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A NONLINEAR ELLIPTIC PDE WITH

THE INVERSE SQUARE POTENTIAL

Louis Dupaigne

0. Introduction

Statement of the problem.

This paper is concerned with the following equation :

(Pt,p)















−∆u−
c

|x|2
u = up + tf in Ω

u > 0 in Ω

u = 0 on ∂Ω

Here, Ω is a smooth bounded open set of R
n (n ≥ 3) containing the origin, c > 0,

p > 1, t > 0 are constants and f 6≡ 0 is a smooth, bounded, nonnegative function.
We assume from now on that

(0.1) 0 < c ≤ c0 :=
(n− 2)2

4

The relevance of the constant c0 will appear after we clarify the notion of a
solution of (Pt,p).

Three types of solution are defined thereafter : weak solutions, which provide a
good setting for non-existence proofs (see Theorem 1 and Proposition 2.1), H1

0 (Ω)
solutions, for which uniqueness results can be established (see Theorem 2) and
strong solutions, which set the optimal regularity one can hope for (see Theorem 1
and Lemma 1.5.)

We shall say that u ∈ L1(Ω) is a weak solution of (Pt,p) if u ≥ 0 a.e. and if it
satisfies the two following conditions :











∫

Ω

(

u

|x|2
+ up

)

dist(x, ∂Ω) dx <∞

∫

Ω
u
(

−∆φ− c
|x|2φ

)

=
∫

Ω
(up + tf)φ for φ ∈ C2(Ω̄) , φ|∂Ω = 0
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2 LOUIS DUPAIGNE

Observe that the first condition merely ensures that the integrals in the second
equation make sense.

An H1
0(Ω) solution is a function u ∈ H1

0 (Ω) such that u ≥ 0 a.e., up ∈ L
2n

n+2 (Ω)
and

∫

Ω

∇u∇φ−

∫

Ω

c

|x|2
uφ =

∫

Ω

(up + tf)φ for all φ ∈ H1
0 (Ω)

All integrals are well defined because of Sobolev’s and Hardy’s inequalities (see
(0.3) for the latter.)

Finally, a strong solution u is a C2(Ω̄ \ {0}) function satisfying the system of
equations (Pt,p) everywhere except possibly at the origin, such that for some C > 0,

0 ≤ u ≤ C |x|−a

where

(0.2) a :=
n− 2 −

√

(n− 2)2 − 4c

2
> 0

Observe that −a is the larger root of P (X) = X(X − 1) + (n− 1)X + c = 0.
Also define a′ by

(0.2’) −a′ is the smaller root of P(X)

• Why are definitions (0.1), (0.2) important ?

The constant c0 defined in (0.1) is the best constant in Hardy’s inequality :

(0.3)

∫

Ω

|∇u|2 ≥ c0

∫

Ω

u2

|x|2
for all u ∈ H1

0 (Ω)

Consequently, when c < c0, the operator −∆ − c
|x|2 is coercive in H1

0 (Ω). This

turns out to be crucial since Theorem 2.2 in [BG] implies that if c > c0, there is no
nonnegative u, u 6≡ 0 such that −∆u − c

|x|2u ≥ 0 and hence no solution of (Pt,p),

even in the weak sense. We arrive at the same conclusion if c > 0 is arbitrary and
the space dimension n is 1 or 2, as can be deduced from the first lines of the proof
of Theorem 1.2 in [BC]. We therefore restrict to n ≥ 3.

The constant a defined in (0.2) plays a central role, even in the linear theory.
Indeed, if f 6≡ 0 is say, a smooth nonnegative bounded function on Ω and u ∈ H1

0 (Ω)
is the unique solution of
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(0.4)







−∆u−
c

|x|2
u = f in Ω

u = 0 on ∂Ω

then u(x) ≥ C|x|−a near the origin, for some C > 0 (see Lemma 1.5 .) In
particular, strong solutions are the nicest one can hope for. In addition, ψ := |x|−a

solves −∆ψ − c
|x|2ψ = 0 in R

n \ {0}.

We introduce a third constant, the exponent

(0.5) p0 := 1 +
n− 2 +

√

(n− 2)2 − 4c

c

which satisfies

a+ 2 = p0 a

Roughly speaking, if u behaves like |x|−a, then −∆u − c
|x|2u ∼ |x|−(a+2) and

up ∼ |x|−ap. Hence, p0 sets the threshold beyond which the nonlinear term produces
a stronger singularity at the origin than the differential operator. In fact, we will
show that for p ≥ p0, (Pt,p) has no solution, no matter how small t > 0 is. See
Theorem 1 for details.

This fact is somewhat surprising : one would expect that working with the map
F (u) := −∆u − c

|x|2u − up, which is such that F ′(0) = −∆ − c
|x|2 is formally

bijective and F (0) = 0, the inverse function theorem would yield solutions for t > 0
sufficiently small. Such an argument fails because there is no functional setting in
which it may be applied. See section 7 of [BV] or the introduction of [BC] for a
similar situation.

Another interesting property of p0 is its variation as c decreases from c = c0 to

c = 0 : when c = c0, p0 =
n+ 2

n− 2
is the Sobolev exponent whereas when c → 0,

p0 → ∞. This is natural in view of the case c = 0, for which p > 1 can be chosen
arbitrarily (see e.g. [D],[BCMR],[CR].)

• How do strong, H1
0(Ω) and weak solutions relate ?

Proposition 0.1.

Suppose (0.1) holds and recall (0.2), (0.5). Suppose also that 1 < p < p0.

• If u is a strong solution of (Pt,p), then u is an H1
0 (Ω) solution of (Pt,p).

• If u is an H1
0 (Ω) solution of (Pt,p), then u is a weak solution of (Pt,p).

• If u is a weak solution of (Pt,p) and 0 ≤ u ≤ C |x|−a then u is an H1
0 (Ω)

solution of (Pt,p).
• If u is an H1

0 (Ω) solution of (Pt,p) and 0 ≤ u ≤ C |x|−a then u is a strong
solution of (Pt,p).
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This will be proved in Section 1.

Remark 0.1. In section 5, we provide examples of both strong and H1
0 (Ω) solutions.

We do not know however if there exist weak solutions that are not H1
0 (Ω).

With these definitions in mind, we investigate the existence, uniqueness and
regularity of solutions of (Pt,p) :

Main results.

Theorem 1.

Suppose (0.1) holds and recall (0.5).

• If 1 < p < p0, there exists t0 > 0 depending on n, c, p, f such that

if t < t0 then (Pt,p) has a minimal strong solution,
if t = t0 then (Pt,p) has a minimal weak solution,
if t > t0 then (Pt,p) has no solution, even in the weak sense and there

is complete blow-up.

• If p ≥ p0 then, for any t > 0,

(Pt,p) has no solution, even in the weak sense, and there is complete
blow-up.

This result requires the following definition :

Definition 0.1. Let {an(x)} and {gn(u)} be increasing sequences of bounded

smooth functions converging pointwise respectively to
c

|x|2
and u → up and let

un be the minimal nonnegative solution of

(Pn)

{

−∆un − anun = gn(un) + tf in Ω

un = 0 on ∂Ω

We say that there is complete blow-up in (Pt,p) if, given any such {an(x)},
{gn(u)} and {un},

un(x)

δ(x)
→ +∞ uniformly on Ω,

where δ(x) := dist(x, ∂Ω).
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Theorem 2.

Suppose (0.1) holds and 1 < p < p0, 0 < t < t0. Then if ut denotes the minimal
strong solution of (Pt,p),

• ut is stable
• ut is the only stable H1

0 (Ω) solution of (Pt,p)

If ut0 denotes the minimal weak solution of (Pt0,p) and 0 < c < c0 and

• if ut0 solves the problem in the strong sense then λ1(ut0) = 0

Stability is defined as follows :

Definition 0.2. We say that u is stable if the generalized first eigenvalue λ1(u)
of the linearized operator of equation (Pt,p) is positive, i.e., if

λ1(u) := inf{J(φ) : φ ∈ C∞
c (Ω) \ {0}} > 0

where

J(φ) =

∫

Ω |∇φ|2 −
∫

Ω

c

|x|2
φ2 −

∫

Ω pu
p−1φ2

∫

Ω φ
2

The proof of Theorem 1 is presented in sections 2 and 3, whereas Theorem 2 is
proved in section 4.

In section 5, we study the extremal case t = t0 and provide examples of two
distinct behaviors of the extremal solution of (Pt0,p).

Finally, in section 6, proofs of all previously announced results pertaining to the
case c = c0 are given.

Notation and further definitions.

Dealing with linear equations of the form (0.4) with f ∈ L1(Ω, dist(x, ∂Ω) dx),

a weak solution u is one that satisfies the equation
∫

Ω u
(

−∆φ− c
|x|2φ

)

=
∫

Ω fφ

with the integrability condition
∫

Ω
|u|
|x|2 <∞. Strong solutions are defined as in the

nonlinear case.
Of course, Proposition 0.1 need not be true in this setting.

Sometimes we shall refer to inequalities holding in the weak sense or talk about
(weak) supersolutions. This means that we integrate the equation with nonnegative
test functions.

For example, −∆u− c
|x|2u ≥ f holds in the weak sense,

given f ∈ L1(Ω, dist(x, ∂Ω) dx), if
u

|x|2
∈ L1(Ω) and if

∫

Ω

u

(

−∆φ−
c

|x|2
φ

)

≥

∫

Ω

fφ for all φ ∈ C2(Ω̄) with φ ≥ 0 and φ|∂Ω = 0
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The following Lq weighted spaces will be used in the sequel :

Lq
δ = Lq(Ω, δ(x) dx),

Lq
m = Lq(Ω, |x|m dx),

Lq
m,δ = Lq(Ω, |x|m δ(x) dx) and

L
∞

m = {u : u · |x|−m ∈ L
∞

(Ω)}

where 1 ≤ q <∞, δ(x) = dist(x, ∂Ω) and m ∈ R.

Also, for ρ > 0, Bρ denotes the open ball of radius ρ centered at the origin. The
letter C denotes a generic positive constant.

1. Preliminary : linear theory

We construct here a few basic tools to be used later on and start out with the
L2 theory.

