F R Éd

Éric Goualard

Interval Extensions of Multivalued Inverse Functions The Implementation of Interval Relational Arithmetic in gaol

Keywords: D.3.3 [Programming Languages]: Language Constructs and Features-Constraints; G.1.0 [Numerical Analysis]: General-Interval arithmetic Algorithms, Reliability Additional Key Words and Phrases: interval arithmetic, constraint programming, IEEE 754 floating-point standard

The implementation of inverse functions provided by most interval arithmetic software libraries is restricted to bijective functions and to the principal branch of multivalued functions. On the other hand, some algorithms-most notably, constraint propagation algorithms-require multivalued inverse functions as well. We present in details in this paper the algorithms to implement interval arithmetic extensions of the following multivalued inverse functions: the inverse integral power, the inverse cosine, the inverse sine, the inverse tangent, the inverse hyperbolic cosine, and the inverse multiplication. The issues raised by their effective as well as efficient implementation with floating-point numbers in the gaol C++ library are carefully addressed.

INTRODUCTION

Given the relation y = cos x, where x lies in the interval [10,14], interval arithmetic [START_REF] Moore | Interval Analysis[END_REF]] will readily allow us to compute the possible values for y by considering the monotonic subdomains of the cosine function over [10,14]: y ∈ [cos 10, 1] ≈ [-0.84, 1]. On the other hand, what is the possible domain for an unknown x if the domain for y is [-0.3, 0.2]? Most interval arithmetic libraries will fix it at [acos 0.2, acos -0.3] ≈ [1.36, 1.87] because they consider branch cuts of the multivalued inverse cosine to return principal values in the domain [0, π] only. Now, what if we knew that x lay in the domain [20,26]? The aforementioned inverse cosine interval function would not be of much help here, while considering a multivalued inverse cosine would allow us to restrict the domain of x to [6π + acos 0.2, 8π -acos 0.2] ≈ [20.22, 23.77] (see Figure 1).

Such a use of relations between variables together with domains of possible val-Part of the work presented was supported by the European Research Consortium for Informatics and Mathematics as part of its fellowship programme, and by the Swiss Federal Institute of Technology, Lausanne, Switzerland. Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee. c 2008 ACM 0098-3500/2008/1200-0001 $5.00

• Frédéric Goualard [-0.3, 0.2] with respect to the interval [20,26] ues to infer tighter consistent domains is the core principle of Constraint Programming [START_REF] Dechter | The global optimization problem: an introduction[END_REF][START_REF] Sutherland | Sketchpad: A man-machine graphical communication system[END_REF]. Interval Constraint Programming [START_REF] Benhamou | Interval constraints, interval propagation[END_REF][START_REF] Davis | Constraint propagation with interval labels[END_REF]] is an instance of this framework that considers relations over continuous variables whose domains are represented by intervals with floating-point number bounds. It combines smart propagation algorithms [START_REF] Mackworth | Consistency in networks of relations[END_REF] with original domain-contracting algorithms to solve linear and nonlinear continuous problems, with very good performances on some difficult problems when compared to traditional mathematical methods [START_REF] Granvilliers | Progress in the solving of a circuit design problem[END_REF]. Some of these contracting methods (most notably, HC3 [START_REF] Benhamou | Interval constraint logic programming[END_REF][START_REF] Lhomme | Consistency techniques for numeric CSPs[END_REF], HC4 [START_REF] Benhamou | Revising hull and box consistency[END_REF], and their derivatives), make extensive use of interval extensions of the inverse of usual mathematical functions, be they bijective or not. Since the pioneering work of Cleary [START_REF] Cleary | Logical arithmetic[END_REF]] on interval relational arithmetic, algorithms to compute the interval extensions of inverse functions have been repeatedly devised for the exclusive benefit of various solving systems (BNR Prolog [START_REF] Older | Extending prolog with constraint arithmetic on real intervals[END_REF], Prolog IV [START_REF] Benhamou | Prolog IV: langage et algorithmes[END_REF], Ilog Solver [START_REF] Puget | A C++ implementation of CLP[END_REF]], and RealPaver [START_REF] Granvilliers | Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques[END_REF], among others) up to the point they are almost considered as part of the computing lore.

To our knowledge, however, no detailed description of these algorithms has ever been published-to the important exception of the algorithm for the inverse multiplication [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF]]. As a consequence, the existing implementations may vary widely in reliability, speed, and in the functions supported. This paper is an attempt to straighten this situation out at a moment when interval arithmetic is being considered for addition to the standard library of such an ubiquitous language as C++ [START_REF] Brönnimann | A proposal to add interval arithmetic to the C++ standard library[END_REF]] . We stress the differences between standard interval inverse operators and interval multivalued inverse operators in Section 2, retracing meanwhile the history of interval relational arithmetic, which motivated their definition. Related work is discussed in Section 3, where we present the tools and libraries that implement interval relational arithmetic, contrasting their approach with our own work in the gaol C++ library [Goualard 2007]. The algorithms for the inverse power function, the inverse cosine, the inverse sine, the inverse tangent, and the inverse hyperbolic cosine are presented in Section 4; for the sake of completeness, we also give the formulas already published by Hickey and others [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF] for the inverse multiplication. The ac-• 3 tual implementation of these algorithms in gaol is considered in details in the same section. It is then compared in Section 5 with respect to quality and performance with another freely available library.

