
HAL Id: hal-00288222
https://hal.science/hal-00288222

Submitted on 16 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The modular decomposition of countable graphs :
Definition and construction in monadic second-order

logic
Bruno Courcelle, Christian Delhommé

To cite this version:
Bruno Courcelle, Christian Delhommé. The modular decomposition of countable graphs : Definition
and construction in monadic second-order logic. Theoretical Computer Science, 2008, 394, pp.1-38.
�hal-00288222�

https://hal.science/hal-00288222
https://hal.archives-ouvertes.fr


THE MODULAR DECOMPOSITION OF COUNTABLE GRAPHS.

DEFINITION AND CONSTRUCTION IN MONADIC

SECOND-ORDER LOGIC

BRUNO COURCELLE AND CHRISTIAN DELHOMMÉ

Abstract. We consider the notion of modular decomposition for countable
graphs. The modular decomposition of a graph given with an enumeration of
its set of vertices, can be defined by formulas of Monadic Second-Order logic.
Another result is the definition of a representation of modular decompositions
by low degree relational structures. Such relational structures can also be
defined in the considered graph by monadic second-order formulas.

1. Introduction

Finite and infinite trees and graphs can be studied from different points of view :
as binary relations, as generalized words to which the methods of formal language
theory can be applied or as algorithmic objects. These perspectives are developped
respectively in the book on theory of relations by Fräıssé [29], in the book chapter
by Courcelle [14] for the extension of language theory to finite graphs, in many
books on graph algorithms, among which we quote the one by Downey and Fellows
on parametrized complexity [25]. The study of infinite trees and graphs is motivated
by the need of formalizing the semantics of programs and of processes in order to
verify them [9, 12, 20], and by research on combinatorial group theory [39, 43].
However it is an interesting chapter of graph theory on its own, see for instance the
book by Diestel [24].

Algorithms and decidability questions are meaningful for finite graphs and for
infinite graphs described in finitary ways. Many types of finite descriptions of
countable graphs have been proposed : by pushdown automata and more generally
by languages [42, 5], by equation systems [10, 1], by automatic structures [33, 38, 3],
by formulas of monadic second-order logic [10, 4]. The doctoral dissertation of
T. Colcombet [6] presents a detailed comparison of these different specification
methods.

Two importants tools for all these studies are graph decompositions and monadic
second-order logic. Graphs, finite as well as infinite, can be decomposed in several
ways. By a decomposition of a graph, we mean a construction of this graph that uses
a specified set of basic graphs and graph composition operations. For instance a
graph is obtained from its biconnected components by one-vertex gluings. Another

Date: November 8, 2007.
Key words and phrases. Modular decomposition, Tree, Linear order, Monadic second-order

logic, Monadic second order transduction.
Acknowledgement : This work has been initiated during a stay of B. Courcelle in the ERMIT

group, in 2004, supported by the University of La Réunion. It has also been supported by the
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example is the very well-known notion of tree-decomposition. The global structure
of a decomposition is always a tree.

Graph decompositions are very useful for the understanding of the structure of
certain types of graphs and also for algorithmic purposes. In particular, the notions
of tree-decomposition and of tree-width are fundamental for the construction of fixed
parameter tractable algorithms for many problems, in particular for NP-complete
ones. Many such problems have polynomial time algorithms on graphs of tree-width
at most k. This use of tree-decompositions is developped in the book [25]. Clique-
width is another graph complexity measure on graphs, based on the expression of
a graph from one-vertex graphs by means of certain graph operations, and that is
interesting for algorithmic purposes ([21]). For graphs of bounded tree-width or of
bounded clique-width, efficient algorithms can be obtained for problems expressed
in monadic second-order logic.

The present article investigates the modular decomposition of infinite (mainly
countable) graphs. The notion of modular decomposition of a finite graph has
been studied extensively in many articles, and under various names. Mörhing and
Radermacher give in [41] a survey of this frequently rediscovered notion. The
composition operation underlying its definition is the substitution of a graph H

for a vertex v in a graph G. In the resulting graph, denoted by G[H/v], the
vertex v is replaced by H, and all its neighbours in G are linked to all vertices
of H. A subgraph H of a graph K is a module if K is of the form G[H/v].
Among those are distinguished the strong modules, namely those modules that are
comparable for inclusion with every module that they meet. The strong modules
form a finite tree where the ancestor relation is inclusion (X ⊆ Y if and only if Y is
an ancestor of X). This tree is called its modular decomposition. It corresponds to a
canonical expression of the graph in terms of (nested) substitutions. Furthermore,
this decomposition can be constructed from the given graph by monadic second-
order formulas, as proved in [13]. This result enriches the logical tool box and helps
to express graph properties in monadic second-order logic, which yields, ultimately,
polynomial algorithms and decidability results (see [42, 10, 14] for decidability
results based on monadic second-order logic).

The notion of modular decomposition is essential, not only for algorithmic pur-
poses, but also for establishing structural properties of graphs and related objects,
in particular of partial orders and their comparability graphs. For instance, one
can compute the number of transitive orientations of a finite comparability graph
from its modular decomposition. Motivated by the investigation of comparability
graphs, and in particular for proving that the dimension of a partial order depends
only on its comparability graph, Kelly [37] reviews Gallai’s fundamental analysis of
the properties of modules of finite undirected graphs [30] and extends it to infinite
ones. The strong modules of an infinite graph are pairwise disjoint or comparable
for inclusion, but they do not form a tree in the usual sense where a tree is de-
fined as a connected and directed graph without circuits such that every vertex is
reachable by a unique directed path from the root (the unique vertex of indegree
0). They form a tree provided one defines a tree as a partial order such that the
set of elements larger than any element is linearly ordered, which we will do in this
article. Such trees may have no root. The ordered set Q of rational numbers, like
any linear order, is a tree in this sense. It has no root, and no element has a father
because no rational number has a successor.
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Our aims are to define and to study modular decompositions of countable graphs,
to represent them by relational structures, and to use Monadic Second-Order logic
(MS logic in short) to construct from a graph certain representations of its modular
decomposition by relational structures. MS logic has already been used for such
constructions by Courcelle in [13], in the case of finite graphs, and our constructions
build upon those of this article, with the necessity of new features for handling
infinite graphs.

For defining the modular decomposition of a countable graph, we do not take
all strong modules, but only some of them. Doing so we obtain a countable object
associated with a countable graph. By defining the modular decomposition as the
tree of all strong modules, we would obtain in certain cases an uncountable tree
associated with a countable graph. This would not be satisfactory because we
consider that the modular decomposition must be a synthetic representation of a
graph : so it is not acceptable that it is of larger cardinality than the considered
graph. There are two key tools for our study of modular decomposition of infinite
graphs. On the one hand, the notion of robust module (already considered in [37]),
defined as the intersection of all strong modules containing two vertices. And on
the other hand, the characterization of graphs with no non-trivial strong modules 1 ;
the finite and undirected case appears in [30], and the extension to infinite directed
graphs, for which we provide a somewhat simpler proof, is in Ehrenfeucht and
al. [27].

Another concern is to describe dense graphs, i.e. graphs having ”lots of edges”,
by relational structures, actually vertex- and edge-labelled graphs, which are as
sparse as possible. A finite partial order can be represented by its Hasse diagram,
and this representation can be used for expressing its properties in monadic second-
order logic. This is no longer the case of infinite partial orders. Consider for instance
the ordered set Q. However, it can be defined as a certain ordering of the nodes
of the complete infinite binary tree (here ”tree” is taken in the usual sense of
computer science). This observation extends to all countable linearly ordered sets.
Furthermore, first-order formulas using an auxiliary enumeration of the considered
linear order A, i.e. an auxiliary ordering of A isomorphic to the ordinal ω can define
the representing binary tree (these formulas do not depend on A). It follows that
this representation of linear orders by binary trees fits with the expression of their
properties by monadic second-order formulas. We use this fact to represent the
modular decomposition of a countable graph G by a countable graph of maximum
degreem+3 where m is the least upper bound of the degrees of the prime subgraphs
of G. It may happen that m is finite, even if G has vertices of infinite degree. This
is the case for cographs.