Lemma 1.1.
Suppose 0 < c < c0 and let f ∈ H−1(Ω). There exists a unique u ∈ H1

0 (Ω), weak
solution of

(1.1)







−∆u−
c

|x|2
u = f in Ω

u = 0 on ∂Ω

Furthermore,

(1.2) ‖u‖H1
0(Ω) ≤ C‖f‖H−1

(1.3) f ≥ 0 in the sense of distributions ⇒ u ≥ 0 a.e.

Proof. Hardy’s inequality (0.3) implies that −∆ − c
|x|2 is coercive in H1

0 (Ω). (1.2)

follows from Lax-Milgram’s lemma. Observe that, using approximation in H1
0 (Ω)

by smooth functions and integration by parts in Ω̄ \Bǫ with ǫ → 0, our definition
of a weak solution and that of Lax-Milgram’s lemma coincide in this setting.

For u ∈ H1
0 (Ω), it is well known that u− ∈ H1

0 (Ω). Testing the variational
formulation of (1.1) against u− yields (1.3).

�

Next, we consider the Lq theory and restrict ourselves to the radial case.
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Lemma 1.2.
Suppose 0 < c < c0 (with c0 defined in (0.1)) and recall (0.2).

Let q ∈

(

n

n− a
,

n

2 + a

)

, E = W 2,q(B1) ∩W
1,q
0 (B1) ∩ {u : u

|x|2 ∈ Lq(B1)}.

For any radial f ∈ Lq(B1), there exists a unique radial weak solution u ∈ E of

(1.4)







−∆u−
c

|x|2
u = f in B1

u = 0 on ∂B1

Furthermore,

(1.5) ‖u‖E ≤ C‖f‖Lq

(1.5’) f ≥ 0 a.e. ⇒ u ≥ 0 a.e.

Remark 1.2.

• It can be shown that u ∈ W 2,q ∩W 1,q
0 ⇒ u

|x|2 ∈ Lq for 1 < q < n/2, so that

the definition of E can be slightly simplified.

• Observe that the interval

(

n

n− a
,

n

2 + a

)

is nonempty if and only if c < c0.

• The restrictions on the range of q are optimal. If q ≤ n
n−a , uniqueness is lost

(see Remark 1.4), whereas if the lemma were to hold for some q ≥ n
2+a , one

could construct solutions of (Pt,p) for some p, p ≥ p0 by means of the inverse
function theorem, contradicting Theorem 1 (see the methods of Proposition
4.1 .)

• It would be natural to extend Lemma 1.2 to the nonradial case. The problem
remains open.

Proof.
Uniqueness will follow from the maximum principle (Lemma 1.4) proved in this

section, provided we can show that E ⊂ L1
−a−2 .

If u ∈ E, u
|x|2 ∈ Lq and using Hölder’s inequality, u ∈ L1

−a−2 if |x|−a ∈ L
q

q−1 ,

which is equivalent to asking q >
n

n− a
.

For existence, we suppose (without loss of generality in view of estimate 1.5)
that f ∈ C∞

c (0, 1), f ≥ 0 and define

u(r) := Φ(f)(r) =
r−a

α

∫ 1

0

f(s) · s
n+α

2 [max(s, r)−α − 1] ds

where α =
√

(n− 2)2 − 4c, r ∈ (0, 1).
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(1.5’) follows from the definition of u.

Since f is supported away from the origin, it is quite clear that
u

r−a
is smooth

everywhere on [0, 1] so that |u| ≤ Cr−a and |u′| ≤ Cr−a−1. Also, u(1) = 0.
Differentiating u, we get

(1.6) −u′′ −
n− 1

r
u′ −

c

r2
u = f

This equality holds for every r 6= 0 and also in the weak sense, using integration
by parts in B1 \Bǫ with ǫ→ 0 and the above estimate on u and u′.

So, we just have to prove (1.5), which we shall do using Hardy-inequality-type
arguments. Using the definition of u, we see that

0 ≤ C
u

r2
≤ r−(1+ n+α

2 )

∫ r

0

f(s) · s
n+α

2 ds+ r−(1+n/2)+α/2

∫ 1

r

f(s)s
n−α

2 ds

≡ A +B

Letting g(s) = f(s)s
n+α

2 for 0 ≤ s ≤ 1 and G(r) =
∫ r

0
g(s) ds for 0 ≤ r ≤ 1,

integration by parts yields

I :=

∫ 1

0

r−(1+ n+α
2 )qGq(r)rn−1 dr =

1

n− (1 + n+α
2 )q

Gq(1) −
q

n− (1 + n+α
2 )q

∫ 1

0

rn−(1+ n+α
2 )qGq−1(r)g(r) dr

≤ C

∫ 1

0

rn−(1+ n+α
2 )qGq−1(r)g(r) dr

The last inequality results from the fact that when q > n
n−a , 1

n−(1+ n+α
2 )q

< 0.

Applying Hölder,

I ≤ I
q−1

q

(∫ 1

0

rγgq(r) dr

)1/q

where γ = q(n− (1 + n+α
2 )). But rγgq(r) = rq(n−1)f q(r) ≤ r(n−1)f q(r) so

(1.7)

(∫

B1

Aq

)1/q

= C · I1/q ≤ C‖f‖Lq

To bound B, we introduce similarily h(s) = s
n−α

2 f(s) and H(r) =
∫ 1

r
h(s) ds.

Then, since H(1) = 0 and (−a− 2)q + n > 0, integration by parts yields
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∫ 1

0

r−(a+2)qHq(r)rn−1 dr ≤ C

∫ 1

0

r−(a+2)q+nHq−1(r)h(r) dr

≤ C

(∫ 1

0

r−(a+2)q+n−1Hq(r) dr

)

q−1
q
(∫ 1

0

rγhq(r) dr

)

1
q

where γ = n− 1 − q(n+ α)/2. Now, rγhq(r) = rn−1f q(r) and it follows that

(1.8)

(∫

B1

Bq

)1/q

≤ C‖f‖Lq

Combining (1.7) and (1.8) gives ‖u/r2‖Lq ≤ C‖f‖Lq .
To get (1.5), using equation (1.6), it suffices to show that u′/r ∈ Lq. From the

definition of u = Φ(f), we see that

u′/r = −a · u/r2 − αA

and the estimate follows from our previous analysis.
�

Existence or uniqueness hold in other functional spaces, as the following two
lemmas show :

Lemma 1.3.

Recall (0.1), (0.2), (0.2’).
Let f be such that

∫

Ω
|f | · |x|−adist(x, ∂Ω) dx <∞.

There exists at least one weak solution u with u · |x|−2 ∈ L1(Ω), of

(1.9)







−∆u−
c

|x|2
u = f in Ω

u = 0 on ∂Ω

Furthermore,

‖u‖L1
−2

≤ C‖f‖L1
−a,δ

(1.10)

‖u‖L
∞

−a
≤ C‖f‖L∞(1.11)

‖u‖L
∞

−b
≤ C‖f‖L

∞

−b−2
for a < b < a′(1.11’)

Proof. (Case 0 < c < c0)
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We assume, without loss of generality, that f ≥ 0 (for the general case, apply
the result to the positive and negative parts of f).

Let fk = min(f, k) for k ∈ N. Then, fk ր f in L1
−a,δ .

By Lemma 1.1, there exists uk, unique solution in H1
0 (Ω) of (1.9) with fk in

place of f . Clearly, {uk} is monotone increasing.

Let ζ0 be the H1
0 (Ω) solution of

(1.12)







−∆ζ0 −
c

|x|2
ζ0 = 1 in Ω

ζ0 = 0 on ∂Ω

When Ω = B1, ζ0 = ζ1
0 := C(|x|−a − |x|2), for some C > 0. Otherwise, Ω ⊂ BR

for some R > 0 and C · ζ1
0 (x/R) is a supersolution of problem (1.12), for some

C > 0. So,

(1.13) 0 ≤ ζ0 ≤ C|x|−a δ(x) in Ω

Since uk and ζ0 ∈ H1
0 (Ω), they are valid test functions in their respective equa-

tions and

∫

Ω

∇uk∇ζ0 −

∫

Ω

c

|x|2
ukζ0 =

∫

Ω

uk =

∫

Ω

fkζ0

Since f ≥ 0, so are fk and uk and

(1.14) ‖uk‖L1 =

∫

Ω

fkζ0 ≤ C‖fk‖L1
−a,δ

Let ζ1 be the smooth solution of

(1.15)

{

−∆ζ1 = 1 in Ω

ζ1 = 0 on ∂Ω

and integrate in the equation satisfied by uk :

(1.16)

∫

Ω

uk −

∫

Ω

c

|x|2
ukζ1 =

∫

Ω

fkζ1

Using (1.14) and (1.16) and the inequality mδ(x) ≤ ζ1 ≤ Mδ(x), where m, M
are some positive constants, we get

‖uk‖L1
−2

≤ C‖fk‖L1
−a,δ

It is then easy to construct by monotonicity a solution of (1.9) satisfying (1.10).
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For estimate (1.11), one should just check that if f ∈ L
∞

, ‖f‖L∞ζ0 is a super-
solution of (1.9) and apply the maximum principle (see e.g. Lemma 1.4). Hence,

u ≤ ‖f‖L∞ζ0

Applying this estimate to −u yields (1.11).
For estimate (1.11’), ‖f‖L

∞

−b−2
ζ2 provides a supersolution of (1.9) where

(1.17)







−∆ζ2 −
c

|x|2
ζ2 = |x|−b−2 in Ω

ζ2 = 0 on ∂Ω

Observe that in the radial case ζ2 = C(|x|−b −|x|−a) so that in general 0 ≤ ζ2 ≤
C|x|−b and that Lemma 1.4 may be applied because a < b < a′.

�

Remark 1.3.

• In view of Lemma 1.5, for equation (1.9) to have a solution with f ∈ L1
δ, it

may be necessary that f ∈ L1
−a,δ.

• In the case 0 < c < c0, if
∫

Ω |f | · |x|−a · | ln(x)| · δ(x) dx < ∞, that is, if we

ask a little more regularity on f , then u ∈ L1
−a−2 and is therefore unique

(using Lemma 1.4 .) For a proof, use the methods of the lemma with ζ2
solving







−∆ζ3 −
c

|x|2
ζ3 = |x|−a−2 in Ω

ζ3 = 0 on ∂Ω

When Ω = B1, ζ3 = C|x|−a ln(1/|x|).

Proof of Proposition 0.1 (case 0 < c < c0).