FROM INTERVAL ARITHMETIC TO INTERVAL RELATIONAL ARITHMETIC

Though its history predates the development of computers,1 interval arithmetic gained most of its momentum as a drop-in replacement for floating-point numbers [IEEE 1985] to reason over sets and to overcome the weaknesses of computer arithmetic [START_REF] Warmus | Calculus of approximations[END_REF][START_REF] Sunaga | study of basic problems in engineering and physical sciences by means of geometry[END_REF][START_REF] Moore | Interval Analysis[END_REF]. Therefore, most of the early works in the domain focused on extensions to intervals of well-known mathematical methods such as Newton-Raphson's [START_REF] Moore | Interval Analysis[END_REF]] and Gauss-Seidel's [START_REF] Hansen | Bounding solutions of systems of equations using interval analysis[END_REF]. As a consequence, the interval operators defined were, for the most part, straight extensions to intervals of their floating-point counterpart, with multivalued inverse functions restricted to their principal branch.

Even now, most of the software libraries available [START_REF] Yohe | Software for interval arithmetic: A reasonably portable package[END_REF][START_REF] Aberth | Precise computation using range arithmetic, via C++[END_REF][START_REF] Knüppel | PROFIL/BIAS-a fast interval library[END_REF][START_REF] Wiethoff | C-XSC: a C++ class library for extended scientific computing[END_REF][START_REF] Rump | Intlab -interval laboratory[END_REF][START_REF] Microsystems | C++ interval arithmetic programming reference[END_REF][START_REF] Revol | Motivations for an arbitrary precision interval arithmetic and the MPFI library[END_REF][START_REF] Lerch | Filib++, a fast interval library supporting containment computations[END_REF]] only offer the limited set of interval operators necessary to support a functional approach to mathematical algorithms.

Such an approach is well suited to the imperative programming paradigm, where assignment is the crux of the instruction set. There are, however, some paradigms, such as Logic Programming [START_REF] Kowalski | Predicate logic as programming language[END_REF]], based not on the idea of functions, but on relations: In a language like Prolog [START_REF] Clocksin | Programming in Prolog[END_REF], the programmer should not write statements like: y ← cos x that sets the variable y to the cosine of x, as a Prolog program should not have definite input and output. Hence the use, instead, of relations binding the values of x and y:

y = cos x,
where both y and x may take the role of the unknown.

Until the work by Cleary [START_REF] Cleary | Logical arithmetic[END_REF]], however, Prolog's arithmetic was not up to Logic Programming expectations since it was using the infamous "is/2" predicate, which was purely functional in nature. Cleary introduced the use of intervals to enclose real values with certainty, together with rules to project an arithmetic relation onto each of the variables involved. The relation y = cos x, for example, would then be translated into two functional statements:

I x ← I x ∩ (cos -1 I y) I y ← I y ∩ (cos I x) (1)
making use of the inverse cosine "cos -1 ," with I x and I y the domains of x and y respectively.

• Frédéric Goualard

Obviously, the interval extension of "cos -1 " has to be markedly different from that of the usual arccosine function as it shall not be restricted to the principal branch of the inverse cosine. By definition, we have:

acos I y = cch ({x ∈ [0, π] | ∃y ∈ I y : x = acos y}) cos -1 I y = cch ({x ∈ R | ∃y ∈ I y : y = cos x}) (2)
where the "cch" operator is a function from the power set P(R) of R to the set of intervals with floating-point bounds I that returns the smallest interval (in the sense of set inclusion) containing its argument.2

The definition of "cos -1 " given in Eq. (2) is evidently useless since the only interval such a function would return for any argument I y satisfying 3 The same would hold for all periodic functions. A simple way to tackle this problem is to consider an (n + 1)-ary inverse operator ⊤ -1 for any nary operator ⊤, which computes the inverse operation on some n-tuple (x 1 , . . . , x n) with respect to some variable x n+1 . For example, for the cosine function, we obtain the inverse cosine "acos rel" defined by: acos rel(I y , I x) = cch ({x ∈ I x | ∃y ∈ I y : y = cos x}) .

I y ∩[-1, 1] = ∅ would be [-∞, +∞].
Cleary's seminal paper restricted itself to addition and multiplication relational forms, and did not consider cosine or any other trigonometric relation. More to the point, his paper did not give any algorithm in sufficient details to implement the inverse operators needed. Following Cleary's work on a better Prolog arithmetic, Davis [START_REF] Davis | Constraint propagation with interval labels[END_REF]], Hyvönen [START_REF] Hyvönen | Constraint reasoning based on interval arithmetic[END_REF]1995], and Older & Vellino [START_REF] Older | Extending prolog with constraint arithmetic on real intervals[END_REF]] investigated the use of interval arithmetic to solve constraint systems, which led them to consider interval relational arithmetic too. Except for some considerations on the inversion of the square function, Davis' paper does not give algorithms to implement inverse functions; the same holds for Hyvönen's papers, even though reversed mappings-his name for inverse functions-appear prominently in the LIA InC++ software library manual [START_REF] Hyvönen | LIA InC++: A local interval arithmetic library for discontinuous intervals[END_REF]]. In 1989, Older [Older 1989] gave one of the first published algorithms to handle the relation x × y = z with the three functional forms:

   I x ← div rel(I z , I y , I x) I y ← div rel(I z , I x , I y) I z ← I x × I y
making use of the ternary inverse multiplication "div rel" defined by: div rel(I z , I y ,

I x) = cch ({x ∈ I x | ∃y ∈ I y ∃z ∈ I z : xy = z}) .
It is, however, presented as a Prolog program without any explanation or proof of correctness, nor does it take into account the delicate problem of outward rounding.