This article is an expanded version of [19]. It is organized in nine sections :

(1) Introduction.
(2) Review of the modular decomposition for finite graphs.
(3) Basics about trees.
(4) Strong and robust modules.
(5) The modular decomposition.
(6) Construction of the modular decomposition in monadic second order logic.

1Those are the prime graphs, the undirected complete or edge-free graphs, and the linear
orders.



4 BRUNO COURCELLE AND CHRISTIAN DELHOMMÉ

(7) Representation of modular decompositions by low degree relational struc-
tures.

(8) Concluding remarks.
(9) Appendix : Monadic second order logic and monadic second order trans-

ductions.
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2. Prologue : Graph substitutions and the Modular decomposition

of finite graphs

This section is a quick review of the notion of modular decomposition for finite
graphs and a presentation of our view of this notion, in the perspective of its
extension to countable graphs.

Graphs are loop-free without multiple edges. A graph G is handled as a relational
structure 〈VG, edgG〉. Its domain is the vertex set VG and edgG is a binary relation

such that edgG(x, x) never holds. We write also x
G
−→ y if edgG(x, y) holds. A

graph is undirected if for every vertices x and y, x
G
−→ y implies y

G
−→ x ; it is

directed if x
G
−→ y and y

G
−→ x never hold simultaneously. It is total if any two

distinct vertices are linked by an edge. It is complete if it is total and undirected.
We say that a graph is a linear order if for some strict linear ordering < on VG,

x
G
−→ y if and only if x < y.
We denote by G[X ] the induced subgraph of G with vertex set X ⊆ VG. A

graph H embeds into a graph G if H is isomorphic to an induced subgraph of G.

2.1. Graph substitution and modules.

Definition 2.1. (Graph substitution.) Let K be a graph and let (Hv)v∈VK
be a

family of pairwise disjoint graphs (they have no vertex in common). We denote by
K[Hv/v; v ∈ VK] the graph G resulting from the simultaneous substitution of Hv

for v ∈ VK. It is defined as follows

• VG = ∪{VHv
: v ∈ VK}

• u
G
−→ u′ if and only if

– either u
Hv−−→ u′ (with u, u′ ∈ VHv

) for some v,
– or there are two distinct v, v′ ∈ VK such that v 6= v′, u ∈ VHv

, u′ ∈

VH
v
′

and v
K
−→ v′.

Notation 2.1. If, in that definition, K is an edge-free graph we write G =
⊕v∈VK

Hv and we say that G is the free sum of the family (Hv)v∈VK
.

If K is a complete graph we write G = ⊗v∈VK
Hv and we say that G is the

complete sum of the family (Hv)v∈VK
.

If K is a linear order (VK, <) (thus v
K
−→ v′ if and only if v < v′), we write

G =
−→
⊗v∈VK

Hv and we say that G is the linear sum of the family (Hv)v∈VK
where

the set of indices VK is linearly ordered by <.
As binary operations, ⊕ and ⊗ are associative and commutative, and the oper-

ation
−→
⊗ is only associative.

Definition 2.2. (Modular partition, module.) In order to characterize the ways in
which a graph G can be expressed as K[Hv/v; v ∈ VK], one defines the notion of
modular partition : it is a partition C of the vertex set VG (the members of C are
pairwise disjoint non-empty sets of vertices, of which the union is the vertex set)
such that for any two distinct M and N in C and any u, u′ ∈M , v, v′ ∈ N

u
G
−→ v if and only if u′

G
−→ v′

Each member M of C is a module, i.e. a set of vertices such that for any u ∈ VG\M
for any v, v′ ∈M

(u
G
−→ v if and only if u

G
−→ v′) and (v

G
−→ u if and only if v′

G
−→ u)



6 BRUNO COURCELLE AND CHRISTIAN DELHOMMÉ

The sets ∅, VG and {v} for each v ∈ VG are modules and are called the trivial
modules.

If C is a modular partition, then the quotient is the graph K = G/C defined by :

(1) VK = C

(2) M
K
−→ N if and only if for some u, v we have u ∈M , v ∈ N and u

G
−→ v.

From the definitions it follows immediately :

Proposition 2.1. (1) If G = K[Hv/v; v ∈ VK], then the sets VHv
form a

modular partition of G.
(2) If C is a modular partition of G, then G = (G/C)[H[M ]/M ;M ∈ C].

We may also consider as modular partition any indexed partition C = (Vi)i∈I (in
particular the Vi’s are pairwise distinct) such that {Vi : i ∈ I} is a modular partition
in the sense above ; thus the set of vertices of G/C is I , and G = (G/C)[H[Vi]/i; i ∈
I ].

2.2. Decompositions. Let G be a graph expressed as K[Hv/v; v ∈ VK]. We say
that this expression defines a decomposition of G into the graphs Hv, v ∈ VK. The
graphs Hv may themselves be decomposed into smaller graphs, which themselves
may be decomposed similarly. Thus we obtain a notion of graph decomposition,
that can be defined as follows.

Definition 2.3. (Decompositions.) Two sets A and B meet if A ∩ B 6= ∅ ; they
overlap if A ∩ B 6= ∅, A\B 6= ∅ and B\A 6= ∅.

A decomposition2 of a graph G is a family D of subsets of VG such that

(1) ∅ 6∈ D, VG ∈ D, {v} ∈ D for each v ∈ VG ;
(2) no two members of D overlap ;
(3) for every M ∈ D, letting mp(M,D) denote the set of maximal proper

subsets of M that belong to D, if mp(M,D) is non-empty then it forms a
modular partition of G[M ] denoted by π(M) (or πD(M) when D need to
be specified).

Hence if G = K[Hv/v; v ∈ VK], the family

D = {VG} ∪ {VHv
: v ∈ VK} ∪ {{v} : v ∈ VG}

is a decomposition of G. If furthermore Dv is a decomposition of Hv for each
v ∈ VK, then

D′ = ∪{Dv : v ∈ VK} ∪ {VG}

is a decomposition of G that refines D, that is, such that D ⊆ D′.

Let us conversely assume that D is a decomposition of a graph G. By the first
two conditions, (D,⊆) is a tree, denoted by Tree(D) : its nodes are the elements
of D, X ( Y if and only if Y is an ancestor of X , VG is the root and the singletons
{v} are the leaves.

Because of the finiteness of D, a set mp(M,D) is not empty except when M is
a leaf. It follows that for each M ∈ D that is not a leaf,

G[M ] = (G[M ]/π(M))[G[N1]/1, . . . ,G[Nn]/n]

where N1, . . ., Nn are the sons of M in Tree(D). In particular

G = (G/π(VG))[G[N1]/1, . . . ,G[Nn]/n]

2From now on, the word ”decomposition” will be used in the sense of this definition.
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where N1, . . ., Nn are the sons of the root.

Lemma 2.1. Let D be a decomposition of a finite graph G, let N1, . . ., Nn be the
sons of VG in the tree of D. Then for each i, {X ∈ D : X ⊆ Ni} is a decomposition
of G[Ni].

It follows that every decomposition D of a finite graph G yields an expression
ED of that graph in terms of nested substitutions of the graphs G[M ]/π(M) for
M ∈ D. The graphs G[M ]/π(M) are called the factors of the decomposition.

