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Introduction

For N ≥ 1 and f ∈ C 1 (R) consider the equation ( 1)

-∆u = f (u) in R N .
The aim of this paper is to classify solutions u ∈ C 2 (R N ) which are stable i.e. such that for all ϕ ∈ C 1 c (R N ),

Z R N f ′ (u)ϕ 2 dx ≤ Z R N |∇ϕ| 2 dx. (2) 
For some of our results, we shall assume in addition u > 0 in R N and/or u ∈ L ∞ (R N ). We shall also discuss extensions to solutions which are merely stable outside a compact set (i.e. (2) holds for test functions supported in the complement of a given compact set K ⊂⊂ R N ).

Stable radial solutions of [START_REF] Alberti | On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property[END_REF] are by now well-understood : by the work of Cabré and Capella [START_REF] Cabré | On the stability of radial solutions of semilinear elliptic equations in all of R n[END_REF], refined by Villegas in [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF], every bounded radial stable solution of (1) must be constant if N ≤ 10. The result holds for any nonlinearity f ∈ C 1 (R). Conversely, there exist unbounded radial stable solutions in any dimension. Take for example, u(x) = |x| 2 /2N solving (1) with f (u) = -1. Also, there are examples of bounded radial stable solutions when N ≥ 11. See e.g. [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF], [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. When dealing with nonradial solutions, much less is known. In the case N = 2, any stable solution of [START_REF] Alberti | On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property[END_REF] with bounded gradient is one-dimensional (i.e. up to a rotation of space, u depends only on one variable) under the sole assumption that 1 ddf.tex June 17, 2008 2 f is locally Lipschitz continuous (see [START_REF] Farina | type problems : new results via a geometric approach[END_REF]). In arbitrary dimension, a complete analysis of stable solutions and solutions which are stable outside a compact set is provided for two important nonlinearities f (u) = |u| p-1 u, p > 1 and f (u) = e u in [START_REF] Farina | Liouville-type results for solutions of -∆u = |u| p-1 u on unbounded domains of R N[END_REF], [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF], [START_REF]Stable solutions of -∆u = e u on R N[END_REF] and [START_REF] Dancer | On the classification of solutions of -∆u = e u on R N : stability outside a compact set and applications[END_REF].

Under a mere nonnegativity assumption on the nonlinearity, we begin this paper by stating that up to space dimension N = 4, bounded stable solutions of (1) are trivial :

Theorem 1.1 Assume f ∈ C 1 (R), f ≥ 0 and 1 ≤ N ≤ 4. Assume u ∈ C 2 (R N
) is a bounded, stable solution of [START_REF] Alberti | On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property[END_REF]. Then, u is constant.

Remark 1.2 It would be interesting to know whether Theorem 1.1 still holds if one assumes that u is unbounded but ∇u is bounded.

Power-type nonlinearities

For our next set of results, we restrict to the following class of nonlinearities

(3) f ∈ C 0 (R + ) ∩ C 2 (R + * ), f > 0 is nondecreasing and convex in R + * .
As demonstrated in [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF] for the particular case of the power nonlinearities f (u) = |u| p-1 u, two critical exponents play an important role, namely the classical Sobolev exponent In order to relate the nonlinearity f and the above exponents, we introduce a quantity q defined for u ∈ R + * by ( 6)

q(u) = f ′2 f f ′′ (u) = (ln f ) ′ (ln f ′ ) ′ (u)
whenever f f ′′ (u) = 0, q(u) = +∞ otherwise. When f (u) = |u| p-1 u, p ≥ 1, q is independent of u and coincides with the conjugate exponent of p i.e. 1 p + 1 q = 1. In this section, we assume that q(u) converges as u → 0 + and denote its limit : [START_REF] Farina | Liouville-type results for solutions of -∆u = |u| p-1 u on unbounded domains of R N[END_REF] q0 = lim

u→0 + q(u) ∈ R. Remark 1.3 If u ∈ C 2 (R N ), u ≥ 0 solves (1)
, and (3) holds, then f (0) = 0.

In dimension N = 1, 2, this follows directly from the classical Liouville theorem for superharmonic nonnegative functions. For a proof in dimension N ≥ 3, see Step 6. in Section 6. We then observe that

Lemma 1.4 If f ∈ C 0 (R + ) ∩ C 2 (R + * ) is convex nondecreasing, f ( 
0) = 0 and (7) holds, then in fact q0 ∈ [1, +∞].
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f ′′ f ′ -θ f ′ f ≥ 0.
So, f ′ /f θ is nondecreasing hence bounded above near 0. Integrating again, we deduce that f 1-θ (u) ≤ Cu+C ′ near 0, which is not possible if f (0) = 0.

Define now p0 ∈ R, the conjugate exponent of q0 by ( 8)

1/p0 + 1/q0 = 1.
The exponent p0 must be understood as a measure of the "flatness" of f at 0. All nonlinearities f such that (3) holds and which either are analytic at the origin or have at least one non-zero derivative at the origin or are merely of the form f (u) = u p g(u), where p ≥ 1 and g(0) = 0, satisfy [START_REF] Farina | Liouville-type results for solutions of -∆u = |u| p-1 u on unbounded domains of R N[END_REF]. Exponentially flat functions such as f (u) = e -1/u 2 also qualify (with p0 = +∞). However, there should exist (convex increasing) nonlinearities failing [START_REF] Farina | Liouville-type results for solutions of -∆u = |u| p-1 u on unbounded domains of R N[END_REF]. This being said, we establish the following theorem.

Theorem 1.5 Assume f ∈ C 0 (R + ) ∩ C 2 (R + * ) is nondecreasing, convex, f > 0 in R + * and (7) holds. Assume u ∈ C 2 (R N
) is a bounded,nonnegative, stable solution of (1). Then, u ≡ 0 if either of the following conditions holds 1. 1 ≤ N ≤ 9, 2. N = 10 and p0 < +∞, where p0 is given by (8), 3. N ≥ 11 and p0 < pc(N ), where p0 is given by [START_REF]Stable solutions of -∆u = e u on R N[END_REF] and pc(N ) by [START_REF] Dancer | On the classification of solutions of -∆u = e u on R N : stability outside a compact set and applications[END_REF] Remark 1.6 Theorem 1.5 was first proved by A. Farina,when f (u) = |u| p-1 u. See [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. As observed e.g. in [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF], for N ≥ 11, there exists a non constant bounded positive stable solution for f (u) = |u| p-1 u as soon as p ≥ pc(N ). So our result is sharp in the class of power-type nonlinearities for N ≥ 11. We do not know whether Theorem 1.5 remains true when N = 10 and p0 = +∞. We do not know either if for N ≤ 10, assumption (7) can be completely removed. See Theorem 1.11 in Section 1.2 for partial results in this direction. See also [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF] for a positive answer in the radial case.

1.2 Some generalizations : unbounded and signchanging solutions, beyond power-type nonlinearities First, we discuss the case of unbounded solutions. When f (u) = |u| p-1 u, the assumption u ∈ L ∞ (R N ) is unnecessary, see [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. For general powertype nonlinearities, Theorem 1.5 remains true for unbounded solutions under an additional assumption on the behaviour of f at +∞ :

1. 1 ≤ N ≤ 9 and 1 < p0,
2. N = 10 and 1 < p0 < +∞, 3. N ≥ 11 and 1 < p0 < pc(N ).

Remark 1.9 The above Corollary remains true if f is not odd but simply if f (0) = 0 and the assumptions made on f also hold for f defined for u ∈ R + by f (u) = -f (-u).