Suppose first that u is a strong solution of (Pt,p).
Let ζn ∈ C∞

c (Ω \ {0}) be such that 0 ≤ ζn ≤ 1, |∇ζn| ≤ Cn, |∆ζn| ≤ Cn2 and

ζn =

{

0 if |x| ≤ 1/n and δ(x) < 1/n

1 if |x| ≥ 2/n and δ(x) > 2/n

Multiplying (Pt,p) by uζn and integrating by parts, it follows that

∫

Ω

(

c

|x|2
u+ up + tf

)

uζn = −

∫

Ω

∆uuζn =

∫

Ω

|∇u|
2
ζn +

∫

Ω

u∇u∇ζn

Since u ≤ C|x|−a and p < p0, u
p ≤ C|x|−a−2. Hence, on the one hand,up ∈

L
2n

n+2 (Ω) and on the other hand, the left-hand-side integral in the above equa-

tion is bounded by C
∫

Ω
|x|−2a−2 ≤ C, whereas

∣

∣

∫

Ω
u∇u∇ζn

∣

∣ =

∣

∣

∣

∣

1

2

∫

Ω
u2∆ζn

∣

∣

∣

∣

≤

Cn2
∫

1/n<|x|<2/n |x|−2a → 0 as n→ ∞. Hence
∫

Ω |∇u|
2
ζn ≤ C and u ∈ H1

0 (Ω).
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Multipying (Pt,p) by φζn for φ ∈ C∞
c (Ω) yields

∫

Ω

(

c

|x|2
u+ up + tf

)

φζn = −

∫

Ω

∆uφζn =

∫

Ω

ζn∇u∇φ+

∫

Ω

φ∇u∇ζn

The last term in the right-hand-side can be rewritten as

∫

Ω

φ∇u∇ζn =

∫

Ω

∇(uφ)∇ζn −

∫

Ω

u∇φ∇ζn = −

∫

Ω

uφ∆ζn −

∫

Ω

u∇φ∇ζn

and converges to zero as in the previous case when n→ ∞.
It follows that u is an H1

0 (Ω) solution of (Pt,p).

Approximating u ∈ H1
0 (Ω) by smooth functions and integrating by parts implies

that H1
0 (Ω) solutions are weak solutions.

Suppose now that u is a weak solution satisfying the estimate u ≤ C|x|−a.

Then as before, up ≤ C|x|−a−2 ∈ L
2n

n+2 (Ω) ⊂ H−1(Ω).
Letting g = up + tf , it follows from Lemma 1.1 that there exists a weak solution

v ∈ H1
0 (Ω) of (1.9) with g in place of f . u is also a weak solution of (1.9) and by

Remark 1.3, we must have u = v ∈ H1
0 (Ω). Hence, u is an H1

0 (Ω) solution.

Finally if u is an H1
0 (Ω) solution satisfying the estimate u ≤ C|x|−a, using local

elliptic regularity theorems in Ω \Bǫ for an arbitrary ǫ > 0, we may conclude that
u ∈ C∞(Ω̄ \ {0}) and satisfies (Pt,p) in the strong sense.

Lemma 1.4 (Maximum Principle).

If
∫

Ω |u| · |x|−a−2 <∞ and if

−∆u−
c

|x|2
u ≥ 0 in the weak sense.(1.16)

then

u ≥ 0 a.e.

Proof (case 0 < c < c0).
It is enough to show that

∫

Ω
uφ ≥ 0 for φ ∈ C

∞

c (Ω \ {0}), φ ≥ 0.

For such a φ and ǫ > 0, construct vǫ ∈ C
2

(Ω̄), vǫ ≥ 0, solving







−∆vǫ −
c

|x|2 + ǫ
vǫ = φ in Ω

vǫ = 0 on ∂Ω
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Also let v ∈ H1
0 (Ω) be the solution of







−∆v −
c

|x|2
v = φ in Ω

v = 0 on ∂Ω

Using Lemma 1.1, since −∆(vǫ − v) − c
|x|2 (vǫ − v) ≤ 0,

(1.17) 0 ≤ vǫ ≤ v a.e. in Ω

Applying (1.11) in Lemma 1.3 to v,

(1.18) 0 ≤ v ≤ C|x|−a a.e. in Ω

Combining (1.17) and (1.18),

(1.19) 0 ≤ vǫ ≤ C|x|−a a.e. in Ω

Applying (1.16) with φ = vǫ,

∫

Ω

u

(

−∆vǫ −
c

|x|2
vǫ

)

≥ 0

Since −∆vǫ −
c

|x|2 vǫ = φ− c

{

1

|x|2
−

1

|x|2 + ǫ

}

,

∫

Ω

uφ ≥

∫

Ω

c

{

1

|x|2
−

1

|x|2 + ǫ

}

u vǫ.

Clearly, {vǫ} is monotone increasing and converges pointwise to a finite value
a.e. in Ω by (1.19).

So the integrand in the right hand side of the previous equation converges a.e.
to 0. Using (1.19) and u ∈ L1

−a−2, this integrand is dominated by an L1 function.
By Lebesgue’s theorem, we conclude that

∫

Ω

uφ ≥ 0.

�

Remark 1.4.

• This maximum principle is sharp in the following sense :
if q > −a then there exists u ∈ L1

q−2 such that −∆u − c
|x|2u = 0 yet

u 6≡ 0.
Just take Ω = B1 and u := |x|−a′

− |x|−a, with −a′ and −a defined in
(0.2), (0.2’).

We conclude this section with a lemma giving necessary conditions for the exis-
tence of a solution to the linear problem.
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Lemma 1.5.
Suppose f ≥ 0 a.e. , f 6≡ 0,

∫

Ω
f(x) dist(x, ∂Ω) dx <∞.

If u is a nonnegative weak solution of

(1.20)







−∆u−
c

|x|2
u = f in Ω

u = 0 on ∂Ω

Then there exists a constant C > 0 depending only on Ω such that

u ≥ C

(∫

Ω

fζ0

)

ζ0 a.e. in Ω

with ζ0 defined by (1.12). In particular, for some m > 0

u ≥ m|x|−a a.e. near the origin

Furthermore, for any ǫ > 0, if u denotes the minimal solution of (1.20) then

∫

Ω

u · |x|−a−2+ǫdx ≤ Cǫ

∫

Ω

f · |x|−adist(x, ∂Ω) dx <∞

Most of the results of this lemma are a direct consequence of a more general
theorem on the associated evolution equation, established by Baras and J. Goldstein
(see [BG] Th 2.2 page 124.) We give here a simpler proof for convenience of the
reader.

Proof (case 0 < c < c0).

Step 1. u ≥ m|x|−a near the origin.
Let f1 = min(f, k) with k > 0 such that f1 6≡ 0 and u1 ≥ 0 be the minimal

solution of







−∆u1 −
c

|x|2
u1 = f1 in Ω

u1 = 0 on ∂Ω

Since u is a supersolution of the above problem, u1 is well defined and 0 ≤ u1 ≤ u
so it suffices to prove the result for u1.

Since f1 ∈ L∞(Ω), on the one hand 0 ≤ u1 ≤ C|x|−a by (1.11) and on the other
hand the equation has a solution v ∈ H1

0 (Ω). By Lemma 1.4, we must have u1 = v.
Now, since u1 6≡ 0, u1 ≥ 0 and −∆u1 ≥ 0 in the connected set Ω, we have for

some ǫ > 0 and η > 0,
u1 ≥ ǫ a.e. in B2η

Choose C > 0 so that ǫ ≥ Cr−a for r ≥ η and let z = (u1 − C|x|−a)−. Observe
that z ∈ H1

0 (Bη).
Next, we multiply u1 − C|x|−a by z and integrate by parts :
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0 ≥ −

∫

Ω

|∇z|2 +

∫

Ω

c

|x|2
z2 =

∫

Ω

∇(u1 − C|x|−a)∇z −

∫

Ω

c

|x|2
(u1 − C|x|−a)z

=

∫

Ω

fz − C

(

∫

Bη

∇|x|−a∇z −

∫

Bη

c

|x|2
|x|−az

)

≥ −C

∫

∂Bη

z∂ν |x|
−a ≥ 0

And hence z ≡ 0 in Bη.

Step 2. u ≥ C(K,Ω)
∫

Ω fζ0 in K ⊂⊂ Ω when f ∈ L∞(Ω)

The proof is an adaptation of Lemma 3.2 in [BC]. Observe that up to replacing
u by the minimal nonnegative solution of the problem, we may assume u to be an
H1

0 (Ω) solution satisfting 0 ≤ u ≤ C|x|−a.

Let ρ = dist(K, ∂Ω)/2 and take m balls of radius ρ such that

K ⊂ Bρ(x1) ∪ · · · ∪Bρ(xm) ⊂ Ω

Let ζ1, . . . , ζm be the solutions (given, say, by Lemma 1.1) of







−∆ζi −
c

|x|2
ζi = χBρ(xi) in Ω

ζi = 0 on ∂Ω

where χA denotes the characteristic function of A. There is a constant C > 0
such that

ζi(x) ≥ Cζ0(x) in Ω for 1 ≤ i ≤ m

Indeed, by Step 1, this inequality must hold near the origin and by Hopf’s
boundary lemma, we also have ζi ≥ cδ ≥ Cζ0 away from the origin.