Conversely with every expression E of a finite graph G in terms of nested sub-
stitutions of graphs is associated a decomposition D such that ED = E .

A graph has several decompositions. However a canonical one, called the modular
decomposition, can be defined.

Definition 2.4. Strong modules. The modular decomposition of a finite graph.
A module in a graph is strong if it is non-empty and overlaps no module. The
set of strong modules of a finite graph G is a decomposition D called its modular
decomposition. We will identify that set of strong modules and the corresponding
tree, that we will denote mdec(G).

The quotient graphs G[M ]/π(M) for M ∈ D, M not singleton have a particular
structure described by the following Fundamental Theorem of Modular Decomposi-
tion. A graph is prime if it has no non-trivial module and at least three vertices.

Theorem 2.1. For every finite graph G with at least two vertices, if π is its
modular partition into maximal proper strong modules, then G/π has at least two
vertices and has one of the following forms :

(1) either it is edge-free
(2) or it is complete
(3) or it is a linear order
(4) or it is prime

The graph G has one and only one of the following forms, respectively :

(I) G = H1 ⊕ · · · ⊕Hn, n ≥ 2, where no Hi is a free sum.
(II) G = H1 ⊗ · · · ⊗Hn, n ≥ 2, where no Hi is a complete sum.

(III) G = H1
−→
⊗ · · ·

−→
⊗Hn, n ≥ 2, where no Hi is a linear sum.

(IV) G = P[H1/v1, . . . ,Hn/vn] where P is a prime graph and n ≥ 3.

It follows that each node M of the modular decomposition which is not a leaf
has type I, II, III or IV, corresponding respectively to the expression of G[M ] of
one of the above forms with Hi = G[Ni] where N1, . . ., Nn are the sons of M in
the tree mdec(G). If G is undirected, then case III does not occur and furthermore
n ≥ 4 in case IV because the smallest prime undirected graph is the undirected
path with 4 vertices.

That theorem seems to have been rediscovered many times. For finite undirected
graphs, Kelly [37] attributes it to Gallai [30]. For the case of directed graphs,
generalizations and references, we refer the reader to [28, 32, 40, 41]. Möhring and
Radermacher [41] call ”substitution decomposition” the modular decomposition
and thus emphasize its relation with graph substitution. They show that analogous
decompositions can be defined for other discrete structures like hypergraphs and
Boolean functions. The structure of prime graphs is investigated by Ille in [36, 35],
which improve previous results by Ehrenfeucht and Rozenberg [26] and Schmerl
and Trotter [44].
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The graphs for which all nodes of the modular decomposition are of the forms
(I) or (II) are called cographs ; those are precisely the simple undirected graphs
without induced path with 4 vertices.

2.3. Representing decompositions by binary structures. Relational struc-
tures and logic are reviewed in the appendix. A binary structure is a relational
structure all relations of which are unary or binary. As said above, a graph G is
considered as the binary structure 〈VG, edgG〉. It is undirected if and only if edgG is
symmetric. We consider only graphs without loops, hence edgG(x, x) never holds.

We have defined a decomposition D of a graph G as a family of subsets of the
vertex set VG. Such an object is not a relational structure. However, a decom-
position is a tree (for inclusion as ancestor relation). Hence we can represent it
by a relational structure 〈NT ,≤T 〉 where NT is in bijection by, say h, with D and
x ≤T y iff h(x) ⊆ h(y). Hence T is the tree Tree(D). The vertex set VG is then
in bijection with the set of leaves of T , because {v} ∈ D for every v ∈ VG. This
bijection is defined by h(x) = {v} for x ∈ NT and v ∈ VG.

The graph G cannot be determined from this binary structure. We will expand
it into a richer binary structure by adding unary and binary relations representing
the structure of nodes, i.e. the graphs G[M ]/πD(M) for the nodes M of Tree(D).
We obtain in this way a binary structure that can be considered as a labeled graph.

Definition 2.5. The graph representation of the modular decomposition. Let G

be a finite graph and D its modular decomposition. The graph representation of D
is the binary structure

Gdec(G) = 〈NT ,≤T , lab⊕, lab⊗, lab−→⊗ , fedg〉

where 〈NT ,≤T 〉 is as above, T = Tree(D),

• lab⊕(x) holds if and only if x is a node of type (I), i.e., defines a free sum,
• lab⊗(x) holds if and only if x is a node of type (II), i.e., defines a complete

sum,
• lab−→

⊗
(x) holds if and only if x is a node of type (III), i.e., defines a linear

sum,
• fedg(x, y) holds if and only if x and y are two sons of a node z of type (III)

or (IV) such that x → y in the graph G[M(z)]/πD(z), where M(z) is the
corresponding module.

The prefix f in fedg recalls that we deal with the edges of certain factors of the
modular decomposition and not with the edges of the graph G.

If z has label
−→
⊗ , i.e. is of type III, then fedg linearly orders its set of sons. If z

has no label and is not a leaf, then it is of type IV and fedg represents the edges
of the corresponding prime factor G[M(z)]/πD(z).

The structure Gdec(G) is somewhat redundant. One could delete the labelling
of nodes of type III, because the distinction between types III and IV can be made
from the relation fedg. However, we think more clear to have a specific labelling
for these nodes.

For a cograph, the structure Gdec(G) reduces to 〈NT ,≤T , lab⊕, lab⊗〉 which
represents a term over the operation symbols ⊕ and ⊗ and the constant 1. Since ⊕
and ⊗ are associative and commutative, they are handled as functions of variable
arity (at least 2) and unordered set of arguments.
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Proposition 2.2. Every graph can be defined from the graph representation of its
modular decomposition.

Proof. Let G be a finite graph and

Gdec(G) = 〈NT ,≤T , lab⊕, lab⊗, lab−→⊗ , fedg〉.

Then G = 〈VG, edgG〉 can be defined as follows :

VG = {x ∈ NT : y <T x for no y ∈ NT }

edgG(x, y) holds if and only if x, y ∈ VG, x 6= y and, letting z be their least common
ancestor in the tree T ,

• either lab⊗(z) holds
• or ¬(lab⊕(z) ∨ lab⊗(z)) holds and fedg(x′, y′), where x′, y′ are the (neces-

sarily) distinct sons of z such that x ≤T x′, y ≤T y′

The correctness of this definition follows immediately form the definitions �

From that proof it is clear that G can be reconstructed from Gdec(G) by first-
order formulas. It is proved by Courcelle [13] that Gdec(G) can be constructed
from G by monadic second-order formulas, with the help of an auxiliary linear
ordering 4 of VG.

Our objectives will be the following ones :

• to extend the definition of modular decomposition to infinite graphs ;
• to extend the above result of [13] to countable graphs given with an auxiliary

linear ordering of type ω of the vertex set ;
• to replace the binary structure Gdec(G) by an alternative binary structure,

called its sparse representation, which, considered as a graph, has vertices
of ”low degree”.



10 BRUNO COURCELLE AND CHRISTIAN DELHOMMÉ

3. Trees

In the present Section, no particular assumptions of cardinality are made.

Definitions 3.1. (Trees, join-trees and leafy trees.) Our terminology borrows from
R. Fräıssé [29], with some variations.

Given a partially ordered set (P,≤), two elements x and y ∈ P are comparable
if x ≤ y or y ≤ x, they are compatible if the pair {x, y} has an upper-bound. A
chain is a set of pairwise comparable vertices. A set Q ⊆ P of vertices is (upwards)
directed if

∀x, y ∈ Q, ∃z ∈ Q, x ≤ z ∧ y ≤ z

A set Q is an up-set (resp. down-set) if

∀x ∈ Q, ∀y ∈ P, x ≤ y ⇒ y ∈ Q (resp. ∀x ∈ Q, ∀y ∈ P, x ≥ y ⇒ y ∈ Q).