Corollary 1.10 Assuming in addition 1 < p∞ if N ≤ 9 (respectively 1 < p∞ < +∞ if N = 10 and 1 < p∞ < pc(N ) when N ≥ 11), Corollary 1.8 remains valid for any stable solution. That is, one can drop the assumptions u ≥ 0 and u ∈ L ∞ (R N ).

Finally, we study nonlinearities for which [START_REF] Farina | Liouville-type results for solutions of -∆u = |u| p-1 u on unbounded domains of R N[END_REF] fails. To do so, we introduce q0, q0 ∈ R defined by [START_REF] Farina | type problems : new results via a geometric approach[END_REF] q0 = lim sup

u→0 + q(u), q0 = lim inf u→0 + q(u). Theorem 1.11 Assume f ∈ C 0 (R + ) ∩ C 2 (R + * ) is nondecreasing, convex, f > 0 in R +
* and let q0, q0 defined by [START_REF] Farina | type problems : new results via a geometric approach[END_REF]. Assume u ∈ C 2 (R N ) is a bounded, nonnegative, stable solution of (1). Then, u ≡ 0 if either of the following conditions hold

1. 3 ≤ N and q0 > N 2 , 2. 1 ≤ N ≤ 6 and q0 < ∞, 3. 1 ≤ N and 4 N -2 `1 + 1/ √ q0 ´> 1/q0.
Remark 1.12 The above theorem is of particular interest when f ′ is convex or concave near the origin. Assume f (0) = f ′ (0) = 0 (this is not restrictive, see Remark 3.3). Apply Cauchy's mean value theorem : given un ∈ R + * , there exists vn ∈ (0, un) such that

q(un) = f ′2 f f ′′ ˛u=un = 2f ′ f ′′ f ′ f ′′ + f f ′′′ ˛u=vn .
If f ′′′ ≥ 0 near 0, we deduce that q0 ≤ 2. By case 2 of the Theorem, we conclude that if f ′ is convex near 0 and N ≤ 6, then u ≡ 0. Similarly, if f ′ is concave near 0, q0 ≥ 2. By case 3 of the Theorem, we conclude that if f ′ is concave near 0 and N ≤ 9 (or N = 10 and q0 < +∞), then u ≡ 0.

Remark 1.13 Our methods yield absolutely no result under the assumption 10 ≥ N ≥ 5 and

q0 ≤ N -2 4 < q0 = ∞.

Solutions which are stable outside a compact set

Set aside the case where f is a power or an exponential nonlinearity, little is known about the classification of solutions of (1) which are stable outside a compact set. Even in the radial case. Now, recall the definition of the critical exponents given in ( 4) and [START_REF] Dancer | On the classification of solutions of -∆u = e u on R N : stability outside a compact set and applications[END_REF]. As demonstrated in [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF], the nonlinearities f (u) = |u| p-1 u, p = pS(N ), N ≥ 3 and p ≥ pc(N ), N ≥ 11 must be singled out. For such values of p, radial solutions which are stable outside a compact set are nontrivial and completely classified, while for other values of p > 1, all solutions which are stable outside a compact set (whether radial or not) must be constant. See [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF]. When dealing with more general nonlinearities, the first basic step consists in determining the behaviour of a solution u at infinity. This can be done by exploiting the classification of stable solutions obtained in Theorem 1.5 and Corollary 1.8 :

Proposition 1.14 Assume f ∈ C 0 (R). Assume u = 0 is the only bounded stable C 2 solution of (1). If u ∈ C 2 (R N ) is a bounded solution of (1)
which is stable outside a compact set, then,

lim |x|→∞ u(x) = 0.
Remark 1.15 As follows from the proof, the same result is valid for bounded positive solutions which are stable outside a compact set, under the weaker assumption that all bounded positive stable solutions of the equation are constant.

Remark 1.16 If f ′ (0) > 0, then in fact there exists no bounded solution of (1) which is stable outside a compact set. See the proof of Proposition 1.14.

Remark 1.17 Clearly, if we assume instead that f vanishes only at u0 = 0 then lim |x|→∞ u(x) = u0. Similarly, we leave the reader check that if the set of zeros of f is totally disconnected and the only bounded stable solutions of the equation are constant, then lim |x|→∞ u(x) = u0, where u0 is a zero of f . Remark 1.18 We do not know if a version of Proposition 1.14 holds if one assumes that f vanishes only at -∞ or +∞. If f (u) = e u and N = 2 (see e.g. [START_REF]Stable solutions of -∆u = e u on R N[END_REF]), there exist (infinitely many) solutions of (1) which are stable outside a compact set and such that

lim |x|→∞ u(x) = -∞.
Proof of Proposition 1.14.

For k ≥ 1, let τ k ∈ R N such that lim k→∞ |τ k | = +∞ and let u k (x) = u(x + τ k ) for x ∈ R N .
Standard elliptic regularity implies that a subsequence of (u k ) converges in the topology of C 2 loc (R N ) to a solution v of (1). In addition, since u is stable outside a compact set, v is stable. Therefore, v is constant and f (v) = 0, so v = 0. If f ′ (0) > 0, then v = 0 is clearly unstable, which is absurd. This proves Remark 1.16. In addition, since v = 0 is the unique cluster point of (u k ), the whole sequence must converge to 0. Proposition 1.14 follows.

In light of Proposition 1.14, it is natural to try to characterize the speed of decay of our solutions as |x| → ∞. When f is power-type, we have the following:

Theorem 1.19 Assume f ∈ C 0 (R + ) ∩ C 2 (R + * ) is nondecreasing, convex, f > 0 in R + * , f (0) = 0 and (7) holds. Assume u ∈ C 2 (R N
) is a bounded positive solution of (1), which is stable outside a compact set. If either of the following conditions holds 1. 1 ≤ N ≤ 9, 2. N = 10 and p0 < +∞, 3. N ≥ 11 and p0 < pc(N ), then there exists a constant C > 0 such that for all x ∈ R N sufficiently large, [START_REF] Pucci | The maximum principle[END_REF] u(x) ≤ Cs(|x|).

In the above inequality, the speed of decay s(R) is defined for R > 0 as the unique solution s = s(R) of

(12) f (A1R 2 f (s)) = A2f (s),
where A1, A2 are two positive constants depending on N only. In other words, s is given by s(R) = f -1 `C1R -2 g(C2R -2 ) ´where C1, C2 are two positive constants depending on N only and g is the inverse function of t → f (t)/t. Remark 1.20 In the above theorem, we have implicitly assumed that the functions f and t → f (t)/t are invertible in a neighborhood of 0. This is indeed true : by convexity of f , t → f (t)/t is nondecreasing. By Step 6 in Section 6, we must have f (0) = 0 and lim t→0 + f (t) t = 0. If there existed two values 0 < t1 < t2 such that f (t 1 )

t 1 = f (t 2 )
t 2 , then, by convexity, f would be linear on (t1, t2), hence on (0, t2) by convexity. This contradicts lim t→0 + f (t) t = 0. So, t → f (t)/t is invertible for t > 0 small and so must be f . Remark 1.21 Equation (12) looks somewhat complicated at first glance. For many nonlinearities (including f (u) = |u| p-1 u), one can actually set the constants A1, A2 equal to 1. ( 12) then takes the simplified form

f (s) s = R -2 .
In particular, when f (u) = |u| p-1 u, we recover the familiar speed

s(R) = R -2 p-1 . Remark 1.22 If p0 < ∞, for all ǫ > 0, there exists C > 0 such that s(R) ≤ CR - 2 (p 0 -1) +ǫ for R ≥ 1.
However, even when p0 < ∞, there should exist nonlinearities f failing the estimate s(R) ≤ CR -2/(p 0 -1) .

