

≤ C

∫

Ω

u2
(

|∇ϕ|2 + ϕ2
)

for all ϕ ∈ C1(Ω), where s is given by the relation

(4.5)
s

r
=

q − 2

r − 2
.

(A proof of this lemma is given in Step 4.)

Proof of Step 1 continued. Taking u = ζ0, f ≡ 1, c ≡ 0 and s = 2, by Lemma 4.1
there is q = 2

(

1 + r−2
r

)

> 2 and C > 0 such that

(4.6)
(

∫

Ω

ζ2
0 |ϕ|q

)2/q

≤ C

∫

Ω

ζ2
0 (|∇ϕ|2 + ϕ2)

for all ϕ ∈ C1(Ω). This applied to ϕ = wj and combined with (4.3) yields (4.2).

Step 2.

(4.7) ϕ1 ≤ Cζ0.

Proof. We iterate (4.2): define µ = q/2 > 1 and jk = 2µk, for k = 0, 1, . . . . Let

θk =
(

∫

Ω

ζ2
0wjk

)1/jk

.

Then (4.2) can be rewritten as

θk+1 ≤
(

Cµk
)1/µk

θk.

Using this recursively yields

θk ≤ Cθ0 = C
(

∫

Ω

ζ2
0

)1/2

< ∞

for all k = 0, 1, 2, . . . with C independent of k. But

lim
k→∞

θk = sup
Ω

w

(because ζ0 > 0 in Ω) and this shows that w ≤ C.

Step 3. Justification of Step 1 To be rigorous, we need to justify the derivation
of (4.2), which has been formal only. One possible approach is the following.
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Proof of (4.2). Consider the family of smooth domains

Ωε =
{

x ∈ R
n | dist(x,Ω) < ε

}

,

where ε > 0 is small. Let ζε
0 be the solution to

(4.8)

{

−∆ζε
0 − a(x)ζε

0 = 1 in Ωε

ζε
0 = 0 on ∂Ωε,

where a is extended by 0 outside Ω. Then ζε
0 ց ζ0 as ε → uniformly in Ω (because

we have a uniform bound in C1,α(Ω).) Furthermore, ζε
0 ≥ cε > 0 in Ω, by the

strong maximum principle. Letting

wε =
ϕ1

ζε
0

,

it follows that wε ∈ C1,α(Ω), wε = 0 on ∂Ω, and all the formal computations done
with w apply rigorously to wε so that (4.2) holds for wε in place of w and ζε

0 in
place of ζ0. It is then easy to pass to the limit as ε → 0, using e.g. monotone
convergence.

Step 4. Proof of Lemma 4.1

First observe that u ≥ cδ for some c > 0 (see Brezis and Cabré [BC] for example),
and recall Hardy’s inequality

∫

Ω

ψ2

δ2
≤ C

∫

Ω

|∇ψ|2 for all ψ ∈ C1
c (Ω),

where δ(x) = dist(x, ∂Ω). Using this with ψ = δϕ as in [D] it is easy to check that

(4.9)

∫

Ω

ϕ2 ≤ C

∫

Ω

δ2(|∇ϕ|2 + ϕ2)

for all ϕ ∈ C1(Ω). This shows that

(4.10)

∫

Ω

ϕ2 ≤ C

∫

Ω

u2
(

|∇ϕ|2 + ϕ2
)

.

The next step consists in proving

(4.11)
(

∫

Ω

|uϕ|r
)2/r

≤ C

∫

Ω

u2
(

|∇ϕ|2 + ϕ2
)

for all ϕ ∈ C1(Ω).

To achieve this, note that by (2.1) we have

(4.12)
(

∫

Ω

|uϕ|r
)2/r

≤ C

∫

Ω

|∇(uϕ)|2 −
∫

Ω

a(x)(uϕ)2.

But

(4.13)

∫

Ω

|∇(uϕ)|2 =

∫

Ω

u2|∇ϕ|2 +

∫

Ω

∇u∇(uϕ2)
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and, multiplying (4.4) by uϕ2 and integrating we get

(4.14)

∫

Ω

∇u∇(uϕ2) −
∫

Ω

a(x)(uϕ)2 =

∫

Ω

c(x)u2ϕ2 +

∫

Ω

fuϕ2.

Combining (4.12), (4.13) and (4.14) we find

(

∫

Ω

|uϕ|r
)2/r

≤ C

∫

Ω

u2|∇ϕ|2 +

∫

Ω

c(x)u2ϕ2 +

∫

Ω

fuϕ2.