• 5

In the nineties, Benhamou and Lhomme concurrently formalized the works by Older and Vellino on BNR(Prolog) and clp(BNR), establishing the foundations for Algorithms HC3 [START_REF] Benhamou | Interval constraint logic programming[END_REF]] and Ref filtering [START_REF] Lhomme | Consistency techniques for numeric CSPs[END_REF]], which both rely on interval relational arithmetic. Since then, these two algorithms have been used repeatedly as building blocks for ever complex methods to solve difficult nonlinear problems with increasing performances [START_REF] Benhamou | Revising hull and box consistency[END_REF][START_REF] Ceberio | Solving nonlinear systems by constraint inversion and interval arithmetic[END_REF][START_REF] Granvilliers | Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques[END_REF][START_REF] Fränzle | Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure[END_REF].

Meanwhile, the available information on how to implement interval relational arithmetic remained scarce, and was mostly restricted to a series of papers by Hickey and his co-authors: An algorithm for the relation y = exp x was presented in 1996 [START_REF] Hickey | Fast, sound, and precise narrowing of the exponential function[END_REF] (the paper was primarily focused on performances, as the computation of both exp and exp -1 do not require a complex machinery per se, the exponential function being invertible); algorithms to handle the multiplication relation x × y = z were presented in two subsequent papers [START_REF] Hickey | Efficient implementation of interval arithmetic narrowing using IEEE arithmetic[END_REF][START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF]], the last one being considered as the definitive work on the subject. The work by Hickey and others on interval relational arithmetic led to the implementation of the smath software library [Hickey 2005], one of the few freely available libraries offering multivalued inverse functions. This library, along with other libraries and tools, is considered in the next section.

AVAILABILITY OF INTERVAL RELATIONAL ARITHMETIC

Original implementations of interval relational arithmetic are present in several constraint solvers, such as Mozart [START_REF] Mejias | The Mozart programming system[END_REF], ECLIPSe [START_REF] Cheadle | ECLIPSe[END_REF], Realpaver [START_REF] Granvilliers | Realpaver[END_REF]], INCLP(R) [START_REF] De Koninck | Inclp(R): Interval-based nonlinear constraint logic programming over the reals[END_REF] or Prolog IV, to name a few of the most prominents and most recents. 4 When embedded in such tools, interval relational arithmetic is usually not directly accessible to users. One has to choose among the few software libraries that implement it to get an unfettered access:

-Ilog Solver [Ilog Inc. 2007] is a closed-source commercial product. It is much more than an interval library only, as it also offers many constraint propagation algorithms; -smath [Hickey 2005] is the C library by Hickey alluded to in the previous section.

It lacks some operators (e.g., hyperbolic inverse functions) but it is a fast and lightweight library that can be mastered in its entirety very quickly; -Boost [Dawes et al. 2007] is a huge C++ library seeking to be a reference implementation of many algorithms for the C++ stan dard. It contains an interval arithmetic section [START_REF] Melquiond | Boost Interval: Interval arithmetic for the C++ standard[END_REF]Brönnimann et al. 2006a], in which interval relational arithmetic is still, however, at an early stage. It has indeed not found its way into the current release yet.5 Still, it is a promising, very customizable library. For better or for worse, it relies on advanced features of the C++ standard that are not widely available yet.

To our knowledge, most of the algorithms used by these tools and libraries have never been published. There may then be significant differences in reliability and

• Frédéric Goualard performances of the various implementations. They also differ in the relations supported (INCLP(R), for example, does not implement trigonometric, hyperbolic and other transcendental inverse functions).

Originating from our work on constraint programming algorithms, gaol6 [Goualard 2007] is a C++ library implementing interval extensions of functional as well as relational operators. It has served as a model for Section 26.6.15 on interval relational operators of the proposal to add interval arithmetic to the C++ standard library [START_REF] Brönnimann | A proposal to add interval arithmetic to the C++ standard library[END_REF]]. It has been freely available on Sourceforge since October 2002 with a GNU Lesser General Public license,7 and has been downloaded ca. 1400 times as of November 2007. To our knowledge, it is being used in the following constraint solvers: OpenSolver [START_REF] Zoeteweij | A component-based parallel constraint solver[END_REF], Constraint Explorer [START_REF] Zimmer | The CO2 project : Purpose, results and future challenges[END_REF]] by Dassault Aviation, and Elisa [START_REF] Christie | Elisa: an open C++ library for constraint programming and constraint solving techniques[END_REF]. It is also being used in various research projects (e.g., Feydy and Stuckey's work on using an interval approach to solve linear equations [START_REF] Feydy | Propagating dense systems of integer linear equations[END_REF]).