Proof of Remark 1.22. An easy calculation shows that for all δ > 0 small, there exists 7) holds and p0 < +∞. Plugging this information into the definition of s(R) yields the desired conclusion.

C, ε > 0 such that C -1 u p 0 +δ ≤ f (u) ≤ Cu p 0 -δ and C -1 u p 0 +δ-1 ≤ f ′ (u) ≤ Cu p 0 -δ-1 for u ∈ (0, ε) provided (
From here on, our aim is to prove a Liouville-type result for solutions which are stable outside a compact set. As follows from the analysis in [START_REF]On the classification of solutions of the Lane-Emden equation on unbounded domains of R N[END_REF], we must distinguish the sub and the supercritical case. We first consider the case where p0 is subcritical i.e. [START_REF] Trudinger | On Harnack type inequalities and their application to quasilinear elliptic equations[END_REF] p0 < ∞, N ≤ 2 or p0 < pS(N ), N ≥ 3.

In this case, we make the following extra global assumption on f :

(14) (p0 + 1)F (s) ≥ sf (s) for all s ∈ R,
where F denotes the antiderivative of f vanishing at 0. Then, we have

Theorem 1.23 Assume f ∈ C 0 (R + ) ∩ C 2 (R + * ) is nondecreasing, convex, f > 0 in R * + and (7) holds. Assume u ∈ C 2 (R N
) is a bounded, nonnegative solution of (1), which is stable outside a compact set. Assume p0 is subcritical (i.e. (13) holds) and f satisfies the global inequality [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF]. Then, u = 0.

We turn next to the supercritical case. We say that p0 is in the supercritical range if (15)

8 > < > : pS(N ) < p0 < +∞, 3 ≤ N ≤ 10, or pS(N ) < p0 < pc(N ), N ≥ 11. 
In this case, we begin by showing that the asymptotic decay estimate (11) can be further improved. Namely, we show that not only u

(x) = O(s(|x|)) but in fact u(x) = o(s(|x|)).
The price we pay is the following set of assumptions : we request that near the origin, there exist constants ε, c1, c2 > 0 such that

f (u) ≥ c1u p 0 for u ∈ (0, ε) (16) f ′ (u) ≤ c2u p 0 -1 for u ∈ (0, ε). (17)
By convexity of f , the above inequalities reduce to one when f (0) = 0 :

(18) c2u p 0 ≥ uf ′ (u) ≥ f (u) ≥ c1u p 0 , for u ∈ (0, ε).
Compare this assumption with the already known estimate given in the proof of Remark 1.22.

Theorem 1.24 Make the same assumptions as in Theorem 1.19. Assume in addition that f satisfies the local estimates (16), (17). For p0 in the supercritical range (15), any bounded positive solution u ∈ C 2 (R N ) of (1), which is stable outside a compact set, satisfies

u(x) = o " |x| -2 p 0 -1 " and |∇u(x)| = o " |x| -2 p 0 -1 -1 " as |x| → ∞. (19) 
Finally, to obtain the Liouville theorem in the supercritical range, we assume in addition that (20) (p0 + 1)F (s) ≤ sf (s) for all s ∈ R.

Note that the inequality is reversed compared to [START_REF] Villegas | Asymptotic behavior of stable radial solutions of semilinear elliptic equations in R N[END_REF]. Also note that since f is nondecreasing, we automatically have F (s) ≤ sf (s). (20) can thus be seen as an improved global convexity assumption on F . We have

Theorem 1.25 Assume f ∈ C 2 (R + ) is nondecreasing, convex, f > 0 in R * + and (7) holds. Assume u ∈ C 2 (R N
) is a bounded, nonnegative solution of (1), which is stable outside a compact set. Assume p0 is in the supercritical range (15) and f satisfies the local bounds (16), (17) as well as the global inequality (20). Then, u ≡ 0.

Remark 1.26 As mentioned in Remark 1.6 , the above theorem is false for exponents p0 ≥ pc(N ), N ≥ 11 or p0 = pS(N ), N ≥ 3.

Remark 1.27 For the nonlinearity f (u) = |u| p-1 u, all the extra assumptions ( 14), (20), ( 16), ( 17) are automatically satisfied.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.1. Theorem 1.5 is the object of Section 3. In Section 4, we discuss the extensions given in Corollaries 1.7, 1.8 and 1.10. Theorem 1.11, which deals with nonlinearities which are not of power-type, is proved in Section 5. Section 6 is devoted to the proof of Theorem 1.19, pertaining to the rate of decay of solutions which are stable outisde a compact set. The refined asymptotics obtained in Corollary 1.24 is also derived in this section. Section 7 covers Theorem 1.23, dealing with subcritical nonlinearities, while the supercritical case is addressed in Section 8.

2 The case of low dimensions 1 ≤ N ≤ 4 : proof of Theorem 1.1

The proof bears resemblences with an argument found in [START_REF] Ambrosio | Entire solutions of semilinear elliptic equations in R 3 and a conjecture of De Giorgi[END_REF]. It relies on two simple arguments : a growth estimate of the Dirichlet energy on balls and a Liouville-type result for certain divergence-form equations (mainly due to Berestycki, Caffarelli and Nirenberg [START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains[END_REF]), which applies to solutions with controlled energy. The specific form of the afore-mentioned equation is obtained by linearizing (1) and taking advantage of the stability assumption. The limitation N ≤ 4 arises from the energy estimate on balls.

Proof. For R > 0, let BR denote the ball of radius R centered at the origin. We begin by proving that there exists a constant C > 0 independent of R > 0 such that (21)

Z B R |∇u| 2 dx ≤ CR N -2 . Let M ≥ u ∞, ϕ ∈ C 2 c (R N ) and multiply (1) by (u -M )ϕ : Z R N -∆u(u -M )ϕ dx = Z R N f (u)(u -M )ϕ dx.
Integrating by parts and recalling that f ≥ 0, it follows that

Z R N |∇u| 2 ϕ dx + Z R N (u -M )∇u∇ϕ dx = Z R N f (u)(u -M )ϕ dx ≤ 0, whence, Z R N |∇u| 2 ϕ dx ≤ - Z R N 1 2 ∇(u -M ) 2 ∇ϕ dx = Z R N (u -M ) 2 2 ∆ϕ dx ≤ 2M 2 Z R N |∆ϕ| dx.
Let ϕ0 denote any nonnegative test function such that ϕ0 = 1 on B1 and apply the above inequality with ϕ(x) = ϕ0(x/R). We obtain (21). Since u is stable, there exists a solution v > 0 of the linearized equation

(22) -∆v = f ′ (u)v in R N .
Let σj = 1 v ∂u ∂x j for j = 1, . . . , N . Then, since v and ∂u/∂xj both solve the linearized equation ( 22), it follows that

(23) -∇ • `v2 ∇σj ´= 0 in R N .
It is known that any solution σ ∈ H 1 loc (R N ) of ( 23) such that In particular, the gradient of u points in a fixed direction i.e. u is onedimensional and solves

Z B R v 2 σ 2 ≤ CR
-u ′′ = f (u) in R.
Since f ≥ 0 and u is bounded, this is possible only if u is constant and

f (u) = 0.
3 The Liouville theorem for stable solutions : proof of Theorem 1.5

The proof is split into two separate cases, according to the value of q0. We first consider the case q0 > N 2 . It suffices to prove the following lemma.

Lemma 3.1 Assume f ∈ C 2 (R + ), f > 0 is nondecreasing, convex and q0 := lim inf u→0 + q(u) > N/2. Assume u ∈ C 2 (R N ) , u ≥ 0 and (24) -∆u ≥ f (u) in R N .
Then, u ≡ 0. Proof. Assume by contradiction that u = 0. By the Strong Maximum Principle, u > 0.