Let now x ∈ K, and take a ball Bρ(xi) containing x. Then Bρ(xi) ⊂ B2ρ(x) ⊂ Ω
and, since −∆u ≥ 0 in Ω, we conclude

u(x) ≥

∫

−
B2ρ(x)

u = C

∫

B2ρ(x)

u ≥ C

∫

Bρ(xi)

u

= C

∫

Ω

u

(

−∆ζi −
c

|x|2
ζi

)

= C

∫

Ω

fζi

≥ C

∫

Ω

fζ0

Step 3. u ≥ C(Ω)
(∫

Ω fζ0
)

ζ0 in Ω when f ∈ L∞(Ω)

Suppose without loss of generality that B1 ⊂ Ω and let K = B̄1 \ B1/2. By
Step 2, it suffices to prove the inequality in Ω \K. Let w be the solution of
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−∆w −
c

|x|2
w = 0 in Ω \B1

w = 0 on ∂Ω

w = 1 on ∂B1

and extend w by w := (2|x|)−a in B1/2, so that the above equation still holds in
Ω \K with w|∂K ≡ 1. By Hopf’s boundary Lemma applied in Ω \B1, we conclude
that

w ≥ Cζ0 in Ω \K

u is assumed to be dominated by C|x|−a so we can apply the maximum principle
(Lemma 1.4) in Ω \K to conclude that

u ≥ C

(∫

Ω

fζ0

)

w ≥ C

(∫

Ω

fζ0

)

ζ0 in Ω \K

Step 4.
∫

Ω |x|−afδ(x) <∞.
We assume for now that f ∈ L∞(Ω) and that u ≥ 0 is the minimal solution of

(1.20).
We let {φn} be a sequence of smooth, nonnegative and bounded functions con-

verging pointwise and monotonically to c|x|−a−2 and construct vn as the (smooth)
solution of

{

−∆vn = φn in Ω

vn = 0 on ∂Ω

Testing vn in (1.20) yields

(1.21)

∫

Ω

fvn =

∫

Ω

u

(

−∆vn −
c

|x|2
vn

)

=

∫

Ω

u

(

φn −
c

|x|2
vn

)

Now φn ր c|x|−a−2 pointwise and in L1, so, by Lemma 2.1, vn ր |x|−a − w
pointwise and in L1, where w solves

{

−∆w = 0 in Ω

w = |x|−a on ∂Ω

Since u is minimal, 0 ≤ u ≤ C|x|−a by (1.11) and we can safely pass to the limit
in (1.21) to obtain

∫

Ω

(|x|−a − w)f =

∫

Ω

u

(

c|x|−a−2 −
c

|x|2
(|x|−a − w)

)

= c

∫

Ω

u

|x|2
w

Observe that w is bounded and that |x|−a − w ≥ C|x|−aδ(x), hence

∫

Ω

|x|−afδ(x) ≤ C

∫

Ω

|x|−2u
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This estimate holds when f ∈ L∞ and u is minimal but also in the general case,
as approximation of f by fn = min(n, f) shows.

Step 5. u ≥ C(Ω)
(∫

Ω
fζ0
)

ζ0 in Ω when f ∈ L1
−a,δ

Let k > 0 be so large that fk = min(f, k) 6≡ 0. Then u is a supersolution of
(1.20) with fk in place of f and by Step 3, we have

u ≥ C(Ω)

(∫

Ω

fkζ0

)

ζ0

Letting k → ∞, Lebesgue’s theorem yields the desired result.

Step 6.
∫

Ω
|x|−a−2+ǫu <∞.

We proceed as in Step 4, only this time we let φn ր −P (−a+ǫ)|x|−a−2+ǫ, where
P (X) = X(X − 1) + (n− 1)X + c and construct vn solving







−∆vn −
c

|x|2 + 1/n
vn = φn in Ω

vn = 0 on ∂Ω

Hence,

(1.22)

∫

Ω

fvn =

∫

Ω

uφn +

∫

Ω

(

c

|x|2 + 1/n
−

c

|x|2

)

vnu

If ζ solves







−∆ζ −
c

|x|2
ζ = −P (−a+ ǫ)|x|−a−2+ǫ in Ω

ζ = 0 on ∂Ω

then we have 0 ≤ vn ≤ ζ ≤ C|x|−a. Indeed, if Ω = B1, then ζ = ζ1 :=
C(|x|−a − |x|−a+ǫ). Otherwise, Ω ⊂ BR for some R > 0 and C ζ1(x/R) is a
supersolution of the problem, for some C > 0.

By Step 4,
∫

Ω fvn ≤
∫

Ω fζ <∞. Assuming first that f is bounded (whence u ≤
C|x|−a) and then working by approximation, it follows from Lebesgue’s theorem
and from (1.22) that

∫

Ω

|x|−a−2+ǫu ≤ Cǫ

∫

Ω

fζ <∞

Remark. More results about the linear theory of our operator, with c ∈ R arbitrary
have been detailed by F. Pacard in unpublished work (see [P].)

2. Existence vs. complete blow-up

In this section, we will prove existence or nonexistence of weak solutions of (Pt,p),
using the tools we have just constructed and monotonicity arguments.
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2.1. Case p < p0, c < c0 : existence for small t > 0.

p0 has been defined so that p0a = a+ 2. So, for p < p0, ap < a+ 2 and for some
b ∈ (a, a′), the inequality bp < b + 2 still holds. We fix such a b and prove that for
an appropriate choice of A > 0 and for t > 0 small,

w := A|x|−b ∈ H1(Ω) is a supersolution of (Pt,p).

Observe that w ∈ H1(Ω) as long as b is close enough to a, which may be assumed.
We have

−∆w −
c

|x|2
w = −AP (−b)|x|−b−2 where P (X) = X(X − 1) + (n− 1)X + c

Observe that P (−b) < 0 since b ∈ (a, a′) and a′ and a are the roots of P (X).
We would like to have −AP (−b)|x|−b−2 ≥ Ap|x|−pb + tf in Ω. This will be true

as soon as











−
1

2
AP (−b)|x|−b−2 ≥ Ap|x|−pb and

−
1

2
AP (−b)|x|−b−2 ≥ tf

The first inequality amounts to

A ≤

[

−
1

2
P (−b)|x|pb−b−2

]
1

p−1

which will be satisfied, taking R > 0 such that Ω ⊂ BR, if

A ≤

[

−
1

2
P (−b)Rpb−b−2

]
1

p−1

since pb− b− 2 < 0.
With such a choice of A, pick any t > 0 such that

−
1

2
AP (−b)R−b−2 ≥ t‖f‖L∞

We have just constructed w ∈ H1(Ω) such that







−∆w −
c

|x|2
w ≥ wp + tf in Ω

w ≥ 0 on ∂Ω

Finally we construct an H1
0 (Ω) supersolution of (Pt,p). We let w1 be a smooth

extension inside Ω of w|∂Ω which is also supported away from the origin. Then

g = ∆w1 +
c

|x|2
w1 is smooth and bounded and using Lemma 1.1, there is a unique

strong solution z of
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(2.1)







−∆z −
c

|x|2
z = g in Ω

z = 0 on ∂Ω

Letting w2 = z + w1, it follows that

(2.2)







−∆w2 −
c

|x|2
w2 = 0 in Ω

w2 = w on ∂Ω

Multiplying by w−
2 , it follows that w2 ≥ 0 a.e. in Ω.

It is now clear that w̃ = w − w2 is an H1
0 (Ω) supersolution of (Pt,p). For

convenience, we drop the superscript ˜ thereafter.
Construction of a minimal solution u of (Pt,p) is now just a matter of monotone

iteration. For this purpose we recall the following lemma, proved in [BCMR] :

Lemma 2.1. Suppose
∫

Ω |f(x)| dist(x, ∂Ω) < ∞. Then there exists a unique v ∈

L1(Ω) which is a weak solution of

{

−∆v = f in Ω

v = 0 on ∂Ω

Moreover,

‖v‖L1 ≤ C‖f‖L1
δ

Moreover if v ∈ L1(Ω) and −∆v ≥ 0 weakly, i.e. if

∫

Ω

(−∆φ) v ≥ 0 for all φ ∈ C2(Ω̄), φ|∂Ω ≡ 0, φ ≥ 0 in Ω

then

v ≥ 0 a.e. in Ω

Define {uk} by induction to be the L1 weak solutions of

{

−∆u0 = tf in Ω

u0 = 0 on ∂Ω
for k = 0







−∆uk =
c

|x|2
uk−1 + up

k−1 + tf in Ω

uk = 0 on ∂Ω
for k ≥ 1

We now check that this definition makes sense and that (uk) is monotone and
satisfies 0 ≤ uk ≤ w a.e. in Ω.

For u0 there is nothing to prove. Suppose the result true up to order k−1. Then
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0 ≤
c

|x|2
uk−1 + up

k−1 + tf ≤
c

|x|2
w + wp + tf

≤ C|x|−a−2 ∈ L1(Ω)

So uk is well defined using the previous lemma, uk ≥ 0 a.e. and since

−∆(uk − uk−1) =
c

|x|2
(uk−1 − uk−2) + up

k−1 − up
k−2 ≥ 0 by induction hypothesis

and similarly −∆(w − uk) ≥ 0, we conclude using Lemma 2.1 that

0 ≤ uk−1 ≤ uk ≤ w a.e. in Ω

By a standard monotone convergence argument, {uk} converges to a weak solu-
tion of (Pt,p).

2.2. Pushing t to t0.

We let t0 = sup{t : (Pt,p) has a weak solution.} and adapt the methods of
[BCMR].

If φ1 is a positive eigenvector of −∆ (with zero Dirichlet condition) associated
to its first eigenvalue λ1, in other words if φ1 > 0 in Ω and, for some λ1 > 0,

{

−∆φ1 = λ1 φ1 in Ω

φ1 = 0 on ∂Ω

and if u is a weak solution of (Pt,p), testing against φ1 yields

∫

Ω

c

|x|2
uφ1 +

∫

Ω

upφ1 + t

∫

Ω

f φ1 = λ1

∫

Ω

uφ1

and, by Young’s inequality,

λ1

∫

Ω

uφ1 ≤
1

2

∫

Ω

upφ1 + C

∫

Ω

φ1.

Thus,

(2.3) t

∫

Ω

f φ1 +

∫

Ω

c

|x|2
uφ1 +

∫

Ω

upφ1 ≤ C

which implies t0 < ∞. In particular, there are no weak solutions of (Pt,p)
for t > t0. This implies complete blow-up (see Definition 0.1), as the following
proposition shows.
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Proposition 2.1.
Suppose (0.1) holds, p > 1 and t > 0.
If (Pt,p) has no weak solution then there is complete blow-up.

Proof.
The proof is an easy adaptation of Theorem 3.1 in [BC].
Suppose indeed that (Pt,p) has no weak solution and by contradiction that

∫

Ω gn(un) δ +
∫

Ω anun δ ≤ C, where {an}, {gn}, {un}, are given in Definition 0.1 .
Then, multiplying (Pn) by ζ1, solution of (1.15) we get
∫

Ω un(−∆ζ1) −
∫

Ω anunζ1 =
∫

Ω gn(un)ζ1 +
∫

Ω tf ζ1.

Hence,
∫

Ω un ≤ C and there exists a u such that un ր u in L1(Ω), by monotone
convergence.

Since {an} and {gn} converge monotonically, we can pass to the limit in (Pn),
using monotone convergence again and obtain a solution u of (Pt,p), which is a
contradiction.