We present in the next section what we believe to be the first detailed description of the algorithms to implement interval relational arithmetic in the hope it can serve as a common ground for future works on the subject, and as a starting point for better, faster algorithms. In our view, the only freely available and mature library that offers roughly the same features as gaol is smath. We therefore compare in Section 5 our implementation with smath's as for performances and tightness of the results.

THE IMPLEMENTATION OF INTERVAL RELATIONAL ARITHMETIC IN GAOL

Gaol is a software library of around 20, 000 lines of C++ code (comments included). It used to be available on SUN Sparc/Solaris, Microsoft Windows/ix86 and Linux/i86. For lack of time, only the last two platforms are currently actively supported. Porting it to other platforms should not be difficult, though, provided a C99 standard-compliant compiler [C99 1999] be available, as we rely on several C99 functions for rounding operations.

For the sake of readability the following algorithms are presented in a simple pseudo-language that is almost, but not quite, entirely unlike Python [Python Software foundation 2007]. In addition, we use the following notations: The left (resp. right) bound of an interval I is written I (resp. I). The bounds of the intervals are IEEE 754 floating-point numbers in the double format (that is, representation on 64 bits, with 1 sign bit, 11 bits for the biased exponent, and 52 bits of fractional part, as specified by the standard [IEEE 1985]). Let F be the set of such floatingpoint numbers. Any number that is not perfectly representable with a double is rounded: fl ▽ (x) (resp. fl △ (x)) rounds the real x to the largest double smaller or equal to x (resp. smallest double larger or equal to x). The empty interval is represented by "∅." It is implemented by intervals where one of the bounds at least is an NaN (Not A Number) [START_REF] Goualard | Towards good C++ interval libraries: Tricks and traits[END_REF]]. An interval whose left bound is strictly • 7 greater than its right bound is also considered empty.

Switching the rounding direction incurs a high cost because it disrupts the streamlining of instructions by requiring the emptying of the FPU pipelines. To counter this, gaol relies almost entirely on upward rounding only, achieving downward rounding when necessary by using simple floating-point properties (e.g., fl ▽ (x × y) = -fl △ ((-x) × y)). This approach minimizes rounding switches without eliminating them entirely, as some floating-point functions (most notably trigonometric, hyperbolic and other transcendental functions) often require a particular rounding direction to compute their value with the proper rounding. For better readability, however, we use both downward and upward rounding in the following algorithms.

The IEEE 754 standard requires addition, subtraction, multiplication, division, and square root to be correctly rounded, which means that the value computed should be the closest floating-point number less or greater (depending on the current rounding direction) than the true result. There is no such requirement for the other functions. The gaol library is insulated from the actual floating-point library idiosyncrasies by proxy functions with the expected behavior (e.g., cos dn() and cos up() are gaol functions that call the actual cos() function and ensure that the result returned is rounded downward or upward). As expected, the implementation of the proxies depends on the floating-point library used. The current version of gaol uses the IBM Accurate Portable Mathematical Library [START_REF] Ziv | Accurate portable mathematical library (IBM APMathLib)[END_REF]]. The accuracy of the proxy functions is tied to the one of the underlying floating-point library. They may, therefore, return values that are not the floating-point numbers closest to the true results in the current rounding direction. As a consequence, the algorithms presented below return, in the general case, an enclosing interval of the closed convex hull of the inverse operators.

Inverse Multiplication

The inverse multiplication div rel is used in the processing of the relation x × y = z to determine new domains for x and y: div rel(I z , I y , I x) = cch ({x ∈ I x | ∃y ∈ I y ∃z ∈ I z : xy = z}) .

As said previously, the algorithm to compute it has already been published by Hickey and others [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF]. For the sake of completeness, we recapitulate in Table I the various possible cases and refer the reader to their paper for more information.

A fine-grained analysis leads to 36 cases depending on the position of the dividend and of the divisor on the real line. In addition, if at least one of the operands is empty, the result is the empty interval.

It is possible to take advantage of SIMD instructions on modern CPUs to vectorize the tests and to perform in parallel the various divisions needed. However, depending on the authors, the expected gain does not seem worth it [Wolff von Gudenberg 2002; [START_REF] Malins | Vectorised/semi-parallel interval multiplication[END_REF] • 9

Inverse Power Function

The inverse power function nth root rel() is needed to compute the domain of an unknown x in a relation of the form x n = y. Our implementation restricts n to the set N of natural numbers. The precise definition is:

nth root rel(I y , n, I x) = cch ({x ∈ I x | ∃y ∈ I y : y = x n }) , n ∈ N.
Following Graham and others [START_REF] Graham | Concrete Mathematics: A Foundation for Computer Science[END_REF]], the algorithm given in Table II assumes 0 0 = 1.