Step 1. Since q0 > N 2 , there exists q > N 2 such that

f ′′ f f ′2 < 1 q , in a neighborhood of 0. Equivalently, f ′′ f ′ -1 q f ′ f < 0. Hence, the function f ′
f 1/q is decreasing near 0. In particular, there exists a constant C > 0 such that f ′ f 1/q ≥ C near 0, which implies that for some p <

N N -2 , c1 > 0, (25) f (u) ≥ c1u p .
The above inequality holds in a neighborhood of 0.

Step 2. Since p < pS(N ), there exists ϕ > 0 solving (26)

( -∆ϕ = c1ϕ p in B1 ϕ = 0 on ∂B1.
We are going to prove that a rescaled version of ϕ must lie below u. Let indeed R > 0 and ϕR(x

) = R -2 p-1 ϕ(x/R) for x ∈ BR, ϕR(x) = 0 for |x| ≥ R. Then, ( -∆ϕR = c1(ϕR) p in BR ϕR = 0 on ∂BR. Furthermore, since p < N N -2 , ( 27 
) ϕR L ∞ (B R ) R 2-N ≤ R -2 p-1 R 2-N ϕ L ∞ (B 1 ) → 0, as R → +∞.
Step 3. Since u > 0 is superharmonic, there exists a constant c > 0 such that

(28) u(x) ≥ c |x| 2-N for |x| ≥ 1.
Indeed, the above inequality clearly holds for |x| = 1, with c = min [|x|=1] u.

In addition, the function

z = u-c |x| 2-N is superharmonic in [1 ≤ |x| ≤ M ]. By the Maximum Principle, z ≥ min(0, min [|x|=M ] z(x)), in [1 ≤ |x| ≤ M ].
Hence, z ≥ lim infM→∞ min(0, min [|x|=M ] z(x)) = 0. (28) is established.

Step 4. Collecting ( 27) and (28), we obtain for R > 0 sufficiently large u ≥ ϕR.

We conclude using the celebrated sliding method : first, by ( 27), ϕR ∞ → 0 as R → ∞, so that by (25), f (ϕR) ≥ c1(ϕR) p , provided R is sufficiently large. In particular,

-∆(u -ϕR) ≥ f (u) -f (ϕR) ≥ 0.
By the Strong Maximum Principle, u > ϕR. Next, we slide ϕR in a given direction, say φR,t(x) = ϕR(x + te1), where e1 = (1, 0, . . . , 0). We want to prove that u ≥ φR,t for all t ≥ 0. If not, there exists t0 ∈ (0, +∞) such that u ≥ φR,t 0 and u(x0) = φR,t 0 (x0) at some point x0 ∈ R N . But again we have

-∆(u -ϕR,t 0 ) ≥ f (u) -f ( φR,t 0 ) ≥ 0.
and the Strong Maximum Principle would imply that u ≡ φR,t 0 . This is not possible since ϕR,t 0 is compactly supported while u is not. The above argument holds if e1 is replaced by any other direction e ∈ S N -1 . In particular, u ≥ max ϕR > 0, which is possible, since u is superharmonic, only if u is constant. Since, f > 0, we obtain a contradiction. Hence, u ≡ 0.

Remark 3.3 If f (0) = 0 or f ′ (0) = 0, then ( 
25) clearly holds in a neighborhood of 0 and we may work as above to conclude that u is constant. We may therefore assume for the rest of the proof that f (0) = f ′ (0) = 0.

We turn next to the case q0 ≤ N/2, which is a consequence of the following theorem.

Theorem 3.4 Assume f ∈ C 2 (R + ) is nondecreasing, convex , f > 0 in R * + , (7 
) holds and q0 < +∞. Then, the differential inequality

(29) -∆u ≤ f (u) in R N does not admit any solution u ∈ C 2 (R N ) ∩ L ∞ (R N ), u > 0 such that (2)
holds, if either of the following conditions holds 

1. 1 ≤ N ≤ 9, 2 
Z R N ∇u∇ϕ dx ≤ Z R N f (u)ϕ dx,
for all Lipschitz functions ϕ ≥ 0 with compact support.

It remains to prove Theorem 3.4. We begin with the following weighted-Poincaré inequality.

Lemma 3.6 Assume Ω is an arbitrary open set in R N . Let u ∈ C 2 (Ω), u ≥ 0 satisfy -∆u ≤ f (u) in Ω.
Assume in addition that for all ϕ ∈ C 1 c (Ω),

Z Ω f ′ (u)ϕ 2 dx ≤ Z Ω |∇ϕ| 2 dx. Let φ ∈ W 1,∞ loc (R; R) denote a convex function and η ∈ C 1 c (R N ). Let ψ(u) = Z u 0 φ ′2 (t) dt. (30) 
Then,

Z

Ω [(f ′ φ 2 -f ψ) • u]η 2 dx ≤ Z Ω [φ 2 • u] |∇η| 2 .
Remark 3.7 If φ is not convex, then the following variant of (31) holds.

(

) Z Ω [(f ′ φ 2 -f ψ) • u]η 2 dx ≤ Z Ω [K • u]∆(η 2 ) dx - Z Ω [φ 2 • u]η∆η dx, 32 
where K(u) = R u 0 ψ(s) ds. Proof. Multiply (29) by ψ(u)η 2 and integrate by parts :

Z Ω ∇u∇ `ψ(u)η 2 ´dx ≤ Z Ω f (u)ψ(u)η 2 dx Z Ω φ ′ (u) 2 |∇u| 2 η 2 dx + Z Ω ψ(u)∇u∇η 2 dx ≤ Z Ω φ ′ (u) 2 |∇u| 2 η 2 dx - Z Ω K(u)∆η 2 dx ≤ ddf.tex
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Z Ω φ ′ (u) 2 |∇u| 2 η 2 dx ≤ Z Ω K(u)∆η 2 dx + Z Ω f (u)ψ(u)η 2 dx (33)
Next, we apply (30) with ϕ = φ(u)η and obtain

Z Ω f ′ (u)φ(u) 2 η 2 dx ≤ Z Ω |∇ (φ(u)η) | 2 dx = Z Ω ˛φ′ (u)η∇u + φ(u)∇η ˛2 dx ≤ Z Ω φ ′ (u) 2 η 2 |∇u| 2 dx + Z Ω φ(u) 2 |∇η| 2 dx + 2 Z Ω φ(u)φ ′ (u)η∇η∇u dx ≤ Z Ω φ ′ (u) 2 η 2 |∇u| 2 dx + Z Ω φ(u) 2 |∇η| 2 dx + 1 2 Z Ω ∇η 2 ∇φ(u) 2 dx ≤ Z Ω φ ′ (u) 2 η 2 |∇u| 2 dx + Z Ω φ(u) 2 " |∇η| 2 - 1 2 ∆η 2 « dx
Plug (33) in the above. Then,

Z Ω `f ′ (u)φ(u) 2 -f (u)ψ(u) 2 ´η2 dx ≤ Z Ω K(u)∆η 2 dx + Z Ω φ(u) 2 " |∇η| 2 - 1 2 ∆η 2 « dx
This proves Remark 3.7. Finally, when φ is convex,

ψ(u) = Z u 0 φ ′2 (s) ds ≤ φ ′ (u)φ(u).
Integrating, we obtain that K ≤ 1 2 φ 2 and (31) follows.

