
HAL Id: hal-00288337
https://hal.science/hal-00288337

Submitted on 16 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

POM: a Parallel Observable Machine
Frédéric Guidec, Yves Mahéo

To cite this version:
Frédéric Guidec, Yves Mahéo. POM: a Parallel Observable Machine. ParCo’95, Sep 1996, Gent,
Belgium. pp.343-350. �hal-00288337�

https://hal.science/hal-00288337
https://hal.archives-ouvertes.fr

POM: a Parallel Observable Machine

Fr�ed�eric Guidec and Yves Mah�eo

IRISA, Campus de Beaulieu

35042 Rennes, France

E-mail: fguidec,maheog@irisa.fr

1 Introduction

POM is a Parallel Observable Machine featuring mechanisms for building and observing dis-

tributed applications. It comes in the form of a library built upon the many communication

kernels available on current parallel architectures and a loader that provides the user with a

homogeneous syntax for launching parallel applications on any parallel platform.

The prior goal of POM is not to o�er numerous services to the application programmer

as it is done in PVM [2], MPI [9] or P4 [3]. It mostly aims at masking the speci�cities of

the various communication kernels of today's machines with no signi�cant degradation of

performances. In that sense, our approach is quite similar to that of projects PICL [5] and

PARMACS [4]. Yet, one of our main priorities while designing POM was to de�ne a model

of virtual machine and to clearly specify the semantics of the communications in this model.

We also wanted to de�ne an easily portable machine |i.e. a machine that can be ported on

a given platform in a short time| and whose implementation can be achieved e�ciently on

many parallel platforms.

POM is also provided with sophisticated observation mechanisms that are incorporated

at a low level so as to keep perturbations at a minimum. The observation technique fostered

in POM is based on the analysis of execution traces, rather than on a direct observation of

distributed applications (in which case the observation is achieved inside the application).

Besides, all the observation facilities can be enabled or disabled separately.

2 Machine model

POM de�nes a model of virtual machine that consists of a set of application nodes numbered

0 to N -1. Two distinct media are used for communications between these nodes. The

�rst medium is a fully connected network devoted to point-to-point communications. The

channels of this network are FIFO and reliable (messages are neither lost nor desequenced).

The second medium allows broadcasting messages. It is also a fully connected network with

reliable FIFO channels.

1

By de�ning fully connected networks, we intentionally avoided considering the actual

physical topology of parallel architectures. This allows for the evolution of modern parallel

machines in which messages are routed more and more e�ciently by the hardware (or by

the low level system). The underlying topology thus remains hidden to the programmer.

The distinction between the two networks is necessary because on many parallel plat-

forms, it is di�cult to ensure at low cost that virtual channels carrying both point-to-point

messages and broadcast messages are FIFO. Actually, on these platforms, point-to-point and

broadcast communications rely on distinct protocols, and sometimes on distinct physical de-

vices too.

Besides the application nodes, POM can include a complementary observation node.

When this observer is present, one must consider a third communication medium: a net-

work of reliable FIFO channels linking each application node to the observer. Through this

observation medium, communications only occur from the application nodes towards the

observer.

The communication paradigm implemented in POM is that of asynchronous message

passing. POM allows most of the variations around this kind of communication. Com-

munications can be performed in point-to-point mode or in broadcast mode. Sends are

non-blocking: the sending process resumes its execution as soon as the message to be sent

has been taken in charge by the underlying operating system. Receives can be determinis-

tic (that is, on a given incoming channel) or non-deterministic (on any incoming channel).

Receives are blocking: the receiver resumes its execution only after the message awaited has

been e�ectively received.

3 Observation mechanisms

The role of an observation program, if present, is to collect and handle trace information

relative to the behaviour of the application. The observer can proceed to an \on the
y" anal-

ysis of the information received, or it can store this information for a post-mortem analysis.

Actually, the observer can be just a part of a programming environment featuring software

tools such as trace collectors, distributed application debuggers, performance analysers and

graphical viewers [10].