We have just proved that
∫

Ω
gn(un) δ +

∫

Ω
anun δ → ∞. Now, using (Pn) and

Lemma 3.2 in [BC], it follows that

un(x)

δ(x)
≥ C(Ω)

(∫

Ω

gn(un) δ +

∫

Ω

anun δ

)

→ ∞ �

Next, we want to prove that if (Pτ,p) has a solution then so does (Pt,p) for
0 < t ≤ τ . This is true because uτ is a supersolution of (Pt,p) in the sense that,
weakly,

−∆uτ ≥
c

|x|2
uτ + up

τ + tf

and with the help of Lemma 2.1, we may construct a solution of (Pt,p) by mono-
tone iteration.

Finally, we prove that (Pt0,p) has a weak solution. Choose a nondecreasing
sequence {tn} converging to t0 and for each n ∈ N, let un be a (weak) solution of
(Ptn,p). Since φ1 ≥ mδ(x) for some m > 0, equation (2.3) implies that

∫

Ω

c

|x|2
un δ(x) +

∫

Ω

up
nδ(x) ≤ C

Multiplying by ζ1, solution of (1.15) then implies boundedness of {un} in L1 and
hence monotone convergence to a solution of (Pt0,p) as tn → t0.

2.3. Case 0 < c < c0, p ≥ p0 : blow-up for all t > 0.

By Proposition 2.1, we just need to prove that there are no weak solutions of
(Pt,p) for p ≥ p0. Assume by contradiction there exists one and call it u. If we
apply Lemma 1.5 with up + tf in place of f , it follows that

∫

Ω

up|x|−a δ(x) <∞ and u ≥ m|x|−a a.e. near the origin.
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Using Hölder’s inequality,
∫

Ω u|x|
−a−2 δ(x) ≤

(∫

Ω u
p|x|−a δ(x)

)1/p
·
(

∫

Ω |x|−a−2 p
p−1

)
p−1

p

.

If p ≥ p0 and c < c0 then −a− 2
p

p− 1
> −n, hence, since u ∈ L1(Ω),

(2.4)

∫

Ω

u |x|−a−2 <∞

Suppose without loss of generality, that Ω ⊂ B1 and define w = A|x|−a ln( 1
|x| )

for some A > 0.

Then −∆w − c
|x|2w = A

√

(n− 2)2 − 4c |x|−a−2 . Also,

−∆u−
c

|x|2
u ≥ up ≥ m|x|−ap ≥ m|x|−a−2 in Bη, for a fixed small η > 0.

Let A = m(
√

(n− 2)2 − 4c+ c ln 1
η )−1 and C = Aη−a ln 1

η .

Finally define z = u+C −w. Using (2.4), z ∈ L1(Bη, |x|
−a−2dx). Furthermore,

−∆z −
c

|x|2
z ≥ up −

cC

|x|2
−A

√

(n− 2)2 − 4c |x|−a−2

≥ m|x|−ap − cC|x|−2 −A
√

(n− 2)2 − 4c |x|−a−2

≥ |x|−2
[

m|x|−a − cC −A
√

(n− 2)2 − 4c |x|−a
]

≥ |x|−2
[

(m−A
√

(n− 2)2 − 4c) η−a − cC
]

≥ 0

All these inequalities hold in the weak sense in Bη (since our choice of constants
implies z|∂Bη ≥ C − w|∂Bη ≥ 0.)

Applying Lemma 1.4, we conclude

u ≥ A|x|−a ln
1

|x|
− C a.e. in Bη

Choosing A and η smaller, we may assume that

u ≥ A|x|−a ln
1

|x|
≥ 1 a.e. in Bη

The next step is to consider the function Φ ∈ C1(R) defined by

Φ(x) =

{

lnx if x ≥ 1

x− 1 otherwise.

and apply Lemma 1.7 in [BC] to conclude that in Bη
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−∆(lnu) ≥
−∆u

u
≥ up−1 ≥ Ap−1|x|−a(p−1)

(

ln
1

|x|

)p−1

≥ Ap−1|x|−2

(

ln
1

|x|

)p−1

Now if v =

(

ln
1

|x|

)p

, a computation yields

−∆v ≤ C|x|−2

(

ln
1

|x|

)p−1

And by the L1 maximum principle (Lemma 2.1),

lnu ≥ d

(

ln
1

|x|

)p

− C for some d > 0 and C > 0

This clearly violates u ∈ L1
loc(Ω).

3. Regularity

We start out with a result in the spirit of Lemma 5.3 in [BC] :

Lemma 3.1. Let f ∈ L1
−a,δ and v = |x|−a. Then if u ∈ L1

−2 is the solution given
by Lemma 1.3 of







−∆u−
c

|x|2
u = f in Ω

u = 0 on ∂Ω

and if Φ ∈ C1(R) is concave, Φ′ ∈ L
∞

and Φ(1) = 0, then vΦ
(u

v

)

∈ L1
−2 and

−∆
(

vΦ
(u

v

))

−
c

|x|2

(

vΦ
(u

v

))

≥ Φ′
(u

v

)

f in the weak sense.

Proof (case 0 < c < c0). Suppose first u, v ∈ C2(Ω̄), v > 0 in Ω and Φ ∈ C2(R) and
write L = −∆ − a(x) where a(x) is a smooth bounded function. Applying Lemma
5.3 in [BC], it follows that a.e. in Ω,

Lw ≥Φ′(u/v)(−∆u) + [Φ(u/v) − Φ′(u/v)u/v] (−∆v) − a(x)Φ(u/v)v

≥Φ′(u/v)Lu+ [Φ(u/v) − Φ′(u/v)u/v]Lv

≥Φ′(u/v)(Lu− Lv) + [Φ(u/v) − Φ′(u/v)u/v + Φ′(u/v)] (Lv)

Since Φ is concave,

Φ(s) + (1 − s)Φ′(s) ≥ Φ(1) for all s ∈ R

Hence, if w = vΦ(u/v),
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(3.1) Lw ≥ Φ′(u/v) (Lu− Lv) a.e. in Ω

Since Φ′ is bounded, we see, as in [BC], that

(3.2) |vΦ(u/v)| = |v (Φ(u/v) − Φ(0)) + Φ(0)v| ≤ C(u+ v)

Hence, w vanishes on ∂Ω and integrating by parts, (3.1) holds in the weak sense.
By approximation of Φ, we can also say that (3.1) holds even when Φ is only C1.

In the general case, let an = c/(|x|+1/n)2 and fn be a smooth bounded function
increasing pointwise and respectively to c/|x|2,f . Let un solve the equation Lnun =
f (with zero boundary condition), where Ln = −∆ − an(x). Also write wn =
vnΦ(un/vn) where vn = (|x| + 1/n)−a.

We can then apply (3.1) to obtain

−∆wn − an(x)wn ≥ Φ′(un/vn)fn weakly

Clearly, vΦ(u/v) is well defined a.e. Moreover, it is clear that un ր u in L1 and

that an(x)un(x) ր
c

|x|2
u(x) in L1

δ and similarly for v. So that, using the above

equation and Lebesgue’s theorem

wn → w in L1 and an(x)wn →
c

|x|2
w in L1

δ

Since Φ′ is bounded, we can also easily pass to the limit in the right-hand side
and obtain the desired result. �

Lemma 3.2.
Let u be the minimal weak solution of (Pt,p) for t < t0 (and p < p0).

Then u is a strong solution of (Pt,p)

Remark 3.2.

• By Proposition 0.1, we only need to show that 0 < u ≤ C|x|−a

• By Lemma 1.5, we also have the lower bound u ≥ m|x|−a dist(x, ∂Ω).

Proof.
Recall that ζ0 solving, for f as in the definition of (Pt,p),







−∆ζ0 −
c

|x|2
ζ0 = f in Ω

ζ0 = 0 on ∂Ω

satisfies 0 < ζ0 ≤ C|x|−a. For u ∈ R
+, let

g(u) = (u+ t0‖ζ0/v‖L∞ )p and g̃(u) = (u + t‖ζ0/v‖L∞ )p
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and construct Φ ∈ C1(R) with Φ(0) = 0 and

(3.3) Φ′(u) =
g̃(Φ(u))

g(u)

as in Lemma 4 of [BCMR].
Next, if u0 is the minimal solution of (Pt0,p) then z := u0 − t0ζ0 is the minimal

solution of







−∆z −
c

|x|2
z = (z + t0ζ0)

p in Ω

z = 0 on ∂Ω

Applying Lemma 3.1 to z with the above function Φ and v = |x|−a,

−∆
(

vΦ
(z

v

))

−
c

|x|2

(

vΦ
(z

v

))

≥ Φ′
(z

v

)

(z + t0ζ0)
p ≥





Φ
(z

v

)

+ t‖ζ0/v‖L∞

z

v
+ t0‖ζ0/v‖L∞





p

(z + t0ζ0)
p

We need the following easy lemma :

Lemma 3.3. Let A,B > 0 such that A ≤
t

t0
B.

Then F (C) :=
A+ tC

B + t0C
is increasing with C.

Observe that, since Φ is concave and Φ′ is defined by (3.3), Φ′(u) ≤ Φ′(0) =
(

t

t0

)p

<
t

t0
for u ∈ R

+. Hence, since Φ(0) = 0, Φ(u) ≤
t

t0
u for u ∈ R

+. Applying

Lemma 3.3 with A = Φ(
z

v
) and B =

z

v
, we get

Φ
(z

v

)

+ t
ζ0
v

z

v
+ t0

ζ0
v

≤
Φ
(z

v

)

+ t‖
ζ0
v
‖L∞

z

v
+ t0‖

ζ0
v
‖L∞

and

−∆
(

vΦ
(z

v

))

−
c

|x|2

(

vΦ
(z

v

))

≥





Φ
(z

v

)

+ tζ0/v

z

v
+ t0ζ0/v





p

(z + t0ζ0)
p

≥
(

vΦ
(z

v

)

+ tζ0

)p

We finally define w = vΦ
(z

v

)

+ tζ0, which satisfies







−∆w −
c

|x|2
w ≥ wp + tf in Ω

w = 0 on ∂Ω
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We have just constructed a supersolution of problem (Pt,p) satisfying 0 < w ≤
C|x|−a (since Φ(∞) <∞ by Lemma 4 in [BCMR]) and, of course, the same estimate
holds for u, the minimal solution of (Pt,p).