Proof of Theorem 3.4 continued. Take α ≥ 1 and φ = f α . In order to take advantage of Lemma 3.6, we need to make sure that the quantity (f ′ φ 2 -f ψ) • u remains nonnegative and better, bounded below by some positive function of u. Clearly, the best one can hope for is an inequality of the form

(f ′ φ 2 -f ψ) • u ≥ c f ′ φ 2 • u.
To obtain such an inequality, we apply L'Hôpital's Rule :

lim 0 + f ′ φ 2 f ψ = lim 0 + f ′ f 2α-1 ψ = lim 0 + f ′′ f 2α-1 + (2α -1)f 2α-2 f ′2 α 2 f 2α-2 f ′2 = 1 α 2 (1/q0 + 2α -1) > 1,
where the last inequality holds if α ∈ [1, 1+1/ √ q0). Note that this interval is nonempty since we assumed q0 < +∞. Hence, for some constant c > 0, (34)

f ′ φ 2 -f ψ ≥ c f ′ φ 2
in a neighbourhood [0, ǫ] of the origin. Modifying φ, the above inequality can be extended to a given compact interval [0, M ] as follows. Take φ ∈

W 1,∞ loc (R; R) defined by (35) φ(u) = 8 > > < > > : f (u) α if 0 ≤ u ≤ ǫ f (ε) α-1 f (u) exp Z u ε s f ′′ f ds ! if u > ǫ
where ǫ, α are chosen as before. Then φ ∈ W 1,∞ loc (R; R). For u > ε, we claim that the quantity

f ′ f φ 2 -ψ is constant. Indeed, " f ′ f φ 2 -ψ « ′ = " f ′ f « ′ φ 2 + 2 f ′ f φφ ′ -φ ′2 = " f ′′ f - f ′2 f 2 « φ 2 + 2 f ′ f φφ ′ -φ ′2 = f ′′ f φ 2 - " f ′ f φ -φ ′ « 2 = φ 2 f ′′ f - " f ′ f - φ ′ φ « 2 ! = 0,
where we used the definition of φ in the last equality. So for u > ε,

f ′ φ 2 -f ψ = f " f ′ f φ 2 -ψ « = f " f ′ (ε) f (ε) φ 2 (ε) -ψ(ε) « ≥ f ′ (ε)φ 2 (ε) -f (ε)ψ(ε) ≥ cε > 0,
where we used (34) at u = ε. Since f ′ φ 2 is bounded above by a constant on any compact interval of the form [ε, M ], we conclude that (34) holds throughout [0, M ] for a constant c > 0 perhaps smaller. We have just proved that given α ∈ [1, 1 + 1/ √ q0) and a bounded positive function u, there exists c > 0 such that

(36) [f ′ φ 2 -f ψ] • u ≥ c [f ′ φ 2 ] • u.
Recall that we established the above inequality in order to apply Lemma 3.6. Unfortunately, since the function φ we introduced in (35) may not be convex, we cannot apply Lemma 3.6 directly. We make use of (32) instead. In order to obtain a meaningful result, we need to understand how the different functions of u introduced in (32) compare. By definition of φ, we easily deduce the following set of inequalities (37)

8 > > < > > : [f ′ φ 2 -f ψ] • u ≥ c f ′ f 2α • u φ 2 • u ≤ Cf 2α • u K • u ≤ Cf 2α • u,
So, we just need to relate f and f ′ to be able to compare all quantities involved in the estimate. Fix q1 < q0. By definition of q0, there exists a neighborhood of zero where

f f ′′ f ′2 ≤ 1/q1.
In particular, f ′ /f 1/q 1 is nonincreasing and in a neighborhood of zero we have

(38) f ′ ≥ cf 1/q 1 .
By continuity, up to choosing c > 0 smaller, the above inequality holds in the whole range of a given bounded positive function u. Recall now (37), (38) and apply (32). The estimate reduces to

Z R N [f 1/q 1 +2α • u]η 2 dx ≤ C Z R N [f 2α • u] `|∇η| 2 + |η∆η| ´dx Choose η = ζ m , m ≥ 1, ζ ∈ C 2 c (R N ), 1 ≥ ζ ≥ 0 : Z R N [f 1/q 1 +2α • u]ζ 2m dx ≤ C Z R N [f 2α • u] `ζ2m-2 |∇ζ| 2 + ζ 2m-1 |∆ζ| ´dx ≤ C Z R N [f 2α • u]ζ 2m-2 `|∇ζ| 2 + |∆ζ| ´dx Using Hölder's inequality, it follows that Z R N [f 1/q 1 +2α • u]ζ 2m dx ≤ C "Z R N [f 2αm ′ • u]ζ 2m dx « 1/m ′ "Z R N `|∇ζ| 2 + |∆ζ| ´m « 1/m .
Assume temporarily that (39)

f 1/q 1 +2α • u ≥ c f 2αm ′ • u.
Then, the inequality simplifies to

Z R N [f 2αm ′ • u]ζ 2m dx ≤ C Z R N `|∇ζ| 2 + |∆ζ| ´m . Choose now ζ such that ζ ≡ 1 in BR and |∇ζ| ≤ C/R, |∆ζ| ≤ C/R 2 : (40) Z R N [f 2αm ′ • u]ζ 2m dx ≤ CR N -2m ,
The above inequality is true as soon as (39) holds, which itself reduces to choosing the exponents such that

2αm ′ ≥ 1/q1 + 2α.
This holds for some q1 < q0 provided 2α(m ′ -1) > 1/q0. Since α can be chosen arbitrarly close to 1 + 1/ √ q0 and restricting to m ′ less than but as close as we wish to N N -2 , we finally need only assume

(41) 4 N -2 (1 + 1/ √ q0) > 1/q0. Since m ′ < N N -2 , N -2m < 0.
So, the right-hand-side of (40) converges to 0 as R → ∞, whence f • u = 0 and u = 0, as desired. Solving (41) for q0 yields the conditions stated in Theorem 3.4.

Extensions to unbounded and sign-changing solutions

We deal first with possibly unbounded solutions.

Proof of Corollary 1.7. Note that by Lemma 3.1, we need only consider the case q0 < +∞. We modify the rest of the proof of Theorem 3.4 as follows : take φ ∈ W 1,∞ loc (R; R) defined by

φ(u) = 8 > > > > < > > > > : f (u) α if 0 ≤ u ≤ ǫ f (ε) α-1 f (u) exp Z u ε s f ′′ f ds ! if ǫ < u ≤ 1/ǫ f (u) β + A if u > 1/ǫ, where α is chosen in [1, 1 + 1/ √ q0) as previously, β in [1, 1 + 1/ √ q∞) and A such that φ is W 1,∞ loc (R; R). Then, (36) holds if in addition lim inf u→+∞ f ′ φ 2 f ψ (u) > 1.
We leave the reader check that this is true under assumption ( 9), for

β ∈ [1, 1 + 1/ √ q∞). Apply (32) with η = ζ m , m ≥ 1, ζ ∈ C 2 c (R N ), 0 ≤ ζ ≤ 1 : (42) Z R N [f ′ φ 2 • u]ζ 2m dx ≤ C Z R N [ `φ2 + K ´• u]ζ 2m-2 `|∇ζ| 2 + |∆ζ| ´dx ≤ C "Z R N [ `φ2 + K ´m′ • u] ζ 2m dx « 1/m ′ "Z R N `|∇ζ| 2 + |∆ζ| ´m dx « 1/m
By definition of φ and (38), there exists constants c, c ′ > 0 such that for

u ∈ [0, 1], f ′ φ 2 (u) ≥ cf ′ f 2α (u) ≥ c ′ f 2α+q 1 (u)
, where q1 < q0. We also

clearly have `φ2 + K ´m′ (u) ≤ Cf 2αm ′ for u ∈ [0, 1]. So, f ′ φ 2 ≥ c `φ2 + K ´m′ on [0, 1],
provided that 2αm ′ ≥ 1/q1 + 2α. Similarly, the reader will easily check using ( 9) that given q2 < q∞, there exists c > 0 such that

f ′ ≥ cf 1/q 2 in [1, +∞), whence f ′ φ 2 ≥ c `φ2 + K ´m′ in [1, +∞) provided that 2βm ′ ≥ 1/q2 + 2α. We conclude that (43) f ′ φ 2 • u ≥ c `φ2 + K ´m′ • u,
provided that 2αm ′ ≥ 1/q1 + 2α and 2βm ′ ≥ 1/q2 + 2α. Since α can be chosen arbitrarily close to 1 + 1/ √ q0, β to 1 + 1/ √ q∞, q1 to q0, q2 to q∞ and m ′ to N/(N -2), we conclude that suitable parameters can be chosen provided (41) and