The cases occurring in Function nth root rel() in Table II are justified graphically in Figures 2 and3, which represent principal branches of the nth root for n odd and even. Many mathematical libraries do not handle well a call to pow() with negative arguments for non-integral exponents, as is the case on Lines 20, 22, 29, 31 in Table II. In that case, an easy workaround is to take the opposite twice and to round the result in the opposite direction as usual: For example, Line 20 would be replaced by "l ← -fl △ pow(-I y , fl ▽ 1 n) ." For n even, the intersection with I x is performed separately for the negative side and the positive side (see Line 47) in order to compute the tightess domain possible.

y x y fl △ (1 n) y fl ▽ (1 n) y 1 n 1 1 -1 -1 a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4

Inverse Cosine

Given the relation y = cos x, the inverse cosine is used to compute a new domain for x with respect to y. Due to the periodicity of the cosine function, the inverse

• Frédéric Goualard
Iy ′ ← Iy ∩ [0, +∞] if Ix = ∅ ∨ Iy ′ = ∅: return ∅ % Computing the left bound if Iy 1: l ← pow dn(Iy, fl ▽ 1 n) else: l ← pow dn(Iy, fl △ 1 n) % Computing the right bound if Iy 1: l ← pow up(Iy, fl △ 1 n) else: l ← pow up(Iy, fl ▽ 1 n) return cch (([l, r] ∩ Ix) ∪ ([-r, -l] ∩ Ix)) • 11 y x y fl △ (1 n) y fl ▽ (1 n) y 1 n 1 1 a 1 b 1 a 2 b 2
Fig. 3. Inverse power of n for n even cosine has to take into account the domain of x in addition to the one of y in order to compute the correct projection. The algorithm "acos rel" used to implement the inverse cosine is presented in Table III. Figure 4 on Page 14 graphically exemplifies the workings of the algorithm. In essence, we first compute the regular arccosine of the argument I y in the domain [0, π] (see Table IV), and we then translate by k l π and k r π the interval acosI y obtained to compute new left and right bounds for I x (see Table V). Integers k l and k r are computed by performing the first step of an argument reduction of I x 's bounds: For the left bound of I x , we compute an integer k l such that I x = k l π + α, with α < π (Lines 14-19 in Table III). Proposition 4.1 below ensures that, under reasonable conditions, the value k l computed cannot be off by more than 1 from the true result.

Proposition 4.1. Given l ∈ F a floating-point number, we have:

     l π -fl ▽ l fl ▽ (π) 1 if -2 52 l < 0 l π -fl ▽ l fl △ (π) 1 if 0 l 2 52
where ⌊x⌋ is the greatest integer smaller than x.

Proof. We prove the result for 0 l 2 52 : Using a classical roundoff error modeling (see, e.g., Stoer and Bulirsch's book [START_REF] Stoer | Introduction to Numerical Analysis[END_REF]) for the double format in use within gaol, we have:

fl △ (π) = π(1 + ε 1) with 0 < ε 1 2 -52 .
The same holds for the quotient:

fl ▽ l fl △ (π) = l π(1 + ε 1) (1 -ε 2) with 0 ε 2 2 -52 .
• Frédéric Goualard 2 31 -1 (for 32 bits integers). As a consequence, gaol uses floating-point numbers to represent k l and k r in the actual implementation of "acos rel.9 "

Inverse Sine

The inverse sine is required to compute a new domain for x with respect to y in the relation y = sin x. It could be easily implemented in the same way as "acos rel." However, it is even easier to define it in terms of "acos rel" itself by using simple trigonometric identities, as presented in Table VI.

Table VI. Inverse sine 1 function asin rel(Iy ∈ I, Ix ∈ I): 2 % Computes a superset of cch ({x ∈ Ix | ∃y ∈ Iy : y = sin x}) 3 % Π is the smallest floating-point interval containing π 4 return Π 2 + acos rel(Iy, Ix -Π 2)
In all fairness, the advantages obtained from this approach ("asin rel" may automatically benefit from future improvements to the "acos rel" algorithm; it reduces the number of lines of code in the library, thereby decreasing the likelihood of bugs) are counterbalanced by the slight increase in the size of the results with respect to a direct implementation, which is introduced by the outward rounding occurring in the operations I x -Π/2 and the addition of Π/2 to the result of "acos rel."

• 15

Inverse Tangent

As for the inverse cosine and the inverse sine, the inverse tangent is used to compute a new domain for x from the domain of y with the relation y = tan x. The algorithm to implement "atan rel" presented in Table VII goes along the same lines as the one for "acos rel": we first compute the periods k l and k r in which fall the left bound and the right bound of I x (Lines 8-13 and 21-26). We then compute the intersection of I x with atan I y translated by the relevant periods (Lines 14-16 and 30-32).

Ix ∈ I) 2 % Computes a superset of cch ({x ∈ Ix | ∃y ∈ Iy : y = tan x}) 3 if Ix = ∅ ∨ Iy = ∅: 4 return ∅ 5 if Ix / ∈ [-2 51 , 2 51]: 6 R left ← Ix 7 else: 8 if Ix < 0: 9 k l = fl ▽ Ix fl ▽ (π÷2) + 1 ÷ 2 elsif Ix > 0: k l = fl ▽ Ix fl △ (π÷2) + 1 ÷ 2 else: k l ← 0 R left ← (atan(Iy) + k l Π) ∩ Ix % See Table VIII for the definition of "atan" if R left = ∅: R left ← (atan(Iy) + (k l + 1)Π) ∩ Ix if Ix / ∈ [-2 51 , 2 51]:
R right ← Ix else:

if Ix < 0:

kr = fl △ Ix fl △ (π÷2) + 1 ÷ 2 elsif Ix > 0: k l = fl △ Ix fl ▽ (π÷2) + 1 ÷ 2 else: kr ← 0 if kr = k l : R right ← R left else: R right ← (atan(Iy) + krΠ) ∩ Ix if R right = ∅: R right ← (atan(Iy) + (kr -1)Π) ∩ Ix return [R left , R right]
The periods are counted as follows: Period 0 is from -π/2 to π/2, Period 1 is from π/2 to 3π/2, Period -1 is from -3π/2 to -π/2, and so on. This is such that the tangent function be monotonic on each separate period.