We will use the following notation : P x = {y ∈ P : x ≤ y}, P>x = {y ∈ P : y > x},
Px = {y ∈ P : y ≤ x} and P<x = {y ∈ P : y < x}.

A forest is a partial order (T,≤) such that for every x ∈ T , the set T x is a chain ;
the elements of T are called nodes. A tree is a forest that is directed. In a forest, the
relation of compatibility is an equivalence whose classes are called the components
of T . The components are the maximal directed sets ; they are also the connected
components of the comparability graph.

A tree is a join-tree if any two nodes x and y have a least upper bound, called
their join and denoted by x∨ y. A join-tree can be defined as a relational structure
(T,≤) or as an algebraic structure (T,∨), with x ≤ y if and only if y = x ∨ y. A
sub-join-tree of (T,≤) is a tree (T ′,≤′) with T ′ ⊆ T and, for any x and y in T ′,
x ∨′ y = x ∨ y (so in particular x ≤′ y if and only if x ≤ y).

A leaf in a forest is a minimal node, a root is a maximal one. An internal node
is one that is not a leaf. A forest may have one or several roots, or no root at all. It
may have no leaf. A tree has at most one root. We say that a tree is leafy if every
internal node is the least upper bound of two leaves. Notice that every leafy tree
is a join-tree. A finite tree is a finite rooted tree in the usual sense, and its root is
the unique maximal element. A finite forest is a finite free sum of finite trees.

If x ≤ y, we say that the node y is an ancestor of x. We say that y is the father
of x if it is the least node among those greater than x ; in that case, we say that x
is a son of y.

Definition 3.2. (Directions in forests.) Let T be a forest. For every node x, T<x

ordered by the induced ordering, is a forest, hence a free sum of trees. Each of
these trees D is called a direction relative to x.3 For y ∈ D, we say that D is the
direction of y relative to x. We denote it by dirx(y). We denote by Dir(x, T ) the
set of directions relative to x. Thus the directions relative to x are the components
of T<x.

The degree of a node x is the cardinality of Dir(x, T ). A tree is binary if every
node has degree at most 2. If a node is y ∨ z where y and z are incomparable, it
has degree at least 2. If T is finite, this definition of the degree of a node yields the
number of its sons.

Here are some easy facts listed for later reference :

Lemma 3.1.

3We identify a direction and the corresponding set of nodes.
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(1) In a tree, given two nodes in distinct directions relative to a node x, then x
is their join ; conversely, if two incomparable nodes have a join, then they
lie in distinct directions relative to it.

(2) In a tree every directed set of nodes has a cofinal chain4.
(3) In a join-tree, the least-upper bound of any three-element set is the join of

a pair of these elements, indeed of at least two pairs of these elements.
(4) In a join-tree, the least-upper bound of any finite set is the join of two

elements of that set.
(5) In a join-tree, of the three least upper-bounds of the pairs of a three-element

set, at least two equal the greatest.
(6) In a leafy tree, if v is an upper-bound of a set X of nodes, but not the least

one, then there is a leaf y such that for every x ∈ X, x ∨ y = v.
(7) In a non-empty forest, the components are the non-empty directed simul-

taneously up- and down-sets, and the maximal chains are the non-empty
chains that are up-sets and have no strict lower bound.5

(8) A tree is leafy if and only if every inner node has at least two directions
and every non-empty down-set contains a leaf.

(9) In a tree, any two directed down-sets that meet are comparable for inclusion.

Proof.

(2) If the directed set is empty then the empty chain suits. If the directed set
D is not empty, then, given any v ∈ D, consider C := {u ∈ D : v ≤ u}.

(3) Given three nodes x, y and z, if x ∨ y < x ∨ y ∨ z, then x, y and x ∨ y lie
in the same direction of x ∨ y ∨ z, but x ∨ y ∨ z = (x ∨ y) ∨ z 6< x ∨ y ∨ z,
thus z cannot lie to the same direction (i.e. either it equals x ∨ y ∨ z or it
lies in an other direction), so that both x ∨ z and y ∨ z equal x ∨ y ∨ z.

(4) Induction using (3) and the associativity of ∨.
(5) Consequence of Point 3.
(6) Notice that X is included in a direction of v ; any leaf y lying in a different

direction suits.
(9) Assume that D and D′ are two distinct directed down-sets that meet. So

let y ∈ D∩D′ and, without loss of generality, x ∈ D\D′, and then an upper
bound z of {x, y} in the directed set D. Now given any x′ ∈ D′, consider
an upper bound z′ of {x′, y} in the directed set D′ ; observe that z′ ≤ z :
z′ and z are comparable since both ≥ y, but z 6≤ z′ since x ≤ z and z′

belongs to the down-set D′ that excludes x ; hence x′ ≤ z′ ≤ z ∈ D, so
that x′ ∈ D, that is a down-set.

�

Lemma 3.2. Let x and y be two nodes of a tree such that y < x, and let D denote
the direction of y relative to x. The node y is a son of x if and only if it is the
greatest element of D. If D has no greatest element, then it admits a cofinal chain
containing y, and x is the least upper-bound of any such chain.

4A cofinal (resp. coinitial) set of a set P of vertices of a partially ordered set is any Q ⊆ P

with the property that for every element x of P , there is an element y of Q such that x ≤ y (resp.
y ≤ x).

5In a partially ordered set, a strict lower-bound of a set of vertices is a vertex that is strictly
smaller than every element of that set ; in other words, it is a lower bound not belonging to the
set.
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Proof. Observe that, if z is a node such that y ≤ z < x, then z ∈ D. �

Remarks 3.1. For a partially ordered set (P,≤), we let HD(P ) denote its Hasse
diagram, i.e. the directed graph with set of vertices P and edges x −→ y such that
x < y and there is no z with x < z < y. We say that P is diagram-connected if
P is the transitive closure of HD(P ) and HD(P ) is connected. A tree is diagram-
connected if the graph of the father-son relation is connected ; any two nodes are
then at finite distance in this graph. A diagram-connected tree may have no root.

The infinite trees representing infinite algebraic terms over finite signatures
(Courcelle [8] or [9]) and the genealogies (F. Gire, M. Nivat [31]) are diagram-
connected join-trees. Some infinite trees as defined in Definition 3.1 represent nei-
ther infinite trees in the sense of [8], nor genealogies.

4. Strong and robust modules

4.1. The tree of strong modules. Although a forest is a graph or can be con-
sidered as a graph, we use the special term ”nodes” for the vertices of a tree or a
forest. This particular terminology will be useful for clarity in situations where we
discuss simultaneously a graph and a tree representing it.

Modules and modular partitions are defined (Definition 2.2) in Section 2 ; recall
that a module is strong if it is non-empty and it overlaps no module.

Notation 4.1. We denote by sdec(G) the set of strong modules of any graph G.

The results of Section 2 do not extend immediately to infinite graphs, because it
may happen that a graph has no maximal proper strong module (see Example 4.3
below). In such a case, Theorem 2.1 does not extend. Besides, a countable graph
may have uncountably many strong modules (see Example 4.4) ; still the tree of
strong modules has countably many non-limit nodes. These particular nodes will
be sufficient to reconstruct the tree by a kind of ”completion”.