4 N -2 " 1 + 1/ p q∞ " > 1/q∞
hold. These inequalities are true under the assumptions of Remark 1.7. So, collecting (42) and ( 43), we obtain for some m > N/2,

Z R N [ `φ2 + K ´m′ • u]ζ 2m dx ≤ C Z R N `|∇ζ| 2 + |∆ζ| ´m′ dx. (44) Choose at last ζ such that ζ ≡ 1 in BR and |∇ζ| ≤ C/R, |∆ζ| ≤ C/R 2 :
the right-hand side of (44) converges to 0 as R → ∞ and the conclusion follows.

We work next with sign-changing solutions.

Proof of Corollaries 1.8 and 1.10. We simply remark that if u ∈ C 2 (R N ) is a solution of (1), then u + (respectively u -) is locally Lipschitz continuous and solves the differential inequality (29) (respectively -∆u -≤ f (u -) in R N , where f (t) := -f (-t) for t ∈ R -). Since we assumed q0 < +∞, we may then apply Theorem 3.4 and Remark 3.5. Corollary 1.8 follows. For Corollary 1.10, we replace Theorem 3.4 by the adaptation presented in the proof of Corollary 1.7.

Beyond power-type nonlinearities

Proof of Theorem 1.11. Case 1. of the theorem was proved in Lemma 3.1. For cases 2. and 3. take α ≥ 1 and φ = f α . Let L = lim inf 0 + f ′ φ 2 /f ψ and let (un) denote a sequence along which f ′ φ 2 /f ψ converges to L. By Remark 3.3, we may always assume that f (0) = 0. So, applying Cauchy's mean value theorem, there exists vn ∈ (0, un) such that

f ′ φ 2 f ψ (un) = f ′ f 2α-1 ψ (un) = f ′′ f 2α-1 + (2α -1)f 2α-2 f ′2 α 2 f 2α-2 f ′2
˛u=vn Passing to the limit, we obtain

(45) L = lim inf 0 + f ′ φ 2 f ψ ≥ 1 α 2 " 1 q0 + 2α -1 « > 1,
where the last inequality holds if α ∈ [1, 1+1/ √ q0). Note that this interval is nonempty since we assumed q0 < ∞. At this point, we repeat the steps performed in the proof of Theorem 3.4 : from equation (45), we deduce that (34) holds in a neighborhood [0, ε] of the origin. Modifying φ as in (35), the verbatim arguments lead to (36) and (37). For the rest of the proof, we argue slightly differently according to the case considered.

Case 2. of Theorem 1.11 In place of (38), we simply use the convexity of f . Since u is bounded, there exists a constant c > 0 such that

f ′ (u) ≥ f (u) u ≥ cf (u).
So, (40) holds for some m > N/2 whenever 4 N -2 `1 + 1/ √ q0 ´> 1, which is true for N ≤ 6, provided q0 < ∞. Following the proof of Theorem 3.4, we obtain case 2. of Theorem 1.11. Case 3. of Theorem 1.11 By definition of q0, (38) now holds for q1 < q0.

Resuming our inspection of the proof of Theorem 3.4, we see that (40) holds under assumption 3. of Theorem 1.11 and the desired conclusion follows.

6 Speed of decay : proof of Theorem 1.19

In this section, we characterize the speed of decay of solutions which are stable outside a compact set. To do so, we shall again take advantage of Lemma 3.6 or actually its general form (32), with a different choice of test function φ • u. We divide the proof in several steps.

Step 1. We begin by proving the usual estimate

[f ′ φ 2 -f ψ](u) ≥ c[f ′ φ 2 ](u)
where this time φ

(u) = " f (u) u 
" α and α is chosen in a suitable range. First, by Lemma 3.1 and Remark 3.3 , we may restrict to the case where q0 < +∞, whence p0 > 1, and we may also assume f (0) = f ′ (0) = 0. By Proposition 1.14, lim |x|→∞ u(x) = 0. For

u ∈ R * + , take φ ∈ W 1,∞ loc (R; R) defined by (46) φ(u) = " f (u) u « α ,
where α > 1 2 . We begin by computing

(47) L = lim inf u→0 + f ′ φ 2 f ψ (u). Let (un) denote a sequence along which f ′ φ 2 /f ψ converges to L. Observe that since f (0) = f ′ (0) = 0, then ψ(0) = 0 and (48) lim u→0 f ′ f 2α-1 u -2α = lim u→0 f ′ (u) u " f (u) u « 2α-1 = 0, if α > 1/2.
So, applying Cauchy's mean value theorem, there exists ddf.tex vn ∈ (0, un) such that

f ′ φ 2 f ψ (un) = f ′ f 2α-1 u -2α ψ ˛u=un = f ′′ f 2α-1 u -2α + (2α -1)f ′2 f 2α-2 u -2α -2αf ′ f 2α-1 u -2α-1 α 2 u -2α-2 f 2α (-1 + uf ′ /f ) 2 ˛u=vn = f ′′ u 2 /f + (2α -1)f ′2 u 2 /f 2 -2αuf ′ /f α 2 (-1 + uf ′ /f ) 2 ˛u=vn = f f ′′ /f ′2 + (2α -1) -2αf /(uf ′ ) α 2 (1 -f /(uf ′ )) 2 ˛u=vn For u ∈ R * + , let (49) p 
(u) = uf ′ (u) f (u)
It follows that

f ′ φ 2 f ψ (un) = 1/q + 2α -1 -2α/p α 2 (1 -1/p) 2 ˛u=vn (50) = 1 + 1/q -(α(1 -1/p) -1) 2 α 2 (1 -1/p) 2 ˛u=vn
We claim that ( 7) implies (51) p0 = lim

u→0 + p(u),
where p0 is the conjugate exponent of q0 i.e. (8) holds. Take indeed any cluster point p1 of p and a sequence (un) such that p converges to p1 along (un). Applying Cauchy's mean value theorem, there exists vn ∈ (0, un) such that

p(un) = f ′ + uf ′′ f ′ ˛u=vn = 1 + p/q(vn).
Let p0 = lim inf u→0 + p(u) and p0 = lim sup u→0 + p(u). Pass to the limit as n → +∞ : 1 + p0/q0 ≤ p1 ≤ 1 + p0/q0.

Applying the above inequality to p1 = p0, p0, we obtain

p0(1 -1/q0) ≤ 1 ≤ p0(1 -1/q0)
and (51) follows. Next, we apply (51) in (50). Thus,

L = 1 + 1/q0 -(α/q0 -1) 2 α 2 /q 2 0 . So, L > 1 if (52) α ∈ (q0 - √ q0, q0 + √ q0).
We conclude that given α > 1/2 in the range (52), there exists c > 0 such that for u small enough

(53) [f ′ φ 2 -f ψ](u) ≥ c[f ′ φ 2 ](u) ≥ c " f (u) u « 2α+1 ,
where we used the convexity of f in the last inequality. Note that since u(x) → 0 as |x| → +∞, the above inequality holds for u = u(x) and x in the complement of a ball of large radius.

