Frédéric Goualard

Fast and Correct SIMD Algorithms for Interval Arithmetic

SIMD instructions on floating-point numbers have been readily available on ix86 computers for the past ten years or so. Almost from the start, they have been considered to compute the two bounds of intervals in parallel. Some authors reported marginal improvements over pure sequential computation, and those who reported otherwise had made choices that relinquished reliability. We discuss these works, pointing out their achievements and shortcomings, and then present data storage and SIMD algorithms that are both correct and much faster than the fastest routines in standard interval libraries.

Introduction

As microprocessor makers reach the limits imposed by physical laws, data parallelism becomes interesting to squeeze ever more performances from overstrained CPUs [START_REF] Sutter | The free lunch is over: A fundamental turn toward concurrency in software[END_REF]. One of its strong points lies in that it may be used in otherwise purely sequential programs, thus avoiding the difficult task of properly synchronizing concurrent processes or threads. What is more, Single Instruction, Multiple Data (SIMD) instructions are now widely available (e.g., short-vector multimedia extensions AMD 3DNow! [START_REF]Advanced Micro Devices, Inc. 3DNow! Technology Manual[END_REF] and Intel SSE [START_REF]Intel. Intel 64 and IA-32 architectures software developer's manual[END_REF], or GPUs instruction sets [START_REF] Owens | A survey of general-purpose computation on graphics hardware[END_REF]).

The Interval community has been quick to recognize the potential of SIMD floating-point instructions of ix86 processors to compute both bounds of an interval in parallel, thereby possibly achieving the same performances with interval arithmetic as with floating-point arithmetic. First reports of experiments by Wolff von Gudenberg [START_REF] Wolff Von Gudenberg | Multimedia architectures and interval arithmetic[END_REF][START_REF] Wolff Von Gudenberg | Interval arithmetic on multimedia architectures[END_REF] were not enthusiastic, though, and the actual speed-up obtained proved marginal.

Part of the problem lies in that available SIMD instructions usually support only one rounding mode at a time for all operands, while interval bounds need to be rounded "outward" (that is, to opposite directions), in order to ensure the containment principle [START_REF] Edgar | Interval Analysis[END_REF]. This problem can be circumvented, though it usually incurs some cost that may not be insignificant.

An original approach in this respect uses both Floating-Point Unit (FPU) instructions and Intel SSE instructions: Stolte [START_REF] Stolte | Arbitrary 3D resolution discrete ray tracing of implicit surfaces[END_REF] sets permanently the FPU and SSE rounding directions to opposite directions-as they may be set independently; he then computes left bounds and right bounds of intervals on different units (either in FPU registers or in SSE registers). However, besides introducing another level of complexity to the implementation of interval libraries, such a scheme can only be used reliably in a carefully controlled environment with a well-known compiler, as some of them may choose to vectorize automatically some instructions that were intended for the FPU.

Some authors remove the problem entirely by not rounding bounds, thereby losing reliability. This is, however, considered a reasonable approach for specialized applications such as ray-tracing [START_REF] Knoll | Interactive ray tracing of arbitrary implicits with SIMD interval arithmetic[END_REF]. An orthogonal approach, sponsored by Malins et al. [START_REF] Malins | Vectorised/semi-parallel interval multiplication[END_REF], tries to reduce the number of floating-point operations necessary to perform interval multiplications and divisions by recoursing to matrix multiplications of integers that symbolically represent interval bounds. According to the authors, the actual algorithm does not lead to good performances compared to traditional approaches, though.

Recently, Lambov [START_REF] Lambov | Interval arithmetic using SSE-2[END_REF] proposed a representation of intervals together with algorithms to better use SSE instructions1 . However, we show below that their good performances are obtained at the cost of relinquishing reliability for intervals with null or infinite bounds.

We consider alternative algorithms based on previous works on purely sequential implementations of interval arithmetic, and we show it is indeed possible to achieve very good speed-ups while retaining reliability. In Section 4, the C++ library that embodies the ideas presented in this paper is compared with three (sequential) standard C or C++ interval arithmetic libraries and with two classes of SIMD algorithms from the points of view of speed and reliability. Lastly, we briefly discuss in Section 5 further extensions of our algorithms to evaluate in parallel an interval function for two different domains at the cost of one floating-point evaluation.