As for "acos rel," we use the following proposition to ensure that the computation of k l is correctly performed (an analogous result holds for k r):

• Frédéric Goualard Proposition 4.2. Given l ∈ F a floating-point number, we have:

     l π÷2 + 1 ÷ 2 - fl ▽ l fl ▽ (π÷2) + 1 ÷ 2 1 if -2 51 l < 0 l π÷2 + 1 ÷ 2 - fl ▽ l fl △ (π÷2) + 1 ÷ 2 1 if 0 l 2 51
Proof. We prove the result for 0 l 2 51 (the case -2 51 l < 0 is proved in the same way, and is therefore omitted): First, note that the division by 2 does not introduce any rounding error if we use floating-point numbers conforming to the IEEE 754 standard. Consequently, we have fl △ (π ÷ 2) = fl △ (π) ÷ 2. We then only have to prove:

l π ÷ 2 -fl ▽ l fl △ (π) ÷ 2 1 if 0 l 2 51 .
Using the same modeling for rounding errors as in Proposition 4.1, we get:

l π ÷ 2 -fl ▽ l fl △ (π) ÷ 2 = l π ÷ 2 1 - 1 -ε 2 1 + ε 1
with 0 < ε 1 2 -52 and 0 ε 2 2 -52 . Consequently:

l π ÷ 2 1 - 1 -ε 2 1 + ε 1 1 ⇐⇒ l 1 + ε 1 ε 1 + ε 2 π 2 .
With the known bounds on ε 1 and ε 2 , it comes that:

l (2 50 + 2 -2)π
is a sufficient condition for:

l π ÷ 2 -fl ▽ l fl △ (π) ÷ 2 1.
Since 2 51 < (2 50 + 2 -2)π < 2 52 , the proof is complete.

From Proposition 4.2 and the analogous proposition for the right bound, we may consider that the values computed for k l and k r will be off by 1 or less (by default for k l and in excess for k r) if the bounds of I x lie in the domain [-2 51 , 2 51]. Outside of this domain, the computation of k l and k r is not safe, and we therefore leave the corresponding bound of I x unchanged if such situation arises.

The "atan" function used in • Frédéric Goualard

EVALUATION OF THE ALGORITHMS

In order to assess the effectiveness of the algorithms presented, we tested them as follows: For each one of the relations xy = z, y = cos x, y = sin x, y = tan x, y = cosh x, and y = x n , we randomly generated 10, 000, 000 pairs of non-empty domains (or triplets of domains, for the relation xy = z), and we applied the corresponding direct operator and inverse operator on them in order to determine new domains for the variables, as presented in Eq. (1) on Page 3.

The results are presented in Table XII. We considered the time spent to perform the 10, 000, 000 narrowings for two versions of gaol : The "RP" (Rounding Preserved) column corresponds to the version in which the rounding direction is set to "upward" once at the beginning of each call to any interval operation, and set back to its previous value at the end of the operation. The "RNP" (Rounding Not Preserved) column corresponds to the version in which the rounding direction is set to "upward" at the very beginning of the program, and is almost never modified afterwards.10 Note that both versions ensure correctness of the computation; either one may be selected when configuring gaol prior to compiling it (see gaol 's manual). The "RP" version should be used when embedding gaol in a program that intends to manipulate the rounding direction itself, or that assumes some rounding direction different from the "upward" one; otherwise, the "RNP" version should be used, as it is much more efficient.

As a comparison, we also present the results obtained with smath. There is no entry for the relation "y = acosh x," as the hyperbolic cosine and its inverse are not supported by that library. There is no entry for the relation "y = x n " either, as we could not reliably test the power function for odd values of n. Therefore, the last row of the table presents results for even values of n only, in order to ensure some point of comparison for such an important relation.

Besides speed, we also tested the amount of reduction performed by the operators (Column "Reduction"). For each relation, we give two percentages: the one at the top represents the average percentage of reduction on all variables and for all 10, 000, 000 tests, excepting the cases where at least one domain was narrowed down to the empty set; the one at the bottom gives the number of reductions that led to failure (at least one variable in the relation was narrowed down to the empty set) as a percentage.