Step 2. Next, we need to estimate the other functions of u appearing in (32). We claim that for small values of u,

(54) K(u) ≤ C " f (u) u « 2α .
To see this, it suffices to prove that lim sup u→0 + K(u)/φ 2 (u) < ∞. Take a sequence (un) converging to zero and apply Cauchy's mean value theorem : there exists vn ∈ (0, un) such that

K φ 2 (un) = ψ 2φφ ′ (vn) It follows from (53) that f ′ φ 2 -f ψ ≥ 0 for small u. So, ψ(vn) ≤ [f ′ φ 2 /f ](vn) for large n so that K φ 2 (un) ≤ f ′ φ 2f φ ′ (vn) = 1 2α(1 -1/p(vn))
.

Recalling (51) and since we assumed that p0 > 1, (54) follows.

Step 3. In this step, we prove an estimate of the form

Z B R (x 0 ) " f (u) u « 2α+1 dx ≤ CR N -2m ,
where m = 2α + 1 and BR(x0) is a suitably chosen ball shifted towards infinity.

Choose ζ ∈ C 2 c (R N ), 0 ≤ ζ ≤ 1 supported outside a ball BR 0 (0) of large radius, so that (2) holds for functions supported outside BR 0 (0) and that (53) and (54) hold for u = u(x), x ∈ supp ζ. By Lemma 3.6, we may apply (32) with η = ζ m , m ≥ 1. Using (53), (54) and the convexity of f , we obtain for α > 1/2 in the range (52)

Z R N " f (u) u « 2α+1 ζ 2m dx ≤ Z R N f ′ (u) " f (u) u « 2α ζ 2m dx ≤ C Z R N " f (u) u « 2α ζ 2m-2 `|∇ζ| 2 + |∆ζ| ´dx.
Fix m = 2α + 1 and apply Hölder's inequality. It follows that 

Z R N " f (u) u « 2α+1 ζ 2m dx ≤ C Z R N `|∇ζ| 2 + |∆ζ| ´2m dx. ( 
ϕ(t) = ( 1 if |t| ≤ 1, 0 if |t| ≥ 2.
We get (56)

Z B R (x 0 ) " f (u) u « 2α+1 dx ≤ C3R N -2m .
Step 4. In this step, we prove the estimate

R ǫ f (u)/u L N 2-ε (B(x 0 ,R)) ≤ C
By Lemma 1.4, q0 ≥ 1. Under the assumptions of Theorem 1.19, we can choose the exponent m so large that for small ε > 0, m > N/(2-ε) (recall that m = 2α + 1 and α > 1/2 can be chosen freely in the range (52)) . Furthermore, by Hölder's inequality and (56), we obtain

R ǫ f (u)/u L N 2-ε (B(x 0 ,R)) ≤ R ǫ f (u)/u L m (B(x 0 ,R)) |BR| 2-ε N -1 m (57) ≤ CR ε " R N -2m " 1/m R 2-ε-N m = C.
Step 5. Now, we think of u as a solution of a linear problem, namely

(58) -∆u = f (u) u u =: V (x)u in R N .
According to classical results of J. Serrin [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF] and N. Trudinger [START_REF] Trudinger | On Harnack type inequalities and their application to quasilinear elliptic equations[END_REF] (see also Theorem 7.1.1 on page 154 of [START_REF] Pucci | The maximum principle[END_REF]), for any p ∈ (1, +∞) and any x0 ∈ R N , there exists a constant

CS = CS(R ε V L N 2-ε (B(x 0 ,2R)) , N, p) > 0 such that (59) u L ∞ (B R (x 0 )) ≤ CSR -N/p u L p (B 2R (x 0 )) .
Note that for our choice of x0, equation (57) holds and so CS is a true constant, independant of R and x0.

Step 6.

The inequality (59) gives a pointwise estimate in terms of an integral average of u. In order to control the latter, we consider ũ the average of u over the sphere ∂Br(x0), defined for r > 0 by ũ(r) = -R ∂Br (x 0 ) u dσ. We claim that there exists

C = C(N ) > 0 such that (60) f (ũ(r)) ũ(r) ≤ C r 2 .
To prove this, we first observe that since f is convex, ũ satisfies the differential inequality

-ũ ′′ - N -1 r ũ′ ≥ f (ũ).
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Now, since f ≥ 0, ũ′ ≤ 0. In particular r → f (ũ(r)) is nonincreasing. Fix λ ∈ (0, 1) and integrate the differential inequality between 0 and r :

-ũ ′ (r) ≥ r 1-N Z r 0 s N -1 f (ũ(s)) ds ≥ r 1-N Z λr 0 s N -1 f (ũ(s)) ds ≥ λ N rf (ũ(λr)) N .
Integrate a second time between r and r/λ. Then,

ũ(r) ≥ ũ(r/λ) + λ N N Z r/λ r sf (ũ(λs)) ds ≥ r 2 f (ũ(r)) λ N 2N " 1 λ 2 -1 « . Taking λ = N -2 N , ( 60 
) follows with C = 1 2N `N-2 N ´N " " N N -2 " 2 - 1 
« .

Step 7. Recall that we are trying to establish an L p estimate, p > 1 in order to use (59) . To start with, we use (60) to obtain an L 1 estimate of f (u). Namely, we prove that there exist constants C1, C2 > 0 depending on N only, such that (61) -

Z B R (x 0 ) f (u) dx ≤ C1R -2 g(C2/R 2 ),
where g is the inverse function of t → f (t) t , which exists for small values of t by Remark 1.20. For simplicity, we write BR in place of BR( x0) in what follows. To prove (61) , observe that for r ∈ (R, 2R),

Z B R f (u) dx =cN R N -2 Z 2R R r 1-N dr Z B R f (u) dx ≤cN R N -2 Z 2R R r 1-N dr Z Br f (u) dx = cN R N -2 Z 2R R r 1-N dr Z Br -∆u dx ≤ -cN R N -2 Z 2R R r 1-N dr Z ∂Br ∂u ∂n dσ = -cN R N -2 Z 2R R ũ′ dr ≤ cN R N -2 ũ(R).
Estimate (61) follows, using (60).

Step 8. The assumptions on f allow us to convert (61) into an L p estimate. Indeed, since q0 < ∞ (in fact, one only needs q0 < ∞), one can easily check that there exists p > 1 such that the function h(t) = f (t 1/p ) is convex for small t. By Jensen's inequality,

h " - Z B R u p dx « ≤ - Z B R f (u) dx ≤ C1R -2 g(C2/R 2 ).
By Remark 1.20, f is invertible and so is h. Composing by h -1 , we obtain

Z B R u p dx ≤ CR N h -1 `C1R -2 g(C2/R 2 )
´.