The last two terms in the right hand side can be estimated by

∫

Ω

c(x)u2ϕ2 +

∫

Ω

fuϕ2 ≤ ‖c‖L∞

∫

Ω

u2ϕ2 + ‖f‖L∞

(

∫

Ω

u2ϕ2
)1/2(

∫

Ω

ϕ2
)1/2

≤ C

∫

Ω

u2
(

|∇ϕ|2 + ϕ2
)

by (4.10). This proves (4.11).
Finally, we interpolate (4.10) and (4.11): by Hölder’s inequality

∫

Ω

us|ϕ|q ≤
(

∫

Ω

ur|ϕ|r
)λ(

∫

Ω

ϕ2
)1−λ

if λ and s are chosen so that

s = λr and rλ + 2(1 − λ) = q.

This gives the relation (4.5) and proves the lemma. ¤

Step 5.

ζ0 ≤ Cϕ1

Proof. This time we consider the quotient

w =
ζ0

ϕ1

which satisfies:
{

−∇ · (ϕ2
1∇w) = ϕ1 − λ1ϕ1ζ0 in Ω

ϕ2
1∇w · ν = 0 on ∂Ω.

Again we multiply this equation by ϕ = w2j−1 to find

2j − 1

j2

∫

Ω

ϕ2
1|∇wj |2 =

∫

Ω

(ϕ1 − λ1ϕ1ζ0)w
2j−1

≤
∫

Ω

ϕ1w
2j−1.

Here we use (4.7) to conclude that

ϕ1w
2j−1 ≤ Cζ0w

2j−1 = Cϕ1w
2j ,
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and so

(4.15)

∫

Ω

ϕ2
1|∇wj |2 ≤ Cj

∫

Ω

ϕ1w
2j .

Letting ϕ = wj and using consecutively Hölder’s inequality and Lemma 4.1 (with
u = ϕ1, f ≡ 0, c = λ1, s = 0 and q = 2), it follows from (4.15) that

∫

Ω

ϕ2
1|∇ϕ|2 ≤ Cj

(
∫

Ω

ϕ2
1ϕ

2

)1/2 (
∫

Ω

ϕ2

)1/2

≤ Cj

(
∫

Ω

ϕ2
1ϕ

2

)1/2 (
∫

Ω

ϕ2
1

(

ϕ2 + |∇ϕ|2
)

)1/2

.

And by Young’s inequality,

∫

Ω

ϕ2
1|∇ϕ|2 ≤ Cj2

∫

Ω

ϕ2
1ϕ

2 + 1/2

(
∫

Ω

ϕ2
1

(

ϕ2 + |∇ϕ|2
)

)

so that

(4.16)

∫

Ω

ϕ2
1|∇ϕ|2 ≤ Cj2

∫

Ω

ϕ2
1ϕ

2.

Using Lemma 4.1 with u = ϕ1, f ≡ 0, c = λ1 and s = 2, we obtain a constant
q = 2

(

1 + r−2
r

)

> 2 and C > 0 such that

(

∫

Ω

ϕ2
1w

qj
)2/q

≤ C

∫

Ω

ϕ2
1

(

|∇wj |2 + w2j
)

.

Combining with (4.16) we obtain

(4.17)
(

∫

Ω

ϕ2
1w

qj
)2/q

≤ Cj2

∫

Ω

ϕ2
1w

2j .

An iteration argument as in Step 2 then shows that

sup
Ω

w ≤ C.

As in Step 3, we need to justify the derivation of (4.17) by an approximation
argument. This time however, it is more convenient to consider

Ωε :=
{

x ∈ Ω | dist(x, ∂Ω) > ε
}

,

let ζε
0 solve (4.8) and do all of the above computations in Ωε in place of Ω. We

leave the details to the reader. ¤
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5. Proof of Theorem 2.2

As in the elliptic case, using Lemma 3.5, it is enough to establish the result for
bounded a(x).

Let u be the solution of (1.8) and ζ0 be the solution of (1.4). We note that
u(t) ≥ c(t)δ for some positive function c(t) (see [BCz]). We will replace u(t) with
u(t − τ) where τ > 0 is fixed, and so we can assume

u(t) ≥ cδ for t ∈ [0, T ],

where T > 0 is fixed and c > 0 is independent of t for t ∈ [0, T ]. By (4.9) we have
then

(5.1)

∫

Ω

ϕ2 ≤ C

∫

Ω

u(t)2
(

|∇ϕ|2 + ϕ2
)

for t ∈ [0, T ], with C independent of t. Since by Theorem 2.1

ζ0 ≤ Cϕ1,

where ϕ1 denotes the first eigenfunction for −∆ − a(x), it is enough to show that
for some constant C we have

ϕ1 ≤ Cu(t).