Let us first mention the following easy facts :

Lemma 4.1. In a graph,

(1) the intersection of a non-empty set of modules is a module (possibly empty) ;
(2) the union of two modules that meet is a module, and more generally, the

union of a set of modules is a module as soon as the meeting relation on
that set is connected ;

(3) for two modules M and N , if M\N is non-empty, then N\M is a module.�

Example 4.1. The modules of a chain are its intervals ; in particular the strong
modules of a chain are trivial. The first assertion is clear. As for the remaining
one, given a chain (C,≤), if I is a proper interval with at least two elements a < b,
then at least one of the two intervals {x ∈ C : x > a} and {x ∈ C : x < b} overlaps
I .

Example 4.2. Every connected component of a graph is a strong module.

Example 4.3. A bicoloring of a chain C = (C,≤) is a mapping χ : C → {⊕,⊗}.
The graph associated with a bicolored chain C as above is the undirected graph on
the set C such that two distinct vertices are linked if and only if the greater one
is colored by ⊗. (Such graphs are sometimes called linear cographs.) A bicoloring
χ of C is good if for x < y and i ∈ {⊕,⊗}, there is z such that x ≤ z ≤ y and
χ(z) = i. In particular, no two consecutive vertices have the same color.
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The modules of the graph associated with a good bicoloring of a chain are the
singletons and the down-sets ; in particular all its modules are strong.

Any down-set I is a module, even when the bi-coloring fails to be good. Con-
versely, consider the graph G associated with a good bicoloring of a chain (C,≤).
If A is a subset of C failing to be an interval, then it is not a module of G : letting
a < b < c with a and c in A and b /∈ A, in case χ(b) 6= χ(c), b is linked in different
ways to a and c, and in case χ(b) = χ(c), there must be a vertex d in between with
a different color. If d ∈ M then let it play the role of c and otherwise let it play
the role of b. A non-singleton interval A failing to be a down-set is not a module
either : given a < b with b ∈ A and a /∈ A, consider some other element c of A,
since A is convex, a < c ; if b and c have different labels then a is linked to them
in different ways, and if they have the same label, then given some d in between
with a different label, that d must lie in A, which is assumed to be convex, and it
is linked to a differently from c.

The chain Z of integers has exactly two good bicolorings, they are isomorphic.
The associated graph Gζ is represented on Figure 1.

⊕⊕ ⊗ ⊗⊕⊗ ⊕ ⊗ ⊗

Figure 1. The graph Gζ

Example 4.4. The good bicolorings of the chain Q of rational numbers are isomor-
phic with one another ; let Gη denote the associated graph. (As for the existence,
one can label by ⊕ the rationals of the form m

2n
for some m ∈ Z and n ∈ N, and by

⊗ the others.)
Since Q has uncountably many down-sets, the graph Gη is a countable graph

with uncountably many strong modules.

Let us consider the basic properties of the tree of strong modules.

Lemma 4.2.

(1) The intersection of any set of strong modules is empty or is a strong module.
(2) The union of any directed set of strong modules is a strong module.

Notice that, in that statement, the intersection of the empty set is the vertex set
of G.

Proof.

(1) Let E ⊆ sdec(G) with a non-empty intersection. First ∩E is a module, like
any intersection of a set of modules. If a set M ⊆ VG overlaps ∩E , then
it overlaps some member of E : Indeed since M\ ∩ E 6= ∅ and M\ ∩ E =
∪{M\E : E ∈ E}, there is some E ∈ E such that M\E 6= ∅, while, for
any such E, E\M ⊇ (∩E)\M 6= ∅. Thus ∩E overlaps no module, since
no member of E overlaps any module. Incidentally notice that E is a chain
whenever its intersection is non-empty.

(2) Let E be a directed subset of sdec(G). If a set M ⊆ VG overlaps ∪E , then
it overlaps some member of E : Indeed since (∪E)\M 6= ∅ and (∪E)\M =
∪{E\M : E ∈ E}, there is some E ∈ E such that E\M 6= ∅, while, for any
such E, M\E ⊇M\(∪E) 6= ∅. Thus again ∪E belongs to sdec(G).
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�

Notation 4.2. For any non-empty A ⊆ VG, we let S(A) denote the intersection of
all strong modules including A ; thus S(A) is the least strong module including A.

From Lemma 4.2, it immediately follows :

Corollary 4.1.

(1) sdec(G)∪{∅} is a complete lattice. The greatest-lower bound of a subset E
of sdec(G) is its intersection ∩E ; its least upper-bound is the intersection
of all members of sdec(G) including its union :

∨
E = ∩{S ∈ sdec(G) :

∪E ⊆ S}. In particular for every non-empty subset X of VG, the least
strong module including X is S(X). The tree sdec(G) of strong modules of
G is a join-tree.

(2) The least upper-bound of a directed set of strong modules is its union.
(3) If D is a direction relative to some M ∈ sdec(G) then, either D has a

greatest member N in which case N is a son of M in sdec(G), or M itself
is the least upper bound of D in sdec(G).

Proof. Only (3) requires some comment : If
∨
D ( M , then for any N ∈ sdec(G)

such that
∨
D ⊆ N ( M , D ∪ {N} is a directed set of nodes all lesser than M ,

hence D ∪ {N} ⊆ D by maximality of D. �

The following lemma about modules of subgraphs and quotient graphs is easy
to establish.

Lemma 4.3. Consider a graph G.

(1) (a) Every module of G included in a set of vertices A is a module of the
induced graph G[A]. Those are the only modules of G[A] if and only
if A is a module of G.

(b) Every strong module of G included in a module M is a strong module
of G[M ]. Those are the only ones if and only if M is a strong module
of G.

(2) (a) Let C be a modular partition of G. The modules of the quotient graph
G/C are the subsets of C whose union is a module of G.

(b) Let C be a modular partition of G formed of strong modules. The
modules of the graph G are its sets of vertices that are the union of a
module of the quotient graph G/C. �

4.2. The tree of robust modules.

Notation 4.3. For possibly equal vertices x and y of a graph G, let S(x, y) denote
the least strong module S({x, y}) containing x and y. We call robust any such
strong module and we denote by rdec(G) the set {S(x, y) : x, y ∈ VG}. It is the
tree, ordered by inclusion, of robust modules of G.

For any distinct vertices x and y, let A(x, y) denote the union of all strong
modules containing x but not y.

Notice that a module is robust if and only if it is of the form S(F ) for some
non-empty finite set F of vertices (see Lemma 3.1-4). It follows that that the tree
rdec(G) of robust modules is a sub-join-tree of the tree of strong modules, and it
is also a leafy tree.
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Example 4.5. Consider the graph Gη of Example 4.5. For any two distinct ra-
tionals x and y, the robust module S(x, y) is the least down-set of Q containing
both x and y, thus the down-set of Q admitting max{x, y} as greatest element. It
follows that the robust modules of Gη are the singletons and the initial intervals of
Q with a greatest element. Incidentally notice that for any two distinct rationals
x < y, A(x, y) = Q<y and A(y, x) = {y}.

For any rational number x, the robust module Qx has two sons in the tree of
strong modules, namely the singleton {x} and Q<x, which is not robust. The strong
module corresponding to irrational cuts, i.e. those of the form {y ∈ Q : y < x} for
some irrational number x, are the strong modules that are neither a father nor a
son in the tree of strong modules.

We use also this graph in Example 5.1.

Lemma 4.4. Consider a graph.

(1) For two distinct vertices x and y, A(x, y) is a strong module ; it is the
greatest strong module containing x but not y.

(2) (a) For two distinct vertices x and y, the strong module A(x, y) is the son
of the strong module S(x, y) containing x.

