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Abstract. SIMD instructions on floating-point numbers have been read-
ily available on ix86 computers for the past ten years or so. Almost from
the start, they have been considered to compute the two bounds of inter-
vals in parallel. Some authors reported marginal improvements over pure
sequential computation, and those who reported otherwise had made
choices that relinquished reliability. We discuss these works, pointing
out their achievements and shortcomings, and then present data storage
and SIMD algorithms that are both correct and much faster than the
fastest routines in standard interval libraries.

1 Introduction

As microprocessor makers reach the limits imposed by physical laws, data paral-
lelism becomes interesting to squeeze ever more performances from overstrained
CPUs [19]. One of its strong points lies in that it may be used in otherwise purely
sequential programs, thus avoiding the difficult task of properly synchronizing
concurrent processes or threads. What is more, Single Instruction, Multiple Data

(SIMD) instructions are now widely available (e.g., short-vector multimedia ex-
tensions AMD 3DNow! [1] and Intel SSE [9], or GPUs instruction sets [17]).

The Interval community has been quick to recognize the potential of SIMD
floating-point instructions of ix86 processors to compute both bounds of an in-
terval in parallel, thereby possibly achieving the same performances with in-
terval arithmetic as with floating-point arithmetic. First reports of experiments
by Wolff von Gudenberg [20,21] were not enthusiastic, though, and the actual
speed-up obtained proved marginal.

Part of the problem lies in that available SIMD instructions usually support
only one rounding mode at a time for all operands, while interval bounds need
to be rounded “outward” (that is, to opposite directions), in order to ensure the
containment principle [16]. This problem can be circumvented, though it usually
incurs some cost that may not be insignificant.

An original approach in this respect uses both Floating-Point Unit (FPU)
instructions and Intel SSE instructions: Stolte [18] sets permanently the FPU
and SSE rounding directions to opposite directions—as they may be set indepen-
dently; he then computes left bounds and right bounds of intervals on different
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units (either in FPU registers or in SSE registers). However, besides introducing
another level of complexity to the implementation of interval libraries, such a
scheme can only be used reliably in a carefully controlled environment with a
well-known compiler, as some of them may choose to vectorize automatically
some instructions that were intended for the FPU.

Some authors remove the problem entirely by not rounding bounds, thereby
losing reliability. This is, however, considered a reasonable approach for special-
ized applications such as ray-tracing [11]. An orthogonal approach, sponsored by
Malins et al. [15], tries to reduce the number of floating-point operations nec-
essary to perform interval multiplications and divisions by recoursing to matrix
multiplications of integers that symbolically represent interval bounds. Accord-
ing to the authors, the actual algorithm does not lead to good performances
compared to traditional approaches, though.

Recently, Lambov [13] proposed a representation of intervals together with
algorithms to better use SSE instructions1. However, we show below that their
good performances are obtained at the cost of relinquishing reliability for inter-
vals with null or infinite bounds.

We consider alternative algorithms based on previous works on purely se-
quential implementations of interval arithmetic, and we show it is indeed pos-
sible to achieve very good speed-ups while retaining reliability. In Section 4,
the C++ library that embodies the ideas presented in this paper is compared
with three (sequential) standard C or C++ interval arithmetic libraries and with
two classes of SIMD algorithms from the points of view of speed and reliability.
Lastly, we briefly discuss in Section 5 further extensions of our algorithms to
evaluate in parallel an interval function for two different domains at the cost of
one floating-point evaluation.

2 From Sequential to Data-Parallel Interval Arithmetic

The classical formulas to implement floating-point interval arithmetic are well
known [16]:

[a, b] + [c, d] = [fl▽(a + c) , fl△(b + d)]

[a, b] − [c, d] = [fl▽(a − d) , fl△(b − c)]

[a, b] × [c, d] = [min(fl▽(ac) , fl▽(ad) , fl▽(bc) , fl▽(bd)),

max(fl△(ac) , fl△(ad) , fl△(bc) , fl△(bd))]

[a, b] ÷ [c, d] = [min(fl▽
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where a, b, c, and d are floating-point numbers, and fl▽(r) (resp. fl△(r)) returns
the largest float smaller than (resp. the smallest float larger than) the real r.