From Sequential to Data-Parallel Interval Arithmetic

The classical formulas to implement floating-point interval arithmetic are well known [START_REF] Edgar | Interval Analysis[END_REF]:

[a, b] + [c, d] = [fl ▽ (a + c) , fl △ (b + d)] [a, b] -[c, d] = [fl ▽ (a -d) , fl △ (b -c)] [a, b] × [c, d] = [min(fl ▽ (ac) , fl ▽ (ad) , fl ▽ (bc) , fl ▽ (bd)), max(fl △ (ac) , fl △ (ad) , fl △ (bc) , fl △ (bd))] [a, b] ÷ [c, d] = [min(fl ▽ a c , fl ▽ a d , fl ▽ b c , fl ▽ b d), max(fl △ a c , fl △ a d , fl △ b c , fl △ b d)], with 0 / ∈ [c, d]
where a, b, c, and d are floating-point numbers, and fl ▽ (r) (resp. fl △ (r)) returns the largest float smaller than (resp. the smallest float larger than) the real r.

Unfortunately, these formulas cannot be used as a basis for implementing interval arithmetic for efficiency and reliability reasons:

1. Switching incessantly the rounding direction from -∞ to +∞ to compute left and right bounds slows down the execution as each switch requires emptying the FPU pipeline; 2. The constraint that a divisor not contain 0 is too strong for some applications, and should be lifted in any practical implementation; 3. The IEEE 754 standard [8] achieves an affine extension of the floating-point numbers set by defining the two infinities -∞ and +∞. It is, therefore, most desirable that infinite bounds be supported by the interval arithmetic operators as well, since infinities may arise from any seemingly innocuous computation involving intervals with finite bounds only. For a trivial example, consider the simple interval expression:

I × exp(J 2) with I ∈ [0, 2], J ∈ [0, 27].
Since J 2 = [0, 729] and e 729 is greater than the largest double precision floating-point number, we have exp(J 2) = [1, +∞], which leads to having to consider infinities for the interval multiplication of I by the exponential of J 2 . Infinities may also naturally appear when a divisor contains 0 (consider, for example, the interval division involved in an interval Newton-Raphson step when the function studied has multiple roots in the domain under scrutiny). With infinite bounds, some products in the formula of the multiplication and some quotients for the division may lead to undefined numbers-a.k.a. Not a Number (NaN) [8]. Consider, for example:

[-∞, 2] × [0, 3] = [min(-∞ × 0, -∞ × 3, 2 × 0, 2 × 3), max(-∞ × 0, -∞ × 3, 2 × 0, 2 × 3)].
The product of -∞ by 0 is an NaN. As NaNs are unordered, the final result will depend entirely on the implementation of the ""min" and "max" functions. It might be the correct one (i.e., [-∞, 6]), or it might be the invalid interval [NaN, NaN] if max(NaN, a) = max(a, NaN) = min(NaN, a) = min(a, NaN) = NaN.

The same problem will occur for the division whenever we have to compute the quotient 0 0 . Eliminating the need for switching the rounding direction is easy: use the fact that taking the opposite of a result does not introduce rounding errors to define new formulas that rely on one rounding direction only (say, to +∞). For example, we would have:

[a, b] + [c, d] = [-fl △ (-a -c) , fl △ (b + d)].
The problem of undefined numbers cannot be discarded so cheaply. In order to compute correct domains for the multiplication and the division in the presence of infinities and zeros, we have to test the bounds in advance, which leads to algorithms with 9 cases for the multiplication and up to 36 cases for the division [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF].

Wolff von Gudenberg [START_REF] Wolff Von Gudenberg | Multimedia architectures and interval arithmetic[END_REF][START_REF] Wolff Von Gudenberg | Interval arithmetic on multimedia architectures[END_REF] implemented interval arithmetic with SSE instructions by using the "opposite trick" above. He tested both the brute-force algorithms (computing all 8 multiplications or quotients) and some algorithms with cases. Improvement over sequential algorithms was found marginal. It is interesting to note here that he made no reference to the fact that brute-force algorithms were flawed and might sometimes return wrong results.

Lambov [START_REF] Lambov | Interval arithmetic using SSE-2[END_REF] suggested that the "opposite trick" was partly to blame for poor performances in that it introduced the need for extra instructions to repeatedly take the opposite. He then proposed to directly store intervals with one of their bounds negated. This idea was already present for the same purpose in the (purely sequential) JAIL interval library [START_REF] Goualard | Towards good C++ interval libraries: Tricks and traits. Accepted for publication[END_REF]. He also proposed new data-parallel algorithms for the multiplication and the division with fewer cases, so as to make possible their implementation without any explicit branching.

Unfortunately, as we will see in Section 4, his algorithms suffer from the same unreliability as brute-force algorithms, even if to a lesser extent.