�

This completes the proof of Theorem 1 (in the case 0 < c < c0.)

4. Stability

We show first that λ1(ut) > −∞ (recall Definition 0.2) and study the corre-
sponding eigenfunction φ1.

Indeed, if ut is the minimal solution of (Pt,p) with t < t0, then 0 ≤ ut ≤ C|x|−a

and

∫

Ω

up−1
t φ2 ≤ C

∫

Ω

|x|−a(p−1)φ2 ≤ C

(∫

Ω

|x|−2φ2

)

a(p−1)
2

·

(∫

Ω

φ2

)1−
a(p−1)

2

≤ C‖φ‖
a(p−1)

H1
0 (Ω)

‖φ‖
2−a(p−1)
L2

So λ1 > −∞ and if {φn} is a minimizing sequence of J (see Definition 0.2),
{φn} is bounded in H1

0 (Ω) and converges (weakly and up to a subsequence) to
φ1 ∈ H1

0 (Ω) solving

(4.1)







−∆φ1 −
c

|x|2
φ1 = pup−1

t φ1 + λ1φ1 in Ω

φ1 = 0 on ∂Ω

Claim. 0 ≤ φ1 ≤ C|x|−a

Testing equation (4.1) against φ+
1 , it follows that

∫

Ω

|∇φ+
1 |

2 −

∫

Ω

c

|x|2
φ+

1

2
−

∫

Ω

pup−1φ+
1

2
= λ1

∫

Ω

φ+
1

2

Hence φ+
1 is also a minimizer of J and up to replacing φ1 by φ+

1 , we may assume
that φ1 ≥ 0.

Next, using local elliptic regularity, φ1 ∈ C∞(Ω̄ \ {0}). Also, pick c̃ ∈ (c, c0) and
η > 0 so small that

c̃− c

|x|2
≥ pup−1

t + λ1 a.e. in Bη.

Let z = φ1 −M |x|−ã and M = ‖φ1‖L∞(∂Bη) η
ã (−ã being the greater root of

P (X) = X(X − 1) + (n− 1)X + c̃ = 0). Then,

(4.3)







−∆z −
c̃

|x|2
z ≤ 0 in Bη

z ≤ 0 on ∂Bη
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Testing (4.3) against z+ (which is permitted since z+ ∈ H1
0 (Bη)),

φ1 ≤M · |x|−ã a.e. in Bη.

With c̃ close enough to c, it follows that pup−1
t φ1 +λ1φ1 ≤ C|x|−a−2+ǫ, for some

ǫ > 0. Let ζ ∈ H1
0 (Ω) be the solution of

(4.4)







−∆ζ −
c

|x|2
ζ = |x|−a−2+ǫ in Ω

ζ = 0 on ∂Ω

As in the proof of Lemma 1.5,

(4.5) 0 ≤ φ1 ≤ Cζ ≤ C|x|−a a.e. in Ω

Next, we prove that there exists 0 < t1 ≤ t0 such that ut is stable for t < t1.
Fix b ∈ (a, a′) such that pb < b + 2 and b + a(p − 1) < a + 2, and define

F : X × R → Y , by

• X is the space of functions v ∈ C(Ω̄ \ {0}) such that there exist a constant
C > 0 and a function g ∈ C(Ω̄\{0}) satisfying |v| ≤ C|x|−b, |g| ≤ C|x|−b−2

and







−∆v −
c

|x|2
v = g in Ω

v = 0 on ∂Ω

in the weak sense.
X is a Banach space for the norm ‖v‖X = ‖ |x|bv‖L∞ + ‖ |x|b+2g‖L∞

• Y = {f ∈ C(Ω̄ \ {0}) : |x|b+2f ∈ L∞(Ω)}, ‖f‖Y = ‖ |x|b+2f‖L∞

• F (v, t) = −∆v − c
|x|2 v − |v|p − tf

Observe that F is well defined with our choice of b, that F ∈ C1 and that
F (ut, t) = 0. Also L := Fu(0, 0) is an isomorphism between X and Y . Indeed L
is injective by Lemma 1.4 and surjective with continuous inverse by Lemma 1.3.
These facts and a global form of the implicit function theorem (see e.g. Cor. 3 in
[BN]) imply the existence of a maximal t1 > 0 such that t → ut is a C1 map from
(0, t1) to X and Fu(ut, t) ∈ Iso(X,Y ).

In particular, since φ1 ∈ X , λ1(ut) 6= 0 for t < t1. It can also be shown that
t → λ1(ut) is continuous : if τn → τ < t1 and λn

1 and φn
1 are the corresponding

eigenvalues and eigenfunctions with ‖φn
1‖L2 = 1, looking carefully at the previous

claim, we obtain that φn
1 is bounded in H1

0 (Ω) and that

0 ≤ φn
1 ≤ C|x|−a
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Passing to a subsequence, it is then easy to show that λn
1 → λ1(uτ ) and therefore

that λ1 is continuous.
Hence, since λ1(0) > 0 and λ1 cannot vanish, we have λ1 > 0 for t < t1.

We now prove that t1 = t0. If not, we would have for t1 < t < t0,

− ∆(ut − ut1) −
c

|x|2
(ut − ut1) − pup−1

t1 (ut − ut1) =

up
t − up

t1 − pup−1
t1 (ut − ut1) + (t− t1)f ≥ (t− t1)f

And testing against φ1, solution of (4.1) with t1 in place of t, we would obtain

0 ≥ (t− t1)

∫

Ω

fφ1

which is impossible. Hence, t1 = t0.

Next, we prove that if v is another stable H1
0 (Ω) solution then it must coincide

with ut.
Suppose indeed v is another H1

0 (Ω) solution such that λ1(v) ≥ 0.Then v ≥ ut

and

∫

Ω

pvp−1(v − ut)
2 ≤

∫

Ω

|∇(v − ut)|
2 −

∫

Ω

c

|x|2
(v − ut)

2

≤

∫

Ω

(vp + tf − up
t − tf)(v − ut)

So that,

∫

Ω

(v − ut)(v
p − up

t − pvp−1(v − ut)) ≥ 0

Since u→ up is strictly convex and v ≥ ut, we must have v = ut.

Finally, stability of strong extremal solutions is determined through the following
proposition :

Proposition 4.1.

Suppose that 0 < c < c0 and 1 < p < p0.

If u, the minimal solution of (Pt0,p), solves the problem in the strong sense then

λ1(u) = 0

Proof.



A NONLINEAR ELLIPTIC PDE WITH THE INVERSE SQUARE POTENTIAL 29

Arguing by contradiction, our general strategy is to use the implicit function
theorem to extend the curve t → ut of minimal solutions of (Pt,p) beyond t0 if
λ1(u) > 0.

More precisely assume that λ1(u) > 0 and define F : X × R → Y as before. If
we can prove that Fu(u, t0) ∈ Iso(X,Y ), the implicit function theorem will yield
the desired contradiction.

We first claim that Fu(u, t0) is injective. If not, there would be a weak solution
φ1 ∈ X of







−∆φ1 −
c

|x|2
φ1 = pup−1 φ1 in Ω

φ1 = 0 on ∂Ω

Since b + a(p − 1) < a + 2, up−1φ1 ∈ L
2n

n+2 (Ω) and, using the methods of
Proposition 0.1, φ1 is an H1

0 (Ω) solution. Testing the above equation against φ1

would then imply J(φ1) = 0, which contradicts λ1(u) > 0. Thus Fu(u, t0) is
injective.

Next we prove that Fu(u, t0) is surjective.

First observe that L := Fu(0, 0) is an isomorphism between X and Y . Indeed L
is injective by Lemma 1.4 and surjective with continuous inverse by Lemma 1.3.

Let Z := {f : |x|−a(p−1)f ∈ Y } and define K ∈ L(Z) by

K :

{

Z → Y → Z

φ 7→pup−1φ 7→ L−1(pup−1φ)

K is compact in Z. Indeed if {φn} is a bounded sequence in Z then un := Kφn

is bounded in X , by continuity of L−1. It follows from standard elliptic theory that
up to a subsequence, un → u uniformly on compacts of Ω̄ \ {0} for some u ∈ X .
Also, letting γ = 2 − a(p− 1) > 0, we have for ǫ > 0 small

‖un − u‖Z ≤ C‖un − u‖L∞(Ω\Bǫ) + ǫγ‖un − u‖L∞

−b
≤ C(‖un − u‖L∞(Ω\Bǫ) + ǫγ)

so that

lim sup
n→∞

‖un − u‖Z ≤ Cǫγ

Letting ǫ→ 0, we obtain that K is compact in Z.

With these notations, our problem reduces to showing that Id−K is surjective.
By Fredholm’s alternative, we just need to prove that Id −K is injective. Now if
for some φ ∈ Z,φ = Kφ then φ ∈ X by definition of K, and Fu(u, t0)φ = 0. But
we just showed that Fu(u, t0) is injective so φ ≡ 0.

�
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5. What happens in the extremal case t = t0 ?

In this section, we look at two specific sets of conditions on c, p, f and Ω.
In one case, the minimal solution u of (Pt0,p) solves the problem in the strong

sense. It then follows from Proposition 5.1 that λ1(u) = 0.
In the other case, the minimal solution u is not a strong one and its singularity

at the origin is worse than |x|−a. Moreover, u is stable, i.e., λ1(u) > 0.

Situation 1.

Suppose Ω = B1, c < c0 close to c0, f radial and p > 1 close to 1.

Then u, the minimal solution of (Pt0,p), solves the problem in the strong sense
and λ1(u) = 0. Furthemore, u = u(r) is radial and

u = r−a w where w ∈ C[0, 1] ∩ C∞(0, 1]

w′ ∼ mr−a(p−1)+1 for some m < 0 as r → 0

w′ < 0 in (0, 1)

Proof.
We suppose for simplicity that f ≡ 1.
First, we note that for any rotation of the space A ∈ SO(n,R), u◦A is a solution

of (Pt0,p) and since u is minimal, we must have u ≤ u ◦ A. This inequality holds
almost everywhere in B1, hence for almost all y = A−1x with x ∈ R

n so that u
must be radial.