(b) For two comparable strong modules M and N with N ( M , for any
vertices x ∈ N and y ∈ M\N , N ⊆ A(x, y) ( S(x, y) ⊆ M , in
particular, when N is a son of M in the tree of strong modules, then
N = A(x, y) and M = S(x, y).

(3) Every strong module is the union of a chain of robust modules.

Proof.

(1) The strong modules containing x form a chain, thus A(x, y) is the union of
a chain of strong modules, and therefore it is a strong module.

(2) (a) The strong modules S(x, y) and A(x, y) both contain x, hence they
are comparable. Therefore A(x, y) ( S(x, y) since y belongs to S(x, y)
but not to A(x, y). Now assume that M is a strong module such
that A(x, y) ⊆ M ⊆ S(x, y) ; in particular x ∈ M ; if y ∈ M , then
S(x, y) ⊆M (and then M = S(x, y)), and if y 6∈M , then M ⊆ A(x, y)
(and then M = A(x, y)). Thus A(x, y) is a son of S(x, y).

(b) The inclusions N ⊆ A(x, y) ( S(x, y) ⊆ M hold by definition of
A(x, y) and S(x, y). Thus, since A(x, y) and S(x, y) are strong mod-
ules, N = A(x, y) and M = S(x, y) whenever N and M are consecu-
tive.

(3) Given a strong module M and any x ∈M , consider {S(x, y) : y ∈M}.

�

Corollary 4.2. For a strong module M of a graph G, the following are equivalent :

(1) M is a non-singleton robust module, i.e. M is of the form S(x, y) for two
distinct vertices.

(2) M is a father in the tree of strong modules.
(3) The degree of M is greater than one in the tree of strong modules.
(4) The induced graph G[M ] has a maximal proper strong module.

If those conditions hold :
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(1’) For two elements x and y of M , M = S(x, y) if and only if their directions
relative to M are distinct ; and the sons of M are the sets A(x, y) for all
such x and y in M .

(2’) All directions relative to M in the tree of strong modules have greatest
elements, which are the sons of M ; in other words (cf. Lemma 3.2), each
strong module N ( M is included in a son of M .

(4’) The maximal proper strong modules of G[M ] partitionate M and are the
sons of M .

Proof. (1) implies (3), since x and y belong to distinct directions relative to S(x, y)
(Lemma 3.1-1), and the converse holds, since a strong module M of degree more
than one is S(x, y) for any x and y belonging to distinct directions, which also
yields the first part of (1’).

From Lemma 4.4-2 it follows that (1) and (2) are equivalent, and also that (1)
implies the second part of (1’), as well as (2’).

Recall that the strong modules of G[M ] are precisely the strong modules of G

included in M (Lemma 4.1-1). It follows that (2) and (4) are equivalent, and that
(2’) and (4’) are equivalent. �

Corollary 4.3. For a strong module M , the following are equivalent

(1) M is not robust,
(2) M is a limit node in the tree of strong modules,
(3) M is the union of a chain of smaller strong (resp. robust) modules.

Proof. 1⇒3 by Lemma 4.4-3.
3⇒2 Clear.
2⇒1 Assuming that M is the least upper bound of a directed set D of strictly

lesser strong modules, let us check that M has only one direction, namely
the down set generated by D (then, having degree one, M will not be robust
by Corollary 4.2 above) : That down-set is clearly a directed set of lesser
nodes, it remains then to check that every node lesser than M is less than
or equal to a member of D. Recall that indeed M = ∪D (Corollary 4.1-
2). Now given a strong module N ( M , consider some vertex x ∈ N and
y ∈M\N , then letting D′ ∈ D containing x and D′′ ∈ D containing y, any
upper bound of {D′, D′′} in D meets N but is not included in N , and then
since it cannot overlap N , it includes N .

�

Remark 4.1. The article [27], that sudies the modular decomposition of infinite
graphs, defines as fully decomposable the graphs6 all non-singleton strong modules
of which satisfy Property 4 of Corollary 4.2 above, thus, according to that corollary,
those graphs all strong modules of which are robust. As it is mentioned there, they
are the graphs whose tree of strong modules has no infinite increasing sequence
(indeed the union of such a sequence is a non-singleton limit strong module, hence
a strong non-robust module by Corollary 4.3-2 ; and conversely if there is such a
strong non-robust module then there is a chain of strong modules with no greatest
member by Corollary 4.3-3, and then there is an increasing sequence of strong
modules). Among those are the graphs whose tree of strong modules is rooted and

6[27] deals with 2-structures, which generalize binary relations. See Section 4.3.2 below.
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diagram-connected. Indeed these fully decomposable graphs are those whose tree
of strong modules is well-founded for the reverse ordering.

Definition 4.1. (Canonical partition and skeleton of a robust graph.) A graph G

is robust if its vertex set is a robust module. In that case, we call canonical its
partition into its maximal proper strong modules, and we call skeleton of G the
corresponding quotient graph (actually it embeds into G). For every non-singleton
robust module M of G, we let CM denote its set of sons in the tree of strong
modules ; it is also the canonical partition of the induced graph G[M ], call it
the canonical partition of M , and likewise, call skeleton of M the quotient graph
G[M ]/CM .

Example 4.6. (See Example 4.2.) Every non-connected graph is robust and its
maximal proper strong modules are its connected components. Dually, since a
graph and its edge-complement graph have the same modules, a graph whose edge-
complement graph is not connected is robust and its maximal proper strong modules
are the connected components of the edge-complement graph.

The connected components of a non-connected graph are maximal among proper
strong modules : if a proper moduleM is included in no connected component, then,
since the connected components are strong modules, M includes any component it
meets, and thus it is the union of at least 2 but not all connected components, but
then it overlaps a module (namely the union of a connected component included
in M and of the complement of M). Finally the components are the only maximal
proper strong modules since they already cover the vertex set.

4.3. Basic and elementary graphs. For every robust module M of a graph G,
the maximal proper strong modules of the induced graph G[M ] form a partition C
of M and the quotient graph G[M ]/C has no non-trivial strong module. Besides
the prime graphs, which have no non-trivial module at all, the linear orders, the
complete graphs and the edge-free graphs have no non-trivial strong module. It
turns out that they are the only ones. The finite case is well known. The general
case is Theorem 4-2 of [27]. The proof that we give here relies on a direct proof
of the following observation : in a graph admitting non-trivial modules but no non-
trivial strong ones, every two distinct vertices are separated by a partition into two
modules (Proposition 4.2). The result is stated below in the framework of graphs
(loop-free directed graphs). We reformulate our proof in [27]’s framework of labeled
2-structures in Proposition 4.3 of Section 4.3.2. Notice that both the statement and
the proof of the characterization formulated by Proposition 4.2 are the same in the
two frameworks.

Definition 4.2 (Basic and elementary graphs). Say that a graph is basic if it has at
least two vertices and no non-trivial strong module. Say that a graph is elementary
if it is basic and non-prime, thus if it has non-trivial modules but no strong one, or
if it has two vertices.7

The term basic comes from the fact that the graphs at stake are precisely those
from which all other graphs are built (such graphs are called special in [27] and [28]).

Definition 4.3 (Modular bi-partition). A bi-partition of a set is a partition in two
classes ; two elements of the set are separated if they lie in two different classes of

7In the closely related theory of graph decomposition by Cunningham [22], see also [18], such
graphs are called brittle because they are decomposable in many ways.
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the partition. A modular bi-partition of a graph is a partition of its vertex set into
two (non-empty) modules.

4.3.1. The elementary graphs.

Proposition 4.1. (Cf. [27].) A graph with at least two vertices is elementary if
and only if it is edge-free, or is complete or is a linear order.

That proposition follows from the technical one :

Proposition 4.2. A graph with at least two vertices is elementary if and only if
any two distinct vertices are separated by a modular bi-partition.