We will work with
v = e−λ1tϕ1,

which satisfies

{

∂tv − ∆v − a(x)v = 0 in Ω × (0,∞)

v = 0 on ∂Ω × (0,∞).

Set
w =

v

u

and note that it satisfies formally

(5.2)

{

u2wt −∇ ·
(

u2∇w
)

= 0 in Ω × (0, T )

u2∇w · ν = 0 on ∂Ω × (0, T ).

We claim that
w(t) ≤ Ct−β for t ∈ [0, T ],

where β, C > 0 are independent of t.
To accomplish this, we follow the idea in the paper by Brezis and Cazenave

[BCz2], which is inspired by a work of Fabes and Stroock [FS]. To simplify the
exposition, we first work formally with (5.2).

First, for j ≥ 1 and t ∈ [0, T ] we define the quantity

θj(t) =

∫

Ω

u(t)2w(t)j .
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We also use the notation
ϕ = wj .

Our first step is to derive

Claim 1.

(5.3) θ′2j(t) + 2‖uϕ‖2
H + 2

j − 1

j

∫

Ω

u2|∇ϕ|2 = 0,

where ‖ · ‖H was defined in (2.3).

Proof of (5.3). Multiplying (5.2) by w2j−1 we find

(5.4)
1

2j

∫

Ω

u2
(

w2j
)

t
+

2j − 1

j2

∫

Ω

u2|∇wj |2 = 0.

Then observe that

(5.5)
d

dt
θ2j(t) = θ2j(t)

′ = 2

∫

Ω

uutϕ
2 +

∫

Ω

u2
(

ϕ2
)

t
.

Hence by (5.4) and using (5.5) we obtain

(5.6)
1

2j

(

θ′2j − 2

∫

Ω

uutϕ
2
)

+
2j − 1

j2

∫

Ω

u2|∇wj |2 = 0.

Now we multiply (1.8) by uϕ2 and integrate on Ω. This gives the relation

∫

Ω

uutϕ
2 +

∫

Ω

∇u∇(uϕ2) −
∫

Ω

au2ϕ2 = 0.

Therefore
∫

Ω

uutϕ
2 =

∫

Ω

au2ϕ2 −
∫

Ω

∇u∇(uϕ2)

=

∫

Ω

au2ϕ2 −
∫

Ω

|∇(uϕ)|2 +

∫

Ω

u2|∇ϕ|2.

Substituting the expression
∫

uutϕ
2 from the previous equation in (5.6) yields (5.3).

Claim 2. ¿From (5.3) immediately follows that θ′2j(t) ≤ 0 and therefore

(5.7) θj(t) ≤ θj(0) for all t ∈ [0, T ] and j ≥ 2.

Claim 3. There is constant C such that

(5.8) θ′2j(t) +
1

C

θ2j(t)
1+γ

θj(0)2γ
≤ θ2j(t) for t ∈ [0, T ],

where γ > 0 depends only on r.

Proof. By Hölder’s inequality

θ2j(t) =

∫

Ω

u2ϕ2 ≤
(

∫

Ω

(uϕ)r
)

2
3r−4

(

∫

Ω

ϕ2
)

r−2

3r−4
(

∫

Ω

u2ϕ
)

2r−4

3r−4

.
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Now we use assumption (2.1) and (5.1) to get

θ2j(t) ≤ C‖uϕ‖
r

3r−4

H

(

∫

Ω

u2
(

|∇ϕ|2 + ϕ2
)

)

r−2

3r−4
(

∫

Ω

u2ϕ
)

2r−4

3r−4

= C‖uϕ‖
r

3r−4

H

(

∫

Ω

u2|∇ϕ|2 + θ2j(t)
)

r−2

3r−4

θj(t)
2r−4

3r−4 .

And by Young’s inequality,

(5.9) θ2j(t) ≤ C
(

‖uϕ‖2
H +

∫

Ω

u2|∇ϕ|2 + θ2j(t)
)

2r−2

3r−4

θj(t)
2r−4

3r−4 .