Next, define α :=
√

(n− 2)2 − 4c and for r ∈ (0, 1),

(5.1) Φ(u)(r) :=
r−a

α

∫ 1

0

s1+α+aup(s)[max(s, r)−α − 1] ds+
t0

2n+ c
[r−a − r2]

In view of Lemma 1.5, Φ(u)(r) is well defined for r 6= 0 and it follows from
Lebesgue’s theorem that w := ra Φ(u) ∈ C(0, 1].

Using Lebesgue’s theorem again, it is also true that w ∈ C1(0, 1] and that for
r ∈ (0, 1],

w′(r) = −r−1−α

(∫ r

0

s1+α+aup(s) ds

)

− (2 + a)
t0

2n+ c
r1+a

Using the fundamental theorem of calculus, w is twice differentiable a.e. in (0, 1)
and

w′′(r) = −raup(r)− (1+α)
1

r

[

w′(r) + (2 + a)
t0

2n+ c
r1+a

]

− (2+a)(1+a)
t0

2n+ c
ra

So that
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(5.2) −(w′′ + (1 + α)
1

r
w′) = raup(r) + t0 r

a a.e. in (0, 1)

Using the fundamental theorem of calculus again, this equation also holds in the
sense of distributions in (0, 1). Furthermore, since u is a weak solution of (Pt0,p),
it is not hard to see that w̃ := ra u solves (5.2) in D′(0, 1).

So if z = w̃′ − w′, it follows from (5.2) and this last remark that

z′ + (1 + α)
1

r
z = 0 in D′(0, 1).

And by a straightforward computation, we see that

[

r1+α z
]′

= 0 in D′(0, 1).

Hence z = Ar−(1+α) for some A ∈ R and, for some B ∈ R,

(5.3) w̃ = w +
A

α
r−α +B

Since w is C1 away from r = 0 (and hence, so must be w̃), we must have, on
the one hand, using the boundary condition of (Pt0,p) and equation (5.1), that
w(1) = w̃(1) = 0 and B = 0 and on the other hand that u is C1 away from the
origin. Bootstrapping this result with the help of (5.1) and (5.3), it follows that
w, w̃ ∈ C∞(0, 1].

Let us now prove that A = 0. Suppose by contradiction that A > 0 and let
u1(x) := |x|−aw(|x|) for x ∈ B1. Then,

−∆u1 −
c

|x|2
u1 = up + t0 =

[

u1 +
A

α
(|x|−a′

− |x|−a)

]p

+ t0

≥ up
1 + t0

This equation holds at every x 6= 0 and also in the weak sense, as integration
by parts on B1 \ Bǫ with ǫ → 0 shows. But then u1 would be a nonnegative
supersolution of problem (Pt0,p), contradicting minimality of u.

We have just shown that A ≤ 0. We now prove that A = 0. Recall that

(5.4) w̃′(r) = −r−1−α

∫ r

0

s1+α−aup(s) ds− (2 − a)
t0

2n+ c
r1+a −Ar−1−α

By Hopf’s boundary lemma, u′(1) = w̃′(1) < 0. We claim that

w̃′(r) < 0 for all r ∈ (0, 1]
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Suppose not and let r0 = sup{r ∈ (0, 1) : w̃′(r) = 0}. Then w̃′ < 0 on (r0, 1]
and (5.2) implies that

w̃′′(r0) = −(1 + α)
1

r0
w̃′(r0) − (ra

0u
p(r0) + t0 r

a
0 ) < 0

So w̃ has a local maximum at r0. Suppose by contradiction that w̃ has another
critical point and let r1 < r0 so that

w̃′(r1) = 0 and w̃′(r) > 0 for r ∈ (r1, r0)

From (5.2), it follows as before that w̃′′(r1) < 0 and r1 would be a local maximum
of w̃, contradicting w̃′ > 0 on (r1, r0).

Hence w̃ has an absolute maximum at r0 and must therefore be bounded, which
forces A = 0.

But then, using (5.4), w̃′(r) < 0 in (0, 1], contradicting w̃′(r0) = 0.
So, we have proved that w̃′ < 0 in (0, 1].
From (5.4), it follows that if A < 0, w̃′(r) = −Ar−1−α(1 + o(1)) as r → 0 and

we cannot have at the same time w̃′ < 0 and A < 0. Hence A = 0.
So far we know that :

w̃ = w

w′ < 0 in (0, 1]

We now prove that u ≤ Cr−a. From equation (5.1), we already know that
u = Φ(u) ≤ Cr−a−α. Plugging this result into (5.1) again, we only need to show
that the right-hand-side integral is bounded as r → 0, which holds as soon as

1 − a(p− 1) − αp > −1

This last condition is satisfied for αp small and in particular when c is close to c0
and p close to 1. This result, combined with (5.4) yields the asymptotic behaviour
of w′ at the origin.

Finally, by Proposition 4.1, we have that λ1(u) = 0.

When p is chosen close to the critical exponent p0, the minimal solution u of
(Pt0,p) may become more singular than when t < t0, in such a way that up−1 has
a singularity at the origin of same order as 1

|x|2 :

Situation 2.

Suppose 0 < c < c0 and p close to p0. Then there exists a smooth nonnegative
nonzero data f such that u, the minimal solution of (Pt0,p), is stable and such that,
near the origin,
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u = m |x|−γ ,where m > 0 and γ =
2

p− 1
> a > 0

Proof.
We adapt a proof given in [D].

Let v = |P (−γ)|
1

p−1 |x|−γ , where P (X) = X(X − 1) + (n− 1)X + c.
Then, −∆v − c

|x|2 v = vp in R
n and, since when p → p0, γ → a, we may assume

that v ∈ H1.
Lemma 5 in [D] constructs a function ψ ∈ C∞(Ω̄) with the following properties:

(1) ψ ≥ 0 in Ω̄

(2) ∆ψ +
c

|x|2
ψ ≥ 0 in Ω

(3) ψ ≡ 0 in a neighbourhood of 0, and
(4) ψ = v on ∂Ω

We then let u = v − ψ and see that

−∆u−
c

|x|2
u = −∆v −

c

|x|2
v + ∆ψ +

c

|x|2
ψ

= vp + ∆ψ +
c

|x|2
ψ

≥ 0

and u = 0 on ∂Ω, so, by Lemma 1.1 say, u ≥ 0.

Taking f = ∆ψ +
c

|x|2
ψ + vp − up, we then have

−∆u−
c

|x|2
u = up + f.

Observe that f ≥ 0 and is smooth since u ≤ v and u ≡ v near the origin.
Next, we prove that λ1(u) > 0. Given φ ∈ H1

0 (Ω),

∫

Ω

pup−1φ2 ≤

∫

Ω

pvp−1φ2

= p|P (−γ)|

∫

Ω

φ2

|x|2

≤

∫

Ω

|∇φ|2 −

∫

Ω

c

|x|2
φ2 − ǫ

∫

Ω

φ2

The last inequality holds, using Hardy’s inequality (0.3), provided c+p|P (−γ)| <
c0 and ǫ > 0 small. This condition is readily satisfied since as p → p0, γ → a and
P (−γ) → P (−a) = 0. Hence, we get that λ1(u) ≥ ǫ > 0.

We still need to prove that, for our choice of f , t0 = 1 and u is the minimal
solution of (Pt0,p).
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If u1 denotes the minimal solution of (P1,p), it is clear that 0 ≤ u1 ≤ u, hence

up
1 ≤

C

|x|2
and using this inequality and (P1,p), u1 ∈ H1

0 (Ω).

Since λ1(u) ≥ 0, it follows that

∫

Ω

pup−1(u − u1)
2 ≤

∫

Ω

|∇(u − u1)|
2 −

∫

Ω

c

|x|2
(u− u1)

2

≤

∫

Ω

(up + f − up
1 − f)(u− u1)

So that,

∫

Ω

(u− u1)(u
p − up

1 − pup−1(u− u1)) ≥ 0

Since u → up is strictly convex and u ≥ u1, we must have u = u1. And since u
is not a strong solution of (P1,p), we must have 1 = t0.

�

6. The case c = c0

When c = c0, the operator −∆ − c
|x|2 is no longer coercive in H1

0 (Ω). However,

one can still make use of the improved Hardy inequality (see [BV] or [VZ])

(6.1)

∫

Ω

|∇u|2 − c0

∫

Ω

u2

|x|2
≥ C(Ω)

∫

Ω

u2 for all u ∈ C∞
c (Ω)

to define a new Hilbert space H in which the operator is coercive, even when
c = c0.

Definition.
H is the space obtained by completing C∞

c (Ω) with respect to the norm

‖u‖2
H :=

∫

Ω

|∇u|2 − c0

∫

Ω

u2

|x|2

By analogy with the case c < c0, an H solution u will be one such that up ∈ H∗

and such that the equation holds in the sense of Lax-Milgrams lemma in H .

We now list the modifications needed to prove Theorem 1 when c = c0. When
no proof is given, just replace H1

0 (Ω) by H in the original demonstration.
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Lemma 1.1’. Lemma 1.1 still holds if c = c0, H
1
0 (Ω) is replaced by H and H−1

by H∗, the dual of H.

Proof. Only the proof of (1.3) needs to be clarified in this setting.
Let f ∈ H∗, f ≥ 0 and u ∈ H be the corresponding solution of (1.1).
By definition of H , there exists a sequence {un} in C∞

c (Ω) converging to u in
H . Letting fn = −∆un − c

|x|2un, it follows that fn ∈ H−1(Ω) and fn → f in H∗.

Now, un ∈ H1
0 (Ω) ⇒ u−n ∈ H1

0 (Ω) and integrating the equation satisfied by un

against u−n yields

−‖u−n ‖
2
H = 〈fn, u

−
n 〉H∗,H

To pass to the limit in this last equation, we just need to prove that {u−n } remains
bounded in H . But

(6.2)

‖u−n ‖
2
H =

∫

Ω

|∇u−n |
2 − c0

∫

Ω

(u−n )2

|x|2

=

∫

Ω

|∇u−n |
2 − c0

∫

Ω

u2
n

|x|2
+

∫

Ω

c0
|x|2

(u+
n )2

≤

∫

Ω

|∇u−n |
2 − c0

∫

Ω

u2
n

|x|2
+

∫

Ω

|∇u+
n |

2 =

∫

Ω

|∇un|
2 − c0

∫

Ω

u2
n

|x|2

= ‖un‖
2
H

where we’ve used (0.3) in the inequality.

Proposition 0.1’. Proposition 0.1 still holds when c = c0 and H1
0 (Ω) solutions

are replaced by H solutions.