Proof of Proposition 4.1. That G is elementary whenever it is free or complete or a
linear order follows from Examples 4.2 and 4.1. Conversely, assume that the graph
G is elementary.

Say that a pair {x, y} of distinct vertices has type

(I) if there is no edge between these vertices,
(II) if there are edges from x to y and from y to x,

(III) if there is exactly one directed edge between them.

If M is a module and y a vertex outside M , then all pairs of the form {x, y} for
x ∈M have the same type. In other words, for each t ∈{I,II,III}, a module of G is
also a module of the undirected graph Gt with vertex set VG and edges the pairs
of type t.

Given any type t ∈{I,II,III} such that Gt has at least one edge, consider two
vertices x and y such that {x, y} has type t and a partition into two modules X
containing x and Y containing y ; then the edge relation of Gt contains the complete
bipartite graph between X and Y ; in particular it is connected and no other graph
Gs (s 6= t) can be connected. It follows that only one type can occur.

If that type is II then G is a complete graph, if it is I then G is edge-free. Now
assume that it is III. Then G is total and oriented, and it remains to check that it is
transitive : Given x −→ y −→ z, consider a partition into two modules X containing
x and Z containing z, and observe that, wherever y lies, x −→ z : if y ∈ Z then
x→ z and x→ y ; if y ∈ X then z ← x and z ← y ; in either case x −→ z. �

Proof of Proposition 4.2. If a graph with at least three vertices satisfies the stated
separation property, then it is not prime ; still it is basic, since for any non-trivial
module M and any partition of the vertex set into two modules separating two
elements of M , at least one of the classes of the partition must overlap M .

Now let us prove the converse : Assume that G is an elementary graph with at
least three vertices (the case of two vertices being obvious). Let V denote its vertex
set.

(1) First we prove that every vertex x belongs to a non-trivial module : Let A
denote a non-trivial module. Assume that A does not already contain x.
Consider B the union of all modules including A but excluding x. B is a
non-trivial module thus it must overlap some (non-trivial) module C ; any
such C must contain x, otherwise B ∪ C would be a module including A,
excluding x and strictly including B.

(2) Second we prove that for every two distinct vertices there is a non-trivial
module containing one and only one of them : Assume not. By the fact
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above, there would be a non-trivial module containing both, thus the small-
est such module C (the intersection of all of them) would be non-trivial.
Let D be a module overlapping C. By assumption D contains none or both
of them ; in the first case C\D, and in the second case C ∩D, contradicts
the minimality of C.

(3) Now consider two distinct vertices x and y. Then let X denote the greatest
module containing x but not y, and let Y denote the greatest module
containing y but not x. Notice that Y \X is a module (Lemma 4.1) since
X\Y , which contains x, is not empty. Then the proof will be complete
once we check that X ∪ Y = V , since then {X,Y \X} will be the desired
partition. So let us check that X ∪ Y = V :

First let us observe that if a module C overlaps X then y ∈ C ⊆ X ∪ Y
(and the same statement with X , y and Y , x interchanged) : Indeed y ∈ C
otherwise the consideration of C ∪ X would contradict the maximality of
X ; in particular the module C\X also contains y, thus Y ∪ (C\X) is a
module containing y but not x, hence it is included in Y ; finally C =
(C ∩X) ∪ (C\X) ⊆ X ∪ Y .

It follows that X ∪ Y is a module : Indeed by 2 above, X or Y is a non-
trivial module, and hence, by assumption of elementarity, it overlaps some
module C ; then such a C also meets the other one, by the observation
above, hence X ∪ C ∪ Y is a module, but it equals X ∪ Y still by that
observation.

Besides observe the following general fact : if a set overlaps the union
of two sets but none of these two sets, then it strictly includes one and is
disjoint from the other. (Indeed it meets at least one of these sets, and
since it is not included in it but does not overlap it either, then it strictly
includes it ; now if it met the other one then it would also have to include
it and then it would include their union and therefore would not overlap
it.)

Finally X ∪ Y = V : Otherwise the module X ∪ Y would overlap some
module C ; that module C cannot strictly include one and be disjoint from
the other, by the maximality property of the one it would be including ;
thus it follows from the last observation that C overlaps X or Y , and then
it follows from the preceding observation that C ⊆ X ∪ Y , contradicting
their overlapping.

�

4.3.2. Labeled 2-structures. The purpose of this subsection is to relate the present
definitions and proofs to the setting of [27]. It will not be used elsewhere in the
article.

The proposition below is Theorem 4-2 of [27]. The proof we give relies on Propo-
sition 4.2 above.

Given a set of labels Λ endowed with an involution λ 7→ λ−1, a reversible labeled
2-structure is a mapping S : (VS)2∗ → Λ from the set (VS)2∗ of ordered pairs of
distinct elements of VS, its domain, with the property that for every pair of vertices,
S(y, x) = (S(x, y))−1. For such a structure S, a subset M of its domain VS is a
module if for any y ∈ VS\M , the mapping x 7→ S(x, y) is constant on M . Then the
notions of strong or robust modules are derived, as well as all related results.
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Proposition 4.3. [27] Consider a reversible labeled 2-structure S : (VS)2∗ → Λ,
having at least one non-trivial module but no non-trivial strong module. Then there
is a label λ such that for every ordered pair (x, y) of (distinct) vertices, S(x, y) ∈

{λ, λ−1}. Furthermore if λ 6= λ−1, then the relation S(x, y) = λ (written x
λ
−→ y)

defines a (strict) linear ordering on VS.

Proof. Assume without loss of generality that S has at least two vertices. Given
any label λ that labels at least one pair, consider two vertices x and y such that

x
λ
−→ y and, with Proposition 4.2, a partition into two modules X containing x and

Y containing y ; then the relation
λ
−→ contains the complete bipartite graph from X

to Y ; in particular it is connected and no other
µ
−→, except

λ−1

−−→ can be connected.
It follows that only λ and λ−1 can occur.

Now, if λ 6= λ−1, then the total relation8 x
λ
−→ y is oriented, thus it remains

to check that it is transitive : Given x
λ
−→ y

λ
−→ z, consider a partition into two

modules X containing x and Z containing z, and observe that, wherever y lies,

x
λ
−→ z : either y ∈ Z and then x

λ
−→ z and x

λ
−→ y, or y ∈ X and z

λ
←− x and z

λ
←− y ;

in either case x
λ
−→ z. �

All our definitions and results extend in an obvious way to labeled 2-structures.

4.4. Skeletons of robust modules.

Corollary 4.4. The skeleton of a robust non-singleton graph is a basic graph, and
therefore is

(I) either edge-free,
(II) or complete,

(III) or a linear order,
(IV) or prime.

Proof. It follows from Corollary 4.2 that the skeleton is a basic graph ; it is then
either a prime graph or an elementary graph. �

We say that the robust graph has type (I) , (II) , (III) or (IV) according to the
case. We call the first three types the elementary types. Also we call type of a
non-singleton robust module the type of the corresponding induced graph.

4.4.1. Prime quotient.

Lemma 4.5. Consider a modular partition C of a graph G. For each set A of
vertices of G, let Ǎ denote the set of members of C included in A and let Â denote
the set of classes meeting A. Then given any module M and any subset A of C, if

M̌ ⊆ A ⊆ M̂ then A is a module of G/C.