1 More accurately, SSE2 instructions, which are part of an extension of the original
SSE instruction set.
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Unfortunately, these formulas cannot be used as a basis for implementing
interval arithmetic for efficiency and reliability reasons:

1. Switching incessantly the rounding direction from −∞ to +∞ to compute
left and right bounds slows down the execution as each switch requires emp-
tying the FPU pipeline;

2. The constraint that a divisor not contain 0 is too strong for some applica-
tions, and should be lifted in any practical implementation;

3. The IEEE 754 standard [8] achieves an affine extension of the floating-point
numbers set by defining the two infinities −∞ and +∞. It is, therefore,
most desirable that infinite bounds be supported by the interval arithmetic
operators as well, since infinities may arise from any seemingly innocuous
computation involving intervals with finite bounds only. For a trivial exam-
ple, consider the simple interval expression:

I × exp(J2) with I ∈ [0, 2],J ∈ [0, 27].

Since J2 = [0, 729] and e729 is greater than the largest double precision
floating-point number, we have exp(J2) = [1, +∞], which leads to having to
consider infinities for the interval multiplication of I by the exponential of
J2.
Infinities may also naturally appear when a divisor contains 0 (consider, for
example, the interval division involved in an interval Newton-Raphson step
when the function studied has multiple roots in the domain under scrutiny).
With infinite bounds, some products in the formula of the multiplication and
some quotients for the division may lead to undefined numbers—a.k.a. Not

a Number (NaN) [8]. Consider, for example:

[−∞, 2] × [0, 3] = [ min(−∞× 0,−∞× 3, 2 × 0, 2 × 3),
max(−∞× 0,−∞× 3, 2 × 0, 2 × 3) ].

The product of −∞ by 0 is an NaN. As NaNs are unordered, the final
result will depend entirely on the implementation of the ““min” and “max”
functions. It might be the correct one (i.e., [−∞, 6]), or it might be the
invalid interval [NaN, NaN] if max(NaN, a) = max(a, NaN) = min(NaN, a) =
min(a, NaN) = NaN.
The same problem will occur for the division whenever we have to compute
the quotient 0

0 .

Eliminating the need for switching the rounding direction is easy: use the
fact that taking the opposite of a result does not introduce rounding errors to
define new formulas that rely on one rounding direction only (say, to +∞). For
example, we would have:

[a, b] + [c, d] = [− fl△(−a − c) , fl△(b + d)].

The problem of undefined numbers cannot be discarded so cheaply. In or-
der to compute correct domains for the multiplication and the division in the
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presence of infinities and zeros, we have to test the bounds in advance, which
leads to algorithms with 9 cases for the multiplication and up to 36 cases for the
division [7].

Wolff von Gudenberg [20,21] implemented interval arithmetic with SSE in-
structions by using the “opposite trick” above. He tested both the brute-force
algorithms (computing all 8 multiplications or quotients) and some algorithms
with cases. Improvement over sequential algorithms was found marginal. It is
interesting to note here that he made no reference to the fact that brute-force
algorithms were flawed and might sometimes return wrong results.

Lambov [13] suggested that the “opposite trick” was partly to blame for poor
performances in that it introduced the need for extra instructions to repeatedly
take the opposite. He then proposed to directly store intervals with one of their
bounds negated. This idea was already present for the same purpose in the
(purely sequential) JAIL interval library [4]. He also proposed new data-parallel
algorithms for the multiplication and the division with fewer cases, so as to make
possible their implementation without any explicit branching.

Unfortunately, as we will see in Section 4, his algorithms suffer from the same
unreliability as brute-force algorithms, even if to a lesser extent.

3 Fast and correct SIMD interval Arithmetic

As in JAIL, we propose to use the rounding direction towards +∞ only. An in-
terval [a, b] is stored as a pair 〈b : −a〉 of double precision floating-point numbers
in an 128 bits SSE register (see Fig. 1). We then use the formulas presented
in Tables 1, 2, 3, and 4, which are directly mappable to C or C++ code with
intrinsic instructions [10]. To better illustrate our point, the pseudo-code using
intrinsics is given in Tables 1 and 2 for the addition and the subtraction. It is
also graphically illustrated in Figure 2.

0127

−ab

Fig. 1. Storing the interval [a, b] in an 128 bits SSE register

Apart from the loading of the SSE registers, the interval addition requires
only one instruction, while the subtraction requires two. The multiplication re-
quires at most two floating-point multiplication SSE instructions and one “max-
imum” SSE instruction in the worst case, and one multiplication only in the best
case, plus some additional instructions for testing the cases and swapping the
bounds when necessary.