Let

γ =
3r − 4

2r − 2
− 1 > 0,

so that by (5.9) and (5.7)

(5.10) θ2j(t)
1+γ ≤ C

(

‖uϕ‖2
H +

∫

Ω

u2|∇ϕ|2 + θ2j(t)
)

θj(0)2γ .

Rearranging (5.10) yields

1

C

θ2j(t)
1+γ

θj(0)2γ
− θ2j(t) ≤ ‖uϕ‖2

H +

∫

Ω

u2|∇ϕ|2,

and combining the last expression with (5.3) we obtain (5.8).

Claim 4. Using (5.8) we have

(5.11) θ2j(t) ≤ Ct−1/γθj(0)2 t ∈ [0, T ].

The derivation of this estimate has been formal only but, as in Step 3 of Section 4,
we can make it rigorous using the same approximation argument on Ω.

Claim 5. Iterating (5.11) we find

‖w(t)‖L∞ ≤ Ct−1/2γ for t ∈ [0, T ].

Indeed, for k = 1, 2, . . . set tk = t(1 − 2−k+1) and jk = 2k. Then tk+1 − tk = 2−kt.
So from (5.11) we have

(5.12)
θjk+1

(tk+1) = θ2jk
(tk + 2−kt)

≤ C2k/γ t−1/γθjk
(tk)2.

But recall that

θj(t) =

∫

Ω

u(t)2w(t)j ,

so from (5.12) we have

(

∫

Ω

u(tk+1)
2w(tk+1)

2k+1
)1/2k+1

≤
(

C2k/γ t−1/γ
)1/2k+1(

∫

Ω

u(tk)2w(tk)2
k
)1/2k

≤ C ′t−
1
γ

∑ k+1

j=2
2−j

(

∫

Ω

u(0)2w(0)2
)1/2

.

Letting k → ∞ we find
sup
Ω

w ≤ C ′t−1/2γ‖ϕ1‖L2 .

¤
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6. Proof of Corollaries 2.3 and 2.4

Again, it is enough to reduce to the case where a(x) is bounded.

Step 1. A first estimate involving δ(x) = dist(x, ∂Ω).
Using a fine version of the maximum principle for the heat equation (see [BCz]

for the time dependence of the constant and [M] for the dependence to the initial
condition), we have that

u(t) ≥ e−K/t

(
∫

Ω

u0δ

)

δ(x) for t ∈ [0, T ],

where K = K(Ω, T ) > 0. Letting µ1 > 0 and ψ1 > 0 be the first eigenvalue and
eigenfunction of the Laplace operator (with zero boundary condition) and possibly
increasing the constant K, it follows that

u(t) ≥ e−K/t

(
∫

Ω

u0δ

)

ψ1(x) for t ∈ [0, 1],

where K = K(Ω). Now let v(t) = eµ1−K
(∫

Ω
u0δ

)

e−µ1tψ1(x). Then

{

vt − ∆v = 0

v(1) ≤ u(1).

So by the maximum principle u(t) ≥ v(t) for t ∈ (1,∞) and we finally obtain

(6.1) u(t) ≥ e−K(t+1/t)

(
∫

Ω

u0δ

)

δ(x) for t ∈ [0,∞),

where K = K(Ω).

Step 2. An estimate for ux0 = S(t)δx0
.

First, looking carefully at the previous section, we see that if u ≥ 0 solves (1.8)
and

u(t) ≥ δ(x) for t ∈ [0, T ],

then

(6.2) u(t) ≥ Ctβe−λ1tζ0 for t ∈ [0, T ],

where C and β depend only on Ω and γ(a).
Next, fix a ball B ⊂⊂ Ω and for x0 ∈ B, let δx0

denote the Dirac mass supported
by {x0} and ux0 the solution of (1.8) with initial condition u0 = δx0

. Given t0 > 0,
we have by (6.1),

ux0(t0) ≥ δ(x0)e
−K(t0+1/t0)δ(x) ≥ e−K′(t0+1/t0)δ(x),

where K ′ depends only on Ω. Hence, for t ∈ [0, T ]

ux0(t + t0) ≥ e−K′(t0+1/t0)S(t)δ(x) ≥
ce−K′(t0+1/t0)S(t)ψ1(x) ≥ ce−K′(t0+1/t0)e−µ1tψ1(x) ≥ ce−K(t0+1/t0+T )δ(x),
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where K = K(Ω). Using (6.2), we obtain for t ∈ [0, T ]

ux0(t + t0) ≥ Ctβe−λ1te−K(t0+1/t0+T )ζ0,

so that, choosing t = T = t0

ux0(2t0) ≥ e−K′′(t0+1/t0)ζ0,

where K ′′ depends solely on Ω and γ(a). Since t0 > 0 was chosen arbitrarily, we
finally obtain for all t > 0

(6.3) ux0(t) ≥ e−K′′(t+1/t)ζ0.