All the experiments were conducted on an Intel Pentium IV at 3.8 GHz with 2 GB of RAM, running Linux Kubuntu Gutsy Gibbon. This computer has a Standard Unit Time equal to 50.4 s (This is defined as the time required for performing 10 8 evaluations of the function Shekel 5 [START_REF] Dechter | The global optimization problem: an introduction[END_REF]). All tests were performed with gaol 3.1.0 and smath 2005-12-19. The 10, 000, 000 non-empty intervals were generated by using the drand48() and rand() standard functions to create double bounds from a mantissa (obtained with drand48()), an exponent and a sign (obtained from rand()). The pseudo-random generators were initialized with the same fixed seed for both gaol and smath. For the purpose of testing the Time on an Intel Pentium IV at 3.8 GHz (rounded to nearest 10 th sec.)

power function and its inverse, the values of the exponents n and m were chosen randomly between 0 and 99 inclusive.

As seen in Table XII, the "RNP" version of gaol is much faster than the "RP" version, and it outperforms smath on all operators. The "RP" version is still better than smath on almost all operators, except for the multiplication and its inverse. As for the quality of reduction, gaol and smath appear equivalent, except for the "y = tan x" relation: gaol achieves an impressive 82.5% of reduction, versus 53% for smath. However these figures do not tell the whole story: indeed, smath is able to discover failure in 19.2% of the cases, versus 9.5% only for gaol. As a consequence, the results of smath and gaol for the tangent and the inverse tangent are not directly comparable. Lastly, we observe that the treatment of the cosine relation is significantly faster than the one of the sine relation, which sheds a new light on our choice of reusing code for the implementation of the inverse sine (and for the sine as well).

CONCLUSION

The results given in Section 5 should be taken with a grain of salt (shouldn't they all?), as they are by no means indicative of the actual performances in real conditions of the libraries tested. They should only be considered as a benchmark for future works in the domain. However, from the return on experience by those who already used gaol for their project, we still are confident of its good standing among the interval libraries available, be it for the quality of its "functional" operators or

• Frédéric Goualard its "relational" ones.

The gaol library still has weaknesses that should be addressed. In particular, it is not possible to use bounds of varying precision as in MPFI [START_REF] Revol | Motivations for an arbitrary precision interval arithmetic and the MPFI library[END_REF] and Boost Interval [START_REF] Melquiond | Boost Interval: Interval arithmetic for the C++ standard[END_REF]]. Even for fixed precision, relying on a library like MPFR [Hanrot et al. 2007], which implements correctly rounded floating-point functions, would allow us to compute the exact closed convex hull of all inverse operators supported.

Fig. 1 .

 1 Fig.1. Computing the inverse cosine of [-0.3, 0.2] with respect to the interval[20, 26]

Fig. 2 .

 2 Fig. 2. Inverse power of n for n odd

 TableII. Inverse N th power function nth root rel(Iy ∈ I, n ∈ N, Ix ∈ I): % Computes an enclosing interval for cch ({x ∈ Ix | ∃y ∈ Iy : y = x n }) Ix = ∅ ∨ Iy = ∅: return ∅ % Computing the left bound if Iy 1: l ← pow dn(Iy, fl ▽ 1 n) % See "proxy functions" on Page 7 elsif Iy 0: l ← pow dn(Iy, fl △ , r] ∩ Ix else: % even(n)

Fig. 4 .

 4 Fig. 4. Computing the inverse cosine of [c, d] with respect to [a 0 , b 0]

Table I .

 I].8 Inverse multiplication div rel(Iz, Iy, Ix) for non-empty operands

	[Iz, Iz]
	[Iy, Iy]
	Ix ∩ [Iz Iy ,

Table V .

 V Arccosine function translated by kπ 1 function acos k(k ∈ Z, acosIy ∈ I): 2 % Computes acosIy translated to the kth period 3 % Π is the smallest floating-point interval containing π

	4	if even(k):

Table VII .

 VII Inverse tangent 1 function atan rel(Iy ∈ I,

Table VIII .

 VIII Table VII is presented in Table VIII. It uses a floating-point arctangent function whose range is-as in most mathematical libraries-[-π/2, π/2]. Arctangent function 1 function atan(Iy ∈ I) 2 % Computes a superset of cch ({x ∈ [-π/2, π/2] | ∃y ∈ Iy : x = atan y})

• 19 Table XII .

 19XII Performances on 10, 000, 000 tests per relation

			Time (in s.)	Reduction	
	Relation						
		Gaol RP RNP	smath	Gaol	smath	
					55.5%	56.2%	%age reduc.
	xy = z	29	3.7	5.4			
					19.6%	18.4%	%age fail.
					56.8%	56.8%	%age reduc.
	y = cos x	74.2	16	160.3			
					25.1%	25.2%	%age fail.
					56.8%	53%	%age reduc.
	y = sin x	103	37.6	177.2			
					25.1%	19.2%	%age fail.
					82.5%	53%	%age reduc.
	y = tan x	118.8	37.6	362.4			
					9.5%	19.2%	%age fail.
					30.5%	NA	%age reduc.
	y = cosh x	47.7	11	NA			
					62.8%	NA	%age fail.
	y = x n	56.1	12.6	NA	23.6%	NA	%age reduc.
					39%	NA	%age fail.
	y = x m ,				23%	23.1%	%age reduc.
	m ≡ 0 (mod 2)	49.2	12.3	502.5	40.7%	40.7%	%age fail.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008, Pages 1-23.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Refer to the web site Interval Computations at http://www.cs.utep.edu/interval-comp/ and, in particular, to its page Early Papers on Interval Computations for references to the relevant works.ACM Transactions on Mathematical Software, Vol. V, No. N, June

This operator is often called "hull" (and sometimes noted " ") in the interval constraint programming literature. In this paper, however, we adopt the notations sponsored by Kearfott and others[START_REF] Kearfott | Standardized notation in interval analysis[END_REF]].