The interval division requires at most one floating-point SSE division, plus
additional instructions for the cases handling. The tests performed before divid-
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Table 1. Interval addition with SSE instructions on SSE registers

〈b : −a〉+ 〈d : −c〉 = 〈b + d : (−a) + (−c)〉

xmm0 ←〈b : −a〉
xmm1 ←〈d : −c〉
xmmres ←_mm_add_pd(xmm0,xmm1)

Rounding set permanently towards +∞

−ab −cd

b+d (−a)+(−c)

−ab −cd

d−c
_mm_add_pd

_mm_shuffle_pd

_mm_add_pd

b+(−c) (−a)+d

Interval addition Interval subtraction

Fig. 2. Interval addition and subtraction with SSE registers and instructions

Table 2. Interval subtraction with SSE instructions on SSE registers

〈b : −a〉 − 〈d : −c〉 = 〈b + (−c) : (−a) + d〉

xmm0 ←〈b : −a〉
xmm1 ←〈d : −c〉
xmm1 ←_mm_shuffle_pd(xmm1,xmm1,1) // xmm1 ← 〈−c : d〉
xmmres ←_mm_add_pd(xmm0,xmm1)

Rounding set permanently towards +∞
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ing the bounds are such that no situation that might lead to the creation of an
NaN ever arises.

Table 3. Interval multiplication with SSE instructions on SSE registers

〈b : −a〉 × 〈d : −c〉 d 6 0 c 6 0 6 d 0 6 c

b 6 0 〈(−a)(−c) : (−b)d〉 〈(−a)(−c) : (−a)d〉 〈bc : (−a)d〉

〈max((−a)d, b(−c)) :
a 6 0 6 b 〈(−a)(−c) : b(−c)〉

max((−a)(−c), bd)〉
〈bd : (−a)d〉

0 6 a 〈ad : b(−c)〉 〈bd : b(−c)〉 〈bd : a(−c)〉

Rounding set permanently towards +∞

Table 4. Interval division with SSE instructions on SSE registers

〈b:−a〉
〈d:−c〉

d < 0 c < 0, d = 0 0 c < 0 < d c = 0, 0 < d 0 < c

b < 0 〈 a

d
: b

−c
〉 〈∞ : b

−c
〉 ∅ 〈∞ :∞〉 〈 b

d
:∞〉 〈 b

d
: −a

c
〉

a < 0, b = 0 〈 a

d
: −0〉 〈∞ : −0〉 ∅ 〈∞ :∞〉 〈0 :∞〉 〈0 : −a

c
〉

a = b = 0 〈0 : −0〉 〈0 : −0〉 ∅ 〈0 : −0〉 〈0 : −0〉 〈0 : −0〉

a < 0 < b 〈 a

d
: −b

d
〉 〈∞ :∞〉 ∅ 〈∞ :∞〉 〈∞ :∞〉 〈 b

c
: −a

c
〉

a = 0, 0 < b 〈0 : −b

d
〉 〈0 :∞〉 ∅ 〈∞ :∞〉 〈∞ : −0〉 〈 b

c
: −0〉

0 < a 〈−a

−c
: −b

d
〉 〈−a

−c
:∞〉 ∅ 〈∞ :∞〉 〈∞ : −a

d
〉 〈 b

c
: −a

d
〉

Rounding set permanently towards +∞

4 Experiments

To evaluate our algorithms, we randomly generated 20, 000, 000 non-empty in-
tervals. Our generator allows us to specify the probability of generating a bound
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Table 5. Assessing performances of interval operators

Probabilities 0:0.2:0.2:0.6 0.05:0:0:0.95 0.05:0.05:0.05:0.85

Operation + − × ÷ + − × ÷ + − × ÷

BIAS 2.0.4 48.1 46.4 54.7 43.1 37.6 37.3 54.5 46.5 41.0 41.3 55.8 45.4

boost 1.34.1 35.8 35.5 45.7 20.6 30.2 29.8 49.9 40.4 32.7 32.8 50.6 24.4

filib++ 210905 62.4 60.9 69.5 61.0 52.0 52.9 77.4 71.6 58.0 57.3 77.8 71.5

bf 2.6 2.5 9.4 18.0 4.8 4.9 27.9 37.3 4.8 4.9 24.4 34.2

lambov 2.6 2.5 7.3 8.9 4.8 4.9 18.3 18.0 4.8 4.9 16.5 16.9

cell 2.6 2.5 9.0 9.1 4.8 4.9 19.4 20.9 4.8 4.9 18.8 20.5

Times in seconds on an Intel Core2 Duo T5600 1.83GHz (whetstone 100 000=1111 MIPS)
for 200 000 000 operations on non-empty random intervals.

that is a denormal number, zero, an infinity, or a normal number. Half of
these intervals were added, subtracted, multiplied or divided by the other half.
In order to avoid misguided optimizations by the compiler, each result was
added to an accumulator whose value was eventually printed. Hence, each test
performs 10, 000, 000 interval operations corresponding to the operator tested,
and 10, 000, 000 interval additions. To obtain larger runtimes in Table 5, these
20, 000, 000 operations are repeated 10 times, leading to a total of 200, 000, 000
operations per operator tested. Lastly, all tests were run several times with var-
ious probabilities, including one test where no interval had 0 or an infinity as
one of its bounds.