Step 3. Let uB be the solution of (1.8) with initial condition u0 = χB . Proceeding
as in the previous step, we can show that

(6.4) uB ≥ e−K(t+1/t)ζ0.

Now, let u be the solution of (1.8) with arbitrary initial condition u0 ∈ L2(Ω),
u0 ≥ 0. Using (6.3), we then have for x ∈ B

u(t, x) = 〈δx, S(t)u0〉 =

∫

Ω

u0u
x ≥ e−K′′(t+1/t)

∫

Ω

u0ζ0.

In other words,

u(t) ≥ e−K′′(t+1/t)

(
∫

Ω

u0ζ0

)

χB .

Hence, using (6.4), it follows that

u(2t) ≥ e−K(t+1/t)

(
∫

Ω

u0ζ0

)

ζ0

with K = K(Ω, γ(a)), which completes the proof of Corollary 2.3.

For Corollary 2.4, one just needs to apply Corollary 2.3 and Duhamel’s principle :
if u solves (2.4) then

u =

∫ 1

0

S(s)fds ≥
(

∫ 1

0

e−K(s+1/s)ds

) (
∫

Ω

fζ0

)

ζ0.

7. Further results and open problems.

In this section, we question the optimality of our assumption (2.1) on the poten-
tial a(x). As we shall see, potentials of the form a(x) = c/d(x)2 where

d(x) = dist(x,Σ)

is the distance function to an embedded manifold Σ ⊂ R
n, do not necessarily satisfy

our assumption (2.1) but its weaker version (2.6). As stated in Theorem 2.6, some
comparison results can still be obtained. The outline of the proofs of Theorems 2.5
and 2.6 is then given. Finally, we ask whether pointwise estimates for the Green’s
function of the operator −∆ − a(x) can be obtained.

First, we state the following generalized Hardy inequalities :
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Theorem 7.1. Let Σ be a smooth manifold of codimension k 6= 2 embedded in R
n

and d(x) = dist(x,Σ).

• If Σ is compact then for any ǫ > 0 and 2 < r < 2n/(n− 2), there exist C(ǫ) > 0,
γ > 0 such that

C(ǫ)

∫

Ω

ϕ2 +

∫

Ω

|∇ϕ|2 − (k − 2 − ǫ)2

4

∫

Ω

ϕ2

d2
≥ γ

(
∫

Ω

|ϕ|r
)2/r

for all ϕ ∈ C∞
c (Ω \ Σ).

•If Σ is oriented then for some r > 2, there exist C, γ > 0 such that

C

∫

Ω

ϕ2 +

∫

Ω

|∇ϕ|2 − (k − 2)2

4

∫

Ω

ϕ2

d2
≥ γ

(
∫

Ω

|ϕ|r
)2/r

for all ϕ ∈ C∞
c (Ω \ Σ).

• If Σ is such that ∆dk−2 ≤ 0 in D′(Ω \Σ), then for any 2 < r < 2n/(n− 2) there
exists γ > 0 such that

∫

Ω

|∇ϕ|2 − (k − 2)2

4

∫

Ω

ϕ2

d2
≥ γ

(
∫

Ω

|ϕ|r
)2/r

for all ϕ ∈ C∞
c (Ω \ Σ).

•In particular if Σ = ∂Ω and Ω is convex then for any 2 < r < 2n/(n − 2) there
exists γ > 0 such that

∫

Ω

|∇ϕ|2 − 1

4

∫

Ω

ϕ2

d2
≥ γ

(
∫

Ω

|ϕ|r
)2/r

for all ϕ ∈ C∞
c (Ω).

The fourth inequality was discovered with γ = 0 by Marcus, Mizel and Pinchover
[MMP], and Matskevich and Sobolevskii [MSo]. It was then improved by Brezis
and Marcus [BM] to the case γ > 0 and r = 2. The general case for the third and
fourth inequalities is due to Barbatis, Filippas and Tertikas. See [BFT]. We will
prove the two others in a forthcoming publication.