Proof. Suppose first that u is a strong solution of (Pt,p).
Let ζn ∈ C∞

c (Ω \ {0}) be such that 0 ≤ ζn ≤ 1, |∆ζn| ≤ Cn2 and

ζn =

{

0 if |x| ≤ 1/n and δ(x) ≤ 1/n

1 if |x| ≥ 2/n and δ(x) ≥ 2/n

Multiplying (Pt,p) by uζn and integrating by parts, it follows that

∫

Ω

(up + tf)uζn = −

∫

Ω

∆u uζn −

∫

Ω

c

|x|2
u2ζn

=

∫

Ω

|∇u|
2
ζn −

∫

Ω

c

|x|2
u2ζn +

∫

Ω

u∇u∇ζn

Since u ≤ C|x|−a and p < p0, u
p ≤ C|x|−a−2+ǫ, for some ǫ > 0, so that the

first integral in the above equation is bounded by C
∫

Ω |x|−2a−2+ǫ ≤ C whereas
∣

∣

∫

Ω u∇u∇ζn
∣

∣ =

∣

∣

∣

∣

1

2

∫

Ω u
2∆ζn

∣

∣

∣

∣

≤ Cn2
∫

1/n<|x|<2/n |x|−2a ≤ C as n→ ∞.
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Hence
∫

Ω |∇u|
2
ζn −

∫

Ω

c

|x|2
u2ζn ≤ C and u ∈ H . Approximating u ∈ H by

smooth functions and integrating by parts in Ω \ Bǫ with ǫ → 0, it follows that u
is a weak solution of (Pt,p). For u to be an H solution, we only need to prove the
following :

Claim. Suppose u is a weak solution satisfying the estimate u ≤ C|x|−a. Then

up ∈ H∗

For φ ∈ C∞
c (Ω), 1 < q < 2, it follows from Hölder’s inequality that

∣

∣

∣

∣

∫

Ω

|x|−apφ

∣

∣

∣

∣

≤

(∫

Ω

|x|−(ap−1) q
q−1

)
q−1

q
∥

∥

∥

∥

φ

|x|

∥

∥

∥

∥

Lq

On the one hand, since p < p0, the integral in the right hand side will be finite
if q is chosen close enough to 2.

On the other hand, using Hardy’s inequality in Lq and the inclusion H →֒W 1,q
0

(see section 4 of [VZ]),

∥

∥

∥

∥

φ

|x|

∥

∥

∥

∥

Lq

≤ C‖φ‖W 1,q
0

≤ C‖φ‖H

and up ∈ H∗.

Hence, strong solutions are also H solutions.

Showing that H solutions are weak solutions is similar to the case c < c0,
whereas, starting from a weak solution u, we observe as above that up ∈ H∗ and
define un ≥ 0 to be the minimal weak solution of







−∆un −
c− 1/n

|x|2
un = up

n + tf in Ω

un = 0 on ∂Ω

u is a supersolution of this equation so un is well defined and 0 ≤ un ≤ u ≤
C|x|−a. By Proposition 0.1 (case c < c0), it follows that un ∈ H1

0 (Ω) and testing
in the above equation against un,

‖un‖
2
H ≤ (‖up

n‖H∗ + C)‖un‖H

Letting n→ ∞, we get u ∈ H . Since H →֒W 1,q
0 for 1 ≤ q < 2, elliptic regularity

can be applied to complete the proof.

Lemma 1.3’. Lemma 1.3 still holds when c = c0

Lemma 1.4’. Lemma 1.4 still holds when c = c0



A NONLINEAR ELLIPTIC PDE WITH THE INVERSE SQUARE POTENTIAL 37

Lemma 1.5’. Lemma 1.5 still holds when c = c0

Proof. We assume first that u is the minimal (weak) solution of (1.20) and can
therefore be written as the pointwise limit of an increasing sequence {uǫ}, where
uǫ solves (1.20) with c− ǫ in place of c. Since Lemma 1.5 can be applied to uǫ, an
argument of monotone convergence yields the result.

If u isn’t minimal, the above discussion yields all the results up to the conclusion
of Step 6 in the original proof. That step can be applied -as is- in our context,
which finishes the proof.

2.1’ : Existence of a solution of (Pt,p) for 1 < p < p0, small t > 0.

For simplicity, we assume without loss of generality that Ω ⊂ B 1
2
. Consider

w = A|x|−a
(

ln 1
|x|

)
1
4p

, with A > 0 to be fixed later. Then −∆w − c
|x|2w =

4p−1
16p2 A |x|−a−2

(

ln 1
|x|

)
1
4p−2

and w will be a supersolution of (Pt,p) as soon as



















4p− 1

32p2
A|x|−a−2

(

ln
1

|x|

)
1
4p−2

≥ Ap|x|−ap

(

ln
1

|x|

)p/4

4p− 1

32p2
A|x|−a−2

(

ln
1

|x|

)
1
4p−2

≥ tf

The first inequality amounts to

A ≤ C min
r∈(0,1/2]

{

r−a−2+pa

(

ln
1

r

)
1
4p−2−p/4

}
1

p−1

and the second to

t ≤ C ·A min
r∈(0,1/2]

{

r−a−2

(

ln
1

r

)
1
4p−2

}

Under these conditions, w is a supersolution of (Pt,p).
We now just have to construct a supersolution in H .
Let w1 be a smooth extension inside Ω of w|∂Ω such that w1 = w in Ω \ B1/4

and w1 = 0 in B1/8. Next, we let g = ∆w1 +
c

|x|2
w1 and construct z ∈ H solving

(2.1) and w2 = z + w1 solving (2.2).
We would like to show that w2 ≥ 0 and remark that w−

2 ∈ H . Indeed, let
φk ∈ C∞

c (Ω) → z in H . Then (φk + w1)
− ∈ H1

0 (Ω) ⊂ H and

‖(φk + w1)
−‖2

H =

∫

{φk+w1<0}

(

|∇(φk + w1)|
2 −

c

|x|2
(φk + w1)

2

)

≤ ‖φk‖
2
H + C + 2

∫

{φk+w1<0}

(

∇φk · ∇w1 −
c

|x|2
φkw1

)

≤ ‖φk‖
2
H + C +

1

2
‖(φk + w1)

−‖2
H
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Hence ‖(φk + w1)
−‖H ≤ C and passing to the limit (in the weak topology and

for a subsequence), it follows that w−
2 ∈ H .

Letting ψk ∈ C∞
c (Ω) → w−

2 in H , integration by parts then yields

(w2|ψk)H =

∫

Ω

(

∇z∇ψk −
c

|x|2
zψk

)

+

∫

Ω

(

∇w1∇ψk −
c

|x|2
w1ψk

)

=

∫

∂Ω

ψk∂νw

and letting k → ∞ in H ,

‖w−
2 ‖2

H = (w2|w
−
2 )H =

∫

∂Ω

∂νww
− = 0

Hence w2 ≥ 0.

Finally, letting w̃ = w − w2 = w − z − w1, we only need to prove that w̃ ∈ H
and the rest of the proof will remain unchanged. Since z ∈ H , it is enough to show
that w − w1 ∈ H .

If H(ω) denotes the space H relative to the open set ω of R
n, it has been shown

in [VZ] (see 5.2) that f defined for 0 < r < r0 < 1 by

f(r) = r−a(ln(1/r))α

and continued smoothly up to the boundary of the ball B1, where f = 0, belongs
to H(B1) as long as α < 1/2.

(w−w1)|B1/4
precisely satisfies these conditions, hence belongs to H(B1/4). Since

w − w1 ≡ 0 in Ω \B1/4, it follows that w − w1 ∈ H(Ω).

2.3’ : Case p ≥ p0 : blow-up.

By Proposition 2.1, we just need to prove that (Pt,p) has no weak solution if
p ≥ p0. Assume by contradiction there exists one and call it u. If we apply Lemma
1.5 with up + tf in place of f , it follows that

∫

Ω

up|x|−a δ(x) <∞ and u ≥ m|x|−a a.e. near the origin.

This is impossible since near the origin,

|x|−aup ≥ m|x|−a(p+1) ≥ m|x|−n

Lemma 3.1’. Lemma 3.1 still holds when c = c0

Lemma 3.2’. Lemma 3.2 still holds when c = c0 and t < t0
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Theorem 2’. Theorem 2 still holds when c = c0 with H1
0 (Ω) solutions replaced by

H solutions.

Proof. For t < t0, ut the strong minimal solution of (Pt,p) can be written as the
monotone limit of un, where un is the strong minimal solution of the same problem
with c replaced by cn = c − 1/n.By our analysis in the case c < c0, we know that
λ1(un) > 0. Passing to the limit, we easily get that λ1(ut) ≥ 0.

To obtain a strict inequality, it is enough to show that t → λ1(ut) is a strictly
decreasing function. It should be clear from its definition that t→ λ1(ut) is nonin-
creasing.

Suppose that λ1(ut) = λ1(us) for some s ≤ t. Call φt
1 and φs

1 the corresponding
eigenfunctions, which can be constructed as in the case c < c0. Then,

λ1(ut) =

∫

Ω

|∇φt
1|

2 −

∫

Ω

c

|x|2
φt

1
2
−

∫

Ω

pup−1
t φt

1
2

≤

∫

Ω

|∇φs
1|

2 −

∫

Ω

c

|x|2
φs

1
2 −

∫

Ω

pup−1
t φs

1
2

≤

∫

Ω

|∇φs
1|

2 −

∫

Ω

c

|x|2
φs

1
2 −

∫

Ω

pup−1
s φs

1
2

= λ1(us)

Hence,

∫

Ω

|∇φs
1|

2 −

∫

Ω

c

|x|2
φs

1
2 −

∫

Ω

pup−1
t φs

1
2 =

∫

Ω

|∇φs
1|

2 −

∫

Ω

c

|x|2
φs

1
2 −

∫

Ω

pup−1
s φs

1
2

and

ut = us ,which implies t = s .

Hence ut is a stable solution of (Pt,p).

To prove that ut is the only stable H solution, we can argue exactly as in the
case c < c0.

The results of section 5 extend in the following way (we skip the proof) :

Situation 1’. Suppose c = c0, Ω = B1, f radial and 1 < p < p0.

Then u, the minimal solution of (Pt0,p), solves the problem in the strong sense.
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