Fast and correct SIMD interval Arithmetic

As in JAIL, we propose to use the rounding direction towards +∞ only. An interval [a, b] is stored as a pair b : -a of double precision floating-point numbers in an 128 bits SSE register (see Fig. 1). We then use the formulas presented in Tables 1, 2, 3, and 4, which are directly mappable to C or C++ code with intrinsic instructions [START_REF]Intel. Intel C++ intrinsic reference[END_REF]. To better illustrate our point, the pseudo-code using intrinsics is given in Tables 1 and2 for the addition and the subtraction. It is also graphically illustrated in Figure 2. Apart from the loading of the SSE registers, the interval addition requires only one instruction, while the subtraction requires two. The multiplication requires at most two floating-point multiplication SSE instructions and one "maximum" SSE instruction in the worst case, and one multiplication only in the best case, plus some additional instructions for testing the cases and swapping the bounds when necessary.

The interval division requires at most one floating-point SSE division, plus additional instructions for the cases handling. The tests performed before divid- ing the bounds are such that no situation that might lead to the creation of an NaN ever arises.

d < 0 c < 0, d = 0 0 c < 0 < d c = 0, 0 < d 0 < c b < 0 a d : b -c ∞ : b -c ∅ ∞ : ∞ b d : ∞ b d : -a c a < 0, b = 0 a d : -0 ∞ : -0 ∅ ∞ : ∞ 0 : ∞ 0 : -a c a = b = 0 0 : -0 0 : -0 ∅ 0 : -0 0 : -0 0 : -0 a < 0 < b a d : -b d ∞ : ∞ ∅ ∞ : ∞ ∞ : ∞ b c : -a c a = 0, 0 < b 0 : -b d 0 : ∞ ∅ ∞ : ∞ ∞ : -0 b c : -0 0 < a -a -c : -b d -a -c : ∞ ∅ ∞ : ∞ ∞ : -a d b c : -a d

Rounding set permanently towards +∞ 4 Experiments

To evaluate our algorithms, we randomly generated 20, 000, 000 non-empty intervals. Our generator allows us to specify the probability of generating a bound that is a denormal number, zero, an infinity, or a normal number. Half of these intervals were added, subtracted, multiplied or divided by the other half.

In order to avoid misguided optimizations by the compiler, each result was added to an accumulator whose value was eventually printed. Hence, each test performs 10, 000, 000 interval operations corresponding to the operator tested, and 10, 000, 000 interval additions. To obtain larger runtimes in Table 5, these 20, 000, 000 operations are repeated 10 times, leading to a total of 200, 000, 000 operations per operator tested. Lastly, all tests were run several times with various probabilities, including one test where no interval had 0 or an infinity as one of its bounds.

All experiments were conducted on an Intel Core2 Duo T5600 1.83GHz. The Whetstone test [START_REF] Curnow | A synthetic benchmark[END_REF] for this machine reports 1111 MIPS with a loop count equal to 100, 000.

We compared "cell", the library embodying the ideas presented in this paper, with three freely available interval libraries: BIAS [START_REF] Knüppel | PROFIL/BIAS-a fast interval library[END_REF], Boost Interval [START_REF] Brönnimann | The design of the Boost interval arithmetic library[END_REF] and Filib++ [START_REF] Lerch | Filib++, a fast interval library supporting containment computations[END_REF]. None of these uses SIMD instructions. We also compared "cell" with Lambov's and SIMD brute-force algorithms. For all libraries, we chose the mode in which the rounding direction is set only once at the beginning of the program and never changed again, if available. We also chose settings that allowed 0 in the divisor of a quotient. Tables 5 and6 report our findings. Note that "bf" corresponds to the bruteforce algorithm with SSE instructions, and "lambov" implements the algorithms by Lambov. Row "Probabilities" corresponds to the probabilities of generating denormal numbers, zeros, infinities, or normal numbers as bounds, in that order. Table 6 reports the percentage of the 10, 000, 000 test operations2 with larger than expected (L), or plain wrong (W) results. Wrong results originate from mishandlings of bounds (NaNs), as discussed above; too large intervals come from insufficiently discriminating algorithms (e.g., dividing [-∞, 0] by [-∞, 0] leading to [-∞, +∞] instead of [0, +∞]). The correct results against which all libraries are tested were computed using the algorithms of Hickey et al. [START_REF] Hickey | Interval arithmetic: from principles to implementation[END_REF] as implemented in the "gaol" library [START_REF] Goualard | GAOL 3.1.1: Not Just Another Interval Arithmetic Library[END_REF]. Correctness results for the addition and the subtraction are not given as all libraries passed successfully the tests.

From both tables, we see that Lambov's carefully tuned algorithms are indeed the fastest; "cell" is, however, not so far behind in terms of pure performances. As for correctness, "cell" is definitely the winner since it is the only library that does not compute wrong results, nor intervals larger than expected.