Observe that the first two inequalities in Theorem 7.1 provide examples of po-
tentials for which (2.6) holds whereas (2.1) may fail. We now describe how to adapt
the methods of this paper to prove Theorems 2.5 and 2.6.

Outline of the proof of Theorem 2.5. The proof of our results can be
adapted to the case of a sign-changing potential a = a+ − a− satisfying (2.1) and
(2.5). To do so, one just needs to replace the Laplace operator −∆ by −∆+a−(x),
whenever it occurs. One must make sure that the two following properties remain
true :

Strong maximum principle in the elliptic case. Suppose that (2.1) and (2.5)
hold and that for given say smooth f ≥ 0 and u ≥ 0, we have

{

−∆u + a−(x)u ≥ f in Ω

u ≥ 0 on ∂Ω

Then, letting δ(x) = dist(x, ∂Ω), there exists c = c(Ω, ‖a−‖L∞ ) > 0 such that

u ≥ c

(
∫

Ω

f(x)δ(x)dx

)

δ
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Strong maximum principle in the parabolic case. Suppose that (2.1) and
(2.5) hold and that for given say smooth u0 ≥ 0 and u ≥ 0, we have











ut − ∆u + a−(x)u ≥ 0 in Ω × (0, T )

u = 0 on ∂Ω × (0, T )

u(0) ≥ u0 in Ω

Then, letting δ(x) = dist(x, ∂Ω), there exists K = K(Ω, ‖a−‖L∞ ) > 0 such that

u ≥ c(t)

(
∫

Ω

u0(x)δ(x)dx

)

δ

where c(t) = e−K(t+1/t).

The elliptic maximum principle can be obtained by combining Lemma 3.4 of
[GT] and the methods of [BC]. For the parabolic case, one must first obtain an
inequality of the form

u(t) ≥ c(t)δ(x)

This can be done as in [BCz], provided the heat kernel of the operator ∂t−∆+a−(x)
is bounded below by a Gaussian in R

n. For the derivation of the Gaussian bound,
see e.g. [Da]. To get the full inequality, one then has to repeat the arguments of
[M], much as we did in Section 6. ¤

Proof of Theorem 2.6.

Pick M > 0 so that (2.6) holds and let ã(x) = a(x) − M . Since a satisfies (2.6),
ã satisfies (2.1). Set ũ = e−Mtu where u solves (1.8) with initial condition u0 ≥ 0
and observe that ũ satisfies (1.8) with a replaced by ã.

Combining Theorem 2.1 and Corollary 2.4 (which hold for ã by Theorem 2.5)
and observing that −∆− a(x) and −∆− ã(x) have the same first eigenfunction, it
follows that

ũ(t) ≥ c(t)

(
∫

Ω

u0ϕ1

)

ϕ1

and the estimate follows for u. ¤

The Green’s function

Another direction interesting to pursue concerns the Green’s function for the
operator −∆ − a(x). We assume here that a(x) satisfies (2.1). Let Gk be the
Green’s function for the operator −∆ − ak(x) where ak(x) = min(a(x), k), that is

{

−∆yGk(x, ·) − ak(y)Gk(x, ·) = δx in Ω

Gk(x, ·) = 0 on ∂Ω,

where δx denotes the Dirac measure at some x ∈ Ω. Then one can prove the
following

Lemma 7.2. We have Gk ≥ 0 and the sequence Gk is non-decreasing and bounded
in L1(Ω × Ω). Therefore it converges to a function G ∈ L1(Ω × Ω). Moreover, for
any f ∈ L∞(Ω) the solution u to

{−∆u − a(x)u = f in Ω

u = 0 on ∂Ω
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can be represented as

u(x) =

∫

Ω

G(x, y)f(y) dy a.e. in Ω.

Then, as a consequence of the comparison result in Corollary 2.4 we have the
following

Corollary 7.3. There exists a constant c > 0 depending on Ω, r, γ(a) such that

G(x, y) ≥ cζ0(x)ζ0(y) a.e. in Ω × Ω.

We have not investigated the possibility of establishing pointwise upper bounds
for G. For the special case of the inverse square potential a(x) = c/|x|2, in dimen-
sion n ≥ 3 and with 0 < c < (n − 2)2/4, Milman and Semenov [MS] established
upper and lower bounds for the heat kernel associated to the operator −∆ − a(x),
from which upper bounds for the Green’s function can be derived.
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