In particular, given η > 0 small, there exists R > 0 so large that given any point x0 ∈ R N such that |x0| = 4R,

Z B R (x 0 ) u (p 0 -1) N 2 < η.
We apply again (59), this time with p = (p0 -1) N 2 and obtain

(64) u L ∞ (B R (x 0 )) ≤ CSR -N/p u L p (B 2R (x 0 )) ≤ CSηR -2 p 0 -1 .
This shows that u(x) = o(|x|

-2 p 0 -1
). It remains to prove the estimate on |∇u|. Observe that any partial derivative v = ∂u/∂xi solves the linearized equation

-∆v = f ′ (u) v in R N .
Apply again the Serrin inequality (59), this time with potential Ṽ (x) = f ′ (u) and solution v. Since 0 ≤ f ′ (u) ≤ Cu p 0 -1 , the potential Ṽ is equivalent to V (x) = f (u)/u and so the Serrin constant CS is again independent of R and x0 under our assumptions. We get

v L ∞ (B R (x 0 )) ≤ CSR -N/p v L p (B 2R (x 0 ))
Serrin's Theorem (cf. Theorem 1 on page 256 of [START_REF] Serrin | Local behavior of solutions of quasi-linear equations[END_REF]) also gives the estimate

∇u L p (B R (x 0 )) ≤ CSR -1 u L p (B 2R (x 0 ))
for solutions of (58). Collecting these inequalities, we obtain

∇u L ∞ (B R (x 0 )) ≤ CSR -N/p-1 u L p (B 2R (x 0 )) .
Using that u(x) = o(|x| We now collect (66) and (67). By assumption ( 14), if u is not identically zero, then = -e (α+2)t `f (e -αt v)

Z R N |∇u| 2 dx = Z R N uf (u) dx ≤ (p0+1) Z R N F (u) dx < 2N N -2 Z R N F (u) dx = Z R N
´e αt ∆ S N -1 v + Bv.

To summarize, v solves (70) vtt + Avt + Bv + ∆ S N -1 v + f (e -αt v)e (α+2)t = 0 for t ∈ R, σ ∈ S N -1 .
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Multiply the above equation by vt and integrate over S N -1 . For t ∈ R, we find (71) F (ve -αs )e (p 0 +1)αs dσ ≤ 0.

Z S N -1 " v 2 t 2 « t dσ + A Z S N -1 v 2 t dσ + B Z S N -1
Since p0 > N +2 N -2 , it follows from (69) that A > 0. So, both terms in (73) are nonnegative. In particular, vt ≡ 0 and v is a function depending only ddf.tex June 17, 2008 27 on σ. Since limt→+∞ v(t, σ) = 0 by (19), we deduce that v ≡ 0 and u ≡ 0 as claimed.

- 2 ) 2 -

 22 4N + 8 √ N -1 (N -2)(N -10), for N ≥ 11.

Remark 3 . 2 A

 32 stronger version of the above lemma has been recently proved by L. D'Ambrosio and E. Mitidieri ([START_REF] Lorenzo | Representation Formulae and Liouville Theorems for Subelliptic Inequalities[END_REF]).

Remark 3 . 5

 35 . N = 10 and p0 < +∞, 3. N ≥ 11 and p0 < pc(N ), With no change to the proof, Theorem 3.4 remains true if u is only assumed to be locally Lipschitz continuous. The differential inequality (29) must then be understood in the weak sense i.e.

  55) We work on balls shifted towards infinity. More precisely, we take a point x0 ∈ R N such that |x0| > 10R0 and set R = |x0| /4. Then, B(x0, 2R) ⊂ {x ∈ R N : |x| ≥ R0} and we may apply (55) with ζ = ϕ(|x -x0| /R) and ϕ ∈ C 2 c (R) given by

- 2 pFu 2 F

 22 0 -1 ), we obtain the desired estimate. 7 Proof of Theorem 1.23 : the subcritical case By Remark 1.22, since p0 is subcritical, we have (65) Z R N f (u)u dx < +∞ and Z R N (u) dx < +∞. Multiply equation (1) by uζ, where ζ is a standard cut-off i.e. ζ ≡ 1 in BR, ζ ≡ 0 in B2R and |∇ζ| ≤ C/R, |∆ζ| ≤ C/R 2 . Then integrate : ∆ζ dx = By Remark 1.22, the second term in the left-hand side of the above equality converges to 0 as R → +∞. Hence, by monotone convergence we have (66) Z R N |∇u| 2 dx = Z R N uf (u) dx < +∞ ddf.tex As in the classical Pohozaev identity, we may now multiply the equation by x • ∇u ζ and obtain (u) dx.

|∇u| 2 dx, a contradiction. 8 -1 r ur + 1 r 2 ∆- 2 -+

 822 Proof of Theorem 1.25 : the supercritical caseIn what follows, we prove Theorem 1.25 in the supercritical case i.e. when p0 is in the range (15) and f satisfies (16), (17) and (20). In polar coordinates, a function u takes the form u = u(r, σ), where r ∈ R * + , σ ∈ S N -1 , N ≥ 2, while its Laplacian is given by ∆u = urr + N S N -1 u.Recall the classical Emden change of variables and unknowns t = ln r and u(r, σ) = r -α v(t, σ), where α = 2 p 0 -1 . Then, v(t, σ) = e αt u(e t , σ), vt(t, σ) = e αt `et ur + αu ´= e (α+1)t ur + e αt αu, (68) vtt(t, σ) = e αt `e2t urr + (2α + 1)e t ur + α 2 u ∆SN -1 v = e αt ∆ S N -1 u 2α) , B = α 2 + αA,we obtain vtt + Avt = e (α+2)t Be αt u = e (α+2)t `-e -2t ∆ S N -1 u -f (u) ´+ Be αt u

S N - 1 fS N - 1 "FS N - 1 F

 111 (ve -αt )vte (α+2)t dσ = 0 Let F denote the antiderivative of f such that F (0) = 0. Then,d dt h F (ve -αt )e (p 0 +1)αt i = f (ve -αt ) `vte -αt -αve -αt ´e(p 0 +1)αt + F (ve -αt )α(p0 + 1)e (p 0 +1)αt .So,f (ve -αt )vte p 0 αt = d dt h F (ve -αt )e (p 0 +1)αt i +αf (ve -αt )ve αp 0 t -αF (ve -αt )(p0+1)e (p 0 +1)αt .Applying (20), we conclude thatf (ve -αt )vte p 0 αt ≥ d dt h F (ve -αt )e (p 0 +1)αt i .Using this inequality in (71), we obtainZ (ve -αt )e (p 0 +1)αt i dσ ≤ 0.Integrating for t ∈ (-s, s), s > 0, we then derive (ve -αt )e (p 0 +1)αt dσ-t=s t=-s ≤ 0.Recall the definition of v given in (68) and use the improved decay estimates (19): we see that v(t, •), vt(t, •), |∇ S N -1 v(t, •)| converge to 0 as t → ±∞, uniformly in σ ∈ S N -1 . Passing to the limit as s → +∞ in (
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Combining this with (59), we finally obtain

´"1/p = Cf -1 `C1R -2 g(C2/R 2 ) ´= C s(R).

We conclude this section by proving Corollary 1.24. Namely, we improve the rate of decay from O(s(|x|)) to o(s(|x|)), when additional information on the nonlinearity is available.

Proof of Corollary 1.24. To start with, observe that under assumption (18), there exists a constant C > 0 such that

Recall now (55). We choose a suitable cut-off function

For s > 0, let θs ∈ C 2 c (R) satisfying 0 ≤ θs ≤ 1 everywhere on R and

Given R > R0 + 3, we define ζ at last by

Applying (55) with ζ as above, we deduce that for some constants C1, C2 > 0, (63)

Recall that (63) holds for m = 2α+1 and any α > 1/2 such that q0-√ q0 < α < q0 + √ q0. In fact, the restriction α > 1/2 can be lifted and replaced by α > 0. Indeed, the restriction α > 1/2 was used for the sole purpose of proving (48). But (48) clearly holds under the finer assumption (18) for any α > 0.

We would like to choose α such that m := 2α + 1 = N/2. Since p0 is in the supercritical range (15) , straightforward algebraic computations show that such a choice is indeed possible in the range q0 -√ q0 < α < q0 + √ q0.

By (63), we deduce that Z R N u (p 0 -1) N 2 < ∞.
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