The application programmer does not have to design a new observation program for each

distributed application. Actually, the primitives of POM permit the design of generic ob-

servers that can perform the most simple observation functions, such as collecting, �ltering

and storing trace information. Generic observers can easily interface with analysis tools such

as those designed in our laboratory [1]. These tools make it possible to visualize dependency

graphs as well as graphs of global states, to measure the concurrency in distributed execu-

tions, to evaluate predicates, etc. Figure 1 shows some of the graphical views that can be

obtained using generic observers coupled with visualization tools.

It is up to the application programmer to specify which events must be traced. To do so,

the programmer must insert observation points in the code of the distributed application.

During the execution of the distributed application, every time an application node runs

2

P0 P1 P2 P3

T

Causality diagram
(Hasse diagram)

(0,1)

(0,1)
(0,1)

(0,2)

(0,1)

(0,2)

(1,0)

(1,0)
(1,0)

(1,0)(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,2)

(1,2)

(2,2)

(2,1)

(2,1)
(2,1)

(2,1)

(2,2)

Ideal lattice

•

•

• •

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Temporal diagram

(0,1)(0,1)(0,1) (0,2)(0,1)

(0,2)

(1,0)(1,0)(1,0) (1,0)(1,1)(1,1)(1,1) (1,1) (1,1) (1,1)(1,2)(1,2)(2,2)

(2,1)(2,1) (2,1) (2,1)(2,2)

0

0.038

0.075

0.113

0.150

0.188

0.225

0.263

0.301

0.338

0.376

P0 P1 P2 P3

0.376

0.301

0.225

0.150

0.075

0

Figure 1: Examples of graphical views produced by generic observers

through an observation point, a trace message is sent to the observation node. A trace

message is typically composed of information for identifying and dating an event. POM o�ers

several dating mechanisms, whose management remains fully transparent to the application

programmer. When loading a distributed application, the programmer simply needs to

specify which kind of dating mechanism must be used. The events traced can thus be

stamped and/or dated, and the dating can be achieved according to a local or global time

reference.

� Stamping events makes it possible to analyse the synchronisations that occur between

the application nodes during a distributed execution. These synchronisations are cap-

tured by the notion of causal dependency. Each application node manages a local

stamp that is updated every time an application message is sent or received. POM

ensures that the value of the local stamp of the sender is sent transparently together

with the application message. To date, POM allows the user to choose between two

kinds of stamps: vectorial stamps (whose size remains constant during an execution),

or \adaptive" stamps (whose size can vary dynamically [7]). POM was designed so

that it can easily incorporate new kinds of stamps.

� POM o�ers services for dating traced events. The default dating mechanism is based

on the local time on each application node (value returned by the physical clock of

the processor). POM also incorporates a mechanism for dating events globally. We

opted for an approach based on a statistical method that consists in estimating the

drift of the physical clock of each application node with respect to a reference clock [8].

Once the characteristics of the clock drifts have been determined for each application

node, it is possible to relate the dates taken on the clocks of the application nodes

to that of the reference node. The accuracy of the global time obtained this way is

3

su�cient to ensure a coherent dating of events. The advantage of this approach is

that it is not intrusive. The measurements required for evaluating the clock drifts are

performed before and after the actual execution of the distributed application. Hence,

the execution is not altered by the global dating mechanism. The drawback of this

approach is that it is necessary to wait till the end of the distributed execution before

global dates can be computed. The global dating mechanism implemented in POM is

thus only appropriate for a post-mortem analysis.

4 The POM interface

The services o�ered by POM are made available to the application programmer as a set of

around forty primitives that forms two distinct modules. Module APS (APplication Ser-

vices) permits the development of application programs, whereas module OBS (OBservation

Services) is devoted to the implementation of observation programs.

The number of primitives has been intentionally limited in order to obtain a simple and

easily implementable interface. Figure 2 shows how these primitives can be used to build

a SPMD application that passes two tokens around a bidirectional ring (one token in each

direction).

The primitives of module APS are mostly communication primitives for sending and

receiving messages in point-to-point or in broadcast mode. Non-deterministic receive can be

realized thanks to the primitives that permit to test any incoming channel. Module APS

additionally incorporates a few primitives that provide information such as the number of

application nodes, the identity of the local node, the local time returned by the physical

clock of the processor, etc. The primitive APS trace (see Figure 2) allows the programmer

to insert observation points in the application program. When this primitive is invoked, a

message is automatically generated and sent to the observation node. This message contains

the information passed as parameters to APS trace, as well as complementary dating data

whose nature depends on the observation options speci�ed by the user when loading the

application (see below for more details).