All experiments were conducted on an Intel Core2 Duo T5600 1.83GHz. The
Whetstone test [3] for this machine reports 1111 MIPS with a loop count equal
to 100, 000.

We compared “cell”, the library embodying the ideas presented in this paper,
with three freely available interval libraries: BIAS [12], Boost Interval [2] and
Filib++ [14]. None of these uses SIMD instructions. We also compared “cell”
with Lambov’s and SIMD brute-force algorithms. For all libraries, we chose
the mode in which the rounding direction is set only once at the beginning of
the program and never changed again, if available. We also chose settings that
allowed 0 in the divisor of a quotient.

Tables 5 and 6 report our findings. Note that “bf” corresponds to the brute-
force algorithm with SSE instructions, and “lambov” implements the algorithms
by Lambov. Row “Probabilities” corresponds to the probabilities of generating
denormal numbers, zeros, infinities, or normal numbers as bounds, in that order.

Table 5 presents the time in seconds necessary to performs the 200, 000, 000
aforementioned tests.
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Table 6. Assessing the correctness of interval operators

Probabilities 0:0.2:0.2:0.6 0.05:0:0:0.95 0.05:0.05:0.05:0.85

Operation × ÷ × ÷ × ÷

Result
(Larger/Wrong) L W L W L W L W L W L W

BIAS 2.0.4 0% 11% 8% 42% 0% 0% 0% 25% 0% 1% 3% 29%

boost 1.34.1 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 1% 0%

filib++ 210905 20% 0% 17% 1% 0% 0% 0% 0% 2% 0% 1% 1%

bf 0% 17% 2% 43% 0% 0% 0% 44% 0% 1% 1% 40%

lambov 0% 16% 13% 11% 0% 0% 0% 0% 0% 2% 3% 2%

cell 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 6 reports the percentage of the 10, 000, 000 test operations2 with larger
than expected (L), or plain wrong (W) results. Wrong results originate from
mishandlings of bounds (NaNs), as discussed above; too large intervals come
from insufficiently discriminating algorithms (e.g., dividing [−∞, 0] by [−∞, 0]
leading to [−∞, +∞] instead of [0, +∞]). The correct results against which all
libraries are tested were computed using the algorithms of Hickey et al. [7] as
implemented in the “gaol” library [5]. Correctness results for the addition and
the subtraction are not given as all libraries passed successfully the tests.

From both tables, we see that Lambov’s carefully tuned algorithms are indeed
the fastest; “cell” is, however, not so far behind in terms of pure performances.
As for correctness, “cell” is definitely the winner since it is the only library that
does not compute wrong results, nor intervals larger than expected.

As a side note, Table 5 clearly shows the negative impact of denormal num-
bers on performances for SSE floating-point instructions (and, to a lesser extent,
for FPU instructions as well): runtimes double when the probability of creating
denormal bounds increases from 0 to 0.05. There is nothing new here, though:
slowness of denormal numbers handling is already amply documented in the
literature. Still, such a great impact should lead us to reconsider the true im-
portance of denormal numbers for interval arithmetic as processors always give
the option of not using them (e.g., by flushing too small numbers to 0).

5 Discussion

Our tests show that it is possible to take advantage of widely available SIMD
floating-point instructions to speed-up the computation of the interval operators
+,−,×,÷. As already suggested by Lambov [13], the same approach could be
used to speed-up other operators such as trigonometric, hyperbolic or otherwise

2 The 10, 000, 000 additions performed to avoid misguided compiler optimizations are
not considered here.
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transcendental operators. Still, it is not yet clear whether comparable speed-
ups are achievable for those operators, as their proper implementation is not
straightforward.

On the other hand, it is possible to further accelerate interval computation
at the cost of less accuracy by packing two intervals with single precision bounds
(instead of double precision bounds) in one 128 bits SSE register (see Fig. 3).

0127

−a−c bd

Fig. 3. Packing the two intervals [a, b] and [c, d] in one SSE register

Extending the definition of interval operators accordingly allows to compute
an interval function f for two different domains in parallel at the cost of one
floating-point evaluation of f . A preliminary implementation of this idea has
already been successfully tested to design a data-parallel algorithm to solve
nonlinear constraint systems [6].

Acknowledgments. Alexandre Goldsztejn made insightful comments on a pre-
liminary version of this paper that hopefully helped to improve it.
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