As a side note, Table 5 clearly shows the negative impact of denormal numbers on performances for SSE floating-point instructions (and, to a lesser extent, for FPU instructions as well): runtimes double when the probability of creating denormal bounds increases from 0 to 0.05. There is nothing new here, though: slowness of denormal numbers handling is already amply documented in the literature. Still, such a great impact should lead us to reconsider the true importance of denormal numbers for interval arithmetic as processors always give the option of not using them (e.g., by flushing too small numbers to 0).

Discussion

Our tests show that it is possible to take advantage of widely available SIMD floating-point instructions to speed-up the computation of the interval operators +, -, ×, ÷. As already suggested by Lambov [START_REF] Lambov | Interval arithmetic using SSE-2[END_REF], the same approach could be used to speed-up other operators such as trigonometric, hyperbolic or otherwise transcendental operators. Still, it is not yet clear whether comparable speedups are achievable for those operators, as their proper implementation is not straightforward.

On the other hand, it is possible to further accelerate interval computation at the cost of less accuracy by packing two intervals with single precision bounds (instead of double precision bounds) in one 128 bits SSE register (see Fig. 3). Extending the definition of interval operators accordingly allows to compute an interval function f for two different domains in parallel at the cost of one floating-point evaluation of f . A preliminary implementation of this idea has already been successfully tested to design a data-parallel algorithm to solve nonlinear constraint systems [START_REF] Goualard | Enforcing box consistency by shaving: A data parallel algorithm to solve nonlinear constraints[END_REF].

Fig. 1 .

 1 Fig. 1. Storing the interval [a, b] in an 128 bits SSE register

bFig. 2 . 2 .

 22 Fig. 2. Interval addition and subtraction with SSE registers and instructions

)(-c) : (-b)d (-a)(-c) : (-a)d bc : (-a)d max((-a)d, b(-c)) : a 0 b (-a)(-c) : b(-c) max((-a)(-c), bd) bd : (-a)d 0 a ad : b(-c) bd : b(-c) bd : a(-c)Rounding set permanently towards +∞

Fig. 3 .

 3 Fig. 3. Packing the two intervals [a, b] and [c, d] in one SSE register

Table 1 .

 1 Interval addition with SSE instructions on SSE registers

Table 3 .

 3 Interval multiplication with SSE instructions on SSE registers

Table 4 .

 4 Interval division with SSE instructions on SSE registers

b:-a d:-c

Table 5 .

 5 Assessing performances of interval operators

	Probabilities	0:0.2:0.2:0.6	0.05:0:0:0.95	0.05:0.05:0.05:0.85
	Operation	+ -× ÷ + -× ÷ + -×	÷
	BIAS 2.0.4	48.1 46.4 54.7 43.1 37.6 37.3 54.5 46.5 41.0 41.3 55.8 45.4
	boost 1.34.1	35.8 35.5 45.7 20.6 30.2 29.8 49.9 40.4 32.7 32.8 50.6 24.4
	filib++ 210905 62.4 60.9 69.5 61.0 52.0 52.9 77.4 71.6 58.0 57.3 77.8 71.5
	bf	2.6 2.5 9.4 18.0 4.8 4.9 27.9 37.3 4.8 4.9 24.4 34.2
	lambov	2.6 2.5 7.3 8.9 4.8 4.9 18.3 18.0 4.8 4.9 16.5 16.9
	cell	2.6 2.5 9.0 9.1 4.8 4.9 19.4 20.9 4.8 4.9 18.8 20.5
	Times in seconds on an Intel Core2 Duo T5600 1.83GHz (whetstone 100 000=1111 MIPS)
	for 200 000 000 operations on non-empty random intervals.	

Table 5

 5

	presents the time in seconds necessary to performs the 200, 000, 000
	aforementioned tests.

Table 6 .

 6 Assessing the correctness of interval operators

	Probabilities	0:0.2:0.2:0.6	0.05:0:0:0.95	0.05:0.05:0.05:0.85
	Operation	×	÷	×	÷	×	÷
	Result (Larger/Wrong) L W L	W	L W L W	L W L	W
	BIAS 2.0.4	0% 11% 8% 42% 0% 0% 0% 25% 0% 1% 3% 29%
	boost 1.34.1	0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 1%	0%
	filib++ 210905 20% 0% 17% 1% 0% 0% 0% 0% 2% 0% 1%	1%
	bf	0% 17% 2% 43% 0% 0% 0% 44% 0% 1% 1% 40%
	lambov	0% 16% 13% 11% 0% 0% 0% 0% 0% 2% 3%	2%
	cell	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0%

More accurately, SSE2 instructions, which are part of an extension of the original SSE instruction set.

Rounding set permanently towards +∞

The 10, 000, 000 additions performed to avoid misguided compiler optimizations are not considered here.

Acknowledgments. Alexandre Goldsztejn made insightful comments on a preliminary version of this paper that hopefully helped to improve it.