The primitives of module OBS allow the programmer to develop observers. Module OBS

o�ers no send primitive. The observation node can only collect trace messages and extract

data �elds from these messages. Access is given to the user data as well as to the value

of the stamp and the local date embodied in a trace message. The global date of an event

can only be obtained after the distributed application has completed, using a function that

converts the local date of an event into the corresponding global date.

Each architecture imposes its own requirements when it comes to allocating a partition

of processors and loading executable programs on this partition. The POM environment

includes a loader tool whose implementation may depend on the platform considered but

whose interface remains homogeneous on all platforms. When loading a distributed appli-

cation, the user can specify what kind of trace information |if any| must be generated

every time an observation point is reached, and which observation program must be used to

4

#include "aps.h"
#include <stdio.h>

#de�ne MSG1 "clockwise"
#de�ne MSG2 "anti-clockwise"

main()
f
int me, pid1, pid2, lg, N;
char msg[100];

APS init(0,NULL);
me = APS node id();
N = APS nb nodes();

| Node 0 starts communication

if (me == 0) f
APS send(1, strlen(MSG1), MSG1);
APS send(N�1, strlen(MSG2), MSG2);

| First direction:

|| determine the source of the �rst message

while (! APS probe());
lg = APS info length();
pid1 = APS info pid();
|| receive from this source

APS recv from(pid1, lg, msg);
APS trace("First receipt", sizeof(int), &pid1);
|| send to the opposite neighbour

pid2 = (pid1==((me+1)%N) ?((me�1+N)%N)
:((me+1)%N));

if (me != 0) APS send(pid2, lg, msg);

| Second direction:

|| receive from the neighbour

while (! APS probe from(pid2));

lg = APS info length();
APS recv from(pid2, lg, msg);
APS trace("Second receipt", sizeof(int), &pid2);
|| send to the opposite neighbour

if (me != 0) APS send(pid1, lg, msg);

APS end(); g

Figure 2: Example of SPMD code for the application nodes

collect and deal with this information.

The following example shows how to load and start a distributed application based on

the master-slave model, with a single master task running the executable master and six

slave tasks running the same program slave. The master program takes as a parameter the

number of slave tasks. Moreover, the behaviour of this distributed application must be

observed by the observation program my obs. The trace information must include vectorial

stamps (option -stm VECT) and events must be dated according to a global time (option

-gtm).

> pom load -s 7 -on 0 master 6 -on 1..6 slave -stm VECT -gtm -obs my obs

Other options may also be used for mapping logical node identi�ers with the physical

nodes of the target platform when necessary. More details on the syntax for loading an

application can be found in [6].

5 Performances

To date, POM has been ported on the distributed memory parallel computers of irisa, that

is, the Intel machines ipsc/2 and Paragon XP/S. POM was implemented on these platforms

using the communication kernels NX/2, OSF/1 and SUNMOS. It was also implemented so

as to allow the execution of distributed applications on a network of workstations (e.g., Sun

5

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000 30000

B
an

dw
id

th
 in

 K
by

te
s/

s

Message size in bytes

POM on a network of Sun workstations

POM-TCP IP
POM-TCP STM

POM-UDP
POM-PVM

POM-UDP

POM-PVMPOM-TCP IP
(no stamping)

POM-TCP IP
(stamping enabled)

Experimentation with two Sun Sparc 4/50
workstations connected to an Ethernet trunk.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
in

 s
ec

on
ds

Message size in bytes

POM on the Intel Paragon XP/S

POM-NX
POM-NX STM

POM-PVM
Experimentation on the Intel Paragon XP/S
running OSF1 1.0.4 (patch 2.5.1).

POM-NX with
no stamping

POM-PVM

POM-NX with
vectorial stamping

Figure 3: Performances observed for messages exchanged between two workstations (left)

and on the Intel Paragon XP/S (right).