 3 We consider here the compactification of R as the real projective line, as described by the IEEE 754 standard[IEEE 1985].ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Note that Prolog IV is no longer publicly available, though.

This is the case as of Version 1.34.1 of the library. ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

The game of the name: The first name of gaol was jail, standing for Just Another Interval Library, until we realized that having relational operators as well as functional ones-a rare trait among interval libraries-, gaol was no longer just another interval library. . .

See the page at http://www.gnu.org/licenses/lgpl.html for what that means and entails. ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Some extra work in the field appears in order, though, as some authors[START_REF] Lambov | Interval arithmetic using SSE-2[END_REF]] report large gains with some instruction sets (in particular, Streaming SIMD Extensions 2 by Intel in the paper cited).ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Note that in the domain [-2 52 , 2 52], all integers have a double floating-point representation. ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

return [atan dn(Iy), atan up(Iy)] % See "proxy functions" on Page 7 ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

This is true only for the functions for which correct rounding is mandated by the standard. For all other functions (that is, mainly, cos, sin, tan, pow, cosh and their inverses), we have to switch the rounding to the nearest for each call in order to compute the correct result with the IBM Accurate Portable Mathematical Library. ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Iz

Iy]

Ix ∩ [0,

ACKNOWLEDGMENTS

Alexandre Goldsztejn read carefully a preliminary version of this paper, pointing out inaccuracies and ambiguities that hindered its proper understanding.

• Frédéric Goualard

Table III. Inverse cosine function acos rel(Iy ∈ I, Ix ∈ I): % Returns an enclosing interval for the preimage of Iy w.r.t. the cosine function and Ix: % acos rel(Iy, Ix) ⊇ cch ({x ∈ Ix | ∃y ∈ Iy : y = cos x})

return Ix acosIy ← acos(Iy) % See Table IV for the definition of "acos" % Checking whether the left bound is too large to perform a reliable range reduction % That is, k l would be off by more than one unit

if Ix < 0:

elsif Ix > 0:

else:

% From here, the k l computed is at most off by 1 less than its exact value

% Checking whether the right bound is too large to perform a reliable range reduction % That is, kr would be off by more than one unit

kr ← 0 % From here, the kr computed is at most off by 1 more than its exact value

We then have:

As a consequence, the quotient computed differs from the true quotient l/π by 1 or ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

Interval Extensions of Multivalued Inverse Functions

• 13 less if and only if:

We then need to know the infimum of the right-hand side of Eq. (3) for ε 1 ∈ (0, 2 -52] and

, which leads to the upper bound for l :

Since, we have:

the proposition is proved for 0 l 2 52 . The proof for -2 52 l < 0 may be performed analogously and will therefore be omitted.

Similar operations are used to compute a new bound from the right bound of I x . Proposition 4.1 for computing the left bound-and the similar proposition for the right bound-implies that we have to compute new bounds for the inverse cosine only if the bounds of I x are not too large (more precisely, they shall be smaller than 2 52 in absolute value). Within the domain [-2 52 , 2 52], we know that the error made when computing k l and k r is less than 1 (more precisely, 0 < ⌊l/π⌋ -k l 1, and 0 < k r -⌊r/π⌋ 1). As a consequence, if the intersection of I x with the translated arccosine of I y by k l π (resp. by k r π) is empty-see Lines 21-23 and 39-41-, it suffices to translate the arccosine by one more period of π to the right for the left bound (resp., by one less period of π to the left for the right bound) to ensure correctness. Note that computing the intersection of I x with the next period for the left bound, or the previous period for the right bound, would be sometimes necessary anyway, as exemplified in Figure 4: We have

Table IV. Arccosine function acos :

and the relation y = cos x; here, k r is equal to 2 but the intersection between I x and [a 3 , b 3] = 2Π + acos I y -where Π is the smallest interval containing π-is empty. We have to consider the previous period to intersect

If either bound of I x is outside the domain [-2 52 , 2 52], we do not attempt to modify it (see Lines 11-12 and Lines 26-27).

Possible values for k l and k r range from ⌊-2 52 /π -1⌋ to ⌊-2 52 /π + 1⌋, while the typical range for signed integer numbers in two's complement is from -2 31 to • 17

Inverse Hyperbolic Cosine

The inverse hyperbolic cosine is used to compute a new domain for x with respect to y in the relation y = cosh x. Contrarily to the inverse hyperbolic sine and the inverse hyperbolic tangent, the inverse of the hyperbolic cosine requires a special algorithm, which is given in Table IX. It is quite simple and only has to take into account the evenness of the hyperbolic cosine function. The "acosh rel" function uses the interval extension "acosh" of the hyperbolic arccosine presented in Table X. Since no floating-point "acosh" function is implemented in the IBM Accurate Portable Mathematical Library, we make do with the identity acosh x = log(x + √ x 2 -1).