Sparc workstations), using TCP-IP and UDP sockets. Another version makes it possible

to simulate parallelism on a single workstation (using Unix sockets). We also implemented

POM above PVM [2].

We tested several versions of POM corresponding to alternative implementations on a

network of Sun workstations and on the Intel Paragon XP/S.

The left part of Figure 3 shows the maximal bandwidths observed on two Sun Sparc

4/50 IPX workstations connected to the same Ethernet trunk. It also shows the bandwidth

observed when the stamping service is enabled in POM-TCP. Measurements show that the

alteration due to the stamping mechanisms remains negligible. As for the the computation

of the global time, it has absolutely no e�ect upon the behaviour of the application, as

explained in section 3.

The right part of Figure 3 shows the transmission times observed with several versions of

the POM library developed for the Intel Paragon XP/S. Low latency can be obtained with

POM-NX because it is implemented directly above the NX-OSF/1 kernel, whereas POM-

PVM exhibits a much higher latency. Actually, the bandwidth observed with POM-NX

corresponds exactly to that of the maximal bandwidth that can be obtained when calling

directly the NX primitives. The �gure also shows the transmission times observed with

POM-NX when the stamping service is enabled. It turns out that with the current versions

of POM-NX, the global cost of stamping mechanisms remains acceptable.

6 Conclusion

POM allows the programmer of a distributed application to disregard a given architecture

or a given operating system to a large extent. The communication services it o�ers are basic

services, but they can be easily and e�ciently implemented on most parallel machines. POM

thus �ts especially well the design of applications for which performances are the primary

concern. Moreover, the observation services it provides broaden its range of application,

6

since they permit the generation, the collection and the exploitation of execution traces and

incorporate mechanisms for stamping events and for computing global dates. POM can

therefore be perceived as a convenient facility to interface a distributed application with

many trace analysers and graphical viewers.

To date, POM has been ported on several platforms as di�erent as the Intel Paragon XP/S

and a network of workstations. We could thus check its e�ective portability and it is now

part of the various parallel programming environments developed in our laboratory.

In the future, we may port POM on new platforms such as the Cray T3D and the

IBM SP1. We also consider designing an extended POM featuring parallel I/O mechanisms

and allowing lightweight processing on each application node.

References

[1] C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Measuring Concurrency of Regular

Distributed Computations. In TAPSOFT'95, Theory and Practice of Software Devel-

opment, LNCS 915, Springer Verlag, Aarhus, May 1995.

[2] A. Beguelin, G. A. Geist, W. Jiang, R. Manchek, K. Moore, and V. Sunderam. The

PVM Project. Technical Report, Oak Ridge National Laboratory, February 1993.

[3] R. Butler and E. Lusk. User's Guide to the P4 Programming System. Technical Re-

port TM-ANL-92/17, Argonne National Laboratory, 1992.

[4] R. Calkin, R. Hempel, H.-S. Hoppe, and P. Wypior. Portable Programming with the

PARMACS Message-Passing Library. Parallel Computing, 1994.

[5] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. A User's Guide to PICL -

A Portable Instrumented Communication Library. Technical Report ORNL/TM-11616,

Oak Ridge National Laboratory, May 1992.

[6] F. Guidec and Y. Mah�eo. POM: a Virtual Parallel Machine Featuring Observation

Mechanisms. Technical report 902, IRISA, Rennes, France, January 1995.

[7] C. Jard and G.-V. Jourdan. Dependency Tracking and Filtering in Distributed Compu-

tations. Research Report 851, IRISA, Rennes, France, August 1994.

[8] E. Maillet and C. Tron. On E�ciently Implementing Global Time for Performance

Evaluation on Multiprocessor Systems. Journal of Parallel and Distributed Computing,

1994.

[9] Message Passing Interface Forum. Document for a Standard Message{Passing Interface.

Technical Report CS-93-214, University of Tennessee, November 1993.

[10] M. van Riek, B. Tourancheau, and X.-F. Vigouroux. Monitoring of Distributed Memory

Multicomputer Programs. Technical Report TR93441, Center for Research on Parallel

Computation, Rice University, Houston, Texas, 1993.

7