Proof. Assuming that M̌ ⊆ A ⊆ M̂ , for any A and A′ in A and C ∈ C\A (thus
C /∈ M̌), one can consider some a ∈M ∩ A, a′ ∈M ∩ A′ and c ∈ C\M . Then

C
G/C
−−−→ A⇔ c

G
−→ a⇔ c

G
−→ a′ ⇔ C

G/C
−−−→ A′

and likewise A
G/C
−−−→ C ⇔ A′

G/C
−−−→ C. �

8We discuss
λ
−→ as the edge relation of a graph ; ”total” and ”complete” are defined in Section 2.
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Corollary 4.5. Consider a modular partition C of a graph G and assume that the
corresponding quotient graph G/C is prime. Then

(1) Any proper module of G is included in a member of C.
(2) The graph G is robust and C is its canonical partition.

In particular, for any two non-equivalent vertices a and b, S(a, b) = VG.

Proof. Since G/C is prime, C has at least 3 members. Consider a proper module
M of G. Then M̌ is a proper subset of G/C and it is also a module of G/C
(Lemma 4.5), thus empty or a singleton. Then

• Either M̌ = M̂ , in which case M is empty or a member of C.
• Or M̌ ( M̂ . In that case, since every intermediate subset must be a module

of G/C (Lemma 4.5) whereas G/C has no module of size 2, M̌ = ∅ and M̂
is a singleton. Then M is a proper non-empty subset of some member of C.

This establishes the first assertion. In particular the members of C are the maximal
proper modules and also the maximal proper strong modules. �

4.4.2. Types of adjacent nodes.

Lemma 4.6. Assume that M is a robust module of an elementary type of G, and
that N is a non-singleton robust module of G and also a son of M i.e. is maximal
among strong modules strictly included in M . Then the type of N is distinct from
that of M .

Proof. Let C denote the canonical partition of G[M ], i.e. its set of sons.
First assume that the skeleton G[M ]/C is edge-free. From Example 4.6 (and

Lemma 4.3-1), we know that the sons of M are the connected components of G[M ].
Thus on the one hand the graph induced on M is not connected, and on the other
hand the graphs induced on its sons are connected. In particular, no son of N can
also be of that type.

The case where G[M ]/C is complete is similar and can be deduced from the
previous one by edge-complementation.

Finally assume that G[M ]/C is a linear order. Then let D and E denote the two
intervals of the quotient M/C, formed by the classes strictly less (resp. greater)

than N ; so D
G[M ]/C
−−−−−→ {N}

G[M ]/C
−−−−−→ E . If N were also of type III, then given

any partition of its canonical quotient into two complementary non-empty intervals
A and B such that A −→ B, the two sets (∪D) ∪ (∪A) and (∪B) ∪ (∪E) would be
two complementary modules of G[M ] ; but at least one of those sets overlaps N ,
contradicting the hypothesis thatN is a strong module of G[M ] (Lemma 4.3-1). �

4.4.3. Prime factors.

Definition 4.4. We call prime factors of a graph G the skeletons of its robust
modules that are prime graphs.

Obviously, every prime factor of a graph embeds in this graph. Moreover :

Lemma 4.7. Every prime graph embedding in a graph embeds in a prime factor of
this graph.

Proof. Assume that P is a set of vertices of a graph G such that the induced graph
G[P ] is prime.
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Then the least strong module S(P ) including P is a robust module : consider
any two elements a and b of P , and observe that, since S(a, b) ∩ P is a module of
the prime graph G[P ] and therefore is trivial, then the module S(a, b) includes P ,
thus it includes also S(P ), hence S(P ) = S(a, b).

Now each maximal proper strong module of S(P ) shares at most one vertex with
P , because its intersection with P is a proper module of the prime graph G[P ] ;
thus G[P ] embeds into the skeleton of G[S(P )]. Finally that quotient, which is a
basic graph admitting a prime (induced) subgraph, must be prime. �

It is well known that every prime (undirected) graph has an induced prime
subgraph of three or four vertices.

5. Modular decomposition

Before proceeding with a definition of the modular decomposition, we collect in
Proposition 5.1 below the main facts from Section 4.

Definition 5.1. (Subrobust modules.) A module of a graph G is subrobust if it is
a maximal proper strong submodule of a robust module of G.

According to Corollary 4.2, the subrobust modules are precisely the sets of the
form A(x, y). Then Corollary 4.4, Example 4.6, Corollary 4.5, Lemma 4.6 and
Lemma 4.7 sum up to :

Proposition 5.1. Let G be a graph.

(1) For every non-singleton robust module M , the induced graph G[M ] is of
one and only one of the following types :
(I) it is the free sum (denoted by ⊕) of a family of graphs (Ci : i ∈ I) with

card I ≥ 2, and no Ci has type I,
(II) or it is the complete sum (denoted by ⊗) of a family of graphs (Ci :

i ∈ I) with card I ≥ 2, and no Ci has type II,

(III) or it is the linear sum (denoted by
−→
⊗) of a linearly ordered family of

graphs (Ci : i ∈ I) with card I ≥ 2, and no Ci has type III,
(IV) or it is P[Ci/ui; i ∈ I ] for some (unique) prime graph P.

(2) The graphs Ci are the the maximal proper strong modules of G[M ]. They are
not necessarily robust. Their common father in the tree of strong modules
of G is M .

(3) A prime graph embeds in G if and only if it embeds into a prime factor,
i.e. in a graph P of Case IV. �

By decomposing in this way all robust modules, we will obtain a hierarchical
structure yielding the modular decomposition. That structure is unique by (1) of
the proposition.

Remark 5.1. Case III does not occur when G is undirected. The special case of
the proposition for undirected graphs is Theorem 4.6 of [37]. His proof relies on
considerations of connectedness for the graph and for its edge-complement, which
is specific to that particular framework. There, the module S(X) is called the
strongly autonomous closure of X , and the subrobust modules of G are called its
quasimaximal strongly autonomous subsets. For his purpose the tree of all strong
modules is considered implicitly as the modular decomposition.
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Definition 5.2. (Modular decomposition.) We define the modular decomposition of
a graph G as the tree mdec(G) of its robust and subrobust modules. It is at most
countable, when G is. For finite graphs, the notions of a strong and of a robust
module coincide ; hence this notion of modular decomposition is equivalent to the
usual one which is the finite rooted tree of strong modules. The tree mdec(G) has
a root if and only if VG is a robust module. Otherwise G is the union of a chain of
robust modules. One could of course make it rooted by adding VG as root.

We extend to infinite, and in particular to countable graphs, what has been
defined for finite graphs in Section 2 (and in [13]).

Definition 5.3. (Graph representations of modular decompositions.) The structure
Gdec(G) consists of the tree mdec(G) = (T,≤), augmented with edges between the
sons of each node M of T (which is a module of G), in order to represent the edges
between the submodules corresponding to the sons of M . It is a straightforward
generalization of the similar notion defined in [13].

Formally, we define Gdec(G) from mdec(G) as follows :
For each node M of mdec(G) which is neither a limit node nor a leaf, whence has

at least two sons, we do the following according to its type (cf. Proposition 5.1) :

• if G[M ] is a free sum (I), we label M by ⊕,
• if G[M ] is a complete sum (II), we label M by ⊗,

• if G[M ] is a linear sum (III), we label M by
−→
⊗ , and we define a strict linear

ordering of the sons of M (which corresponds to the linear ordering of the
strong modules Ci, cf. Proposition 5.1), denoted by /M ,

• if G[M ] is a substitution in a prime graph (IV), we create edges between
the sons of M corresponding to the edges of P in an obvious way.

By extending Definition 2.5, we obtain the structure Gdec(G) defined as :

(T,≤, lab⊕, lab⊗, lab−→⊗ , fedg)

where (T,≤) is the tree mdec(G), lab⊕, lab⊗, lab−→⊗ are unary predicates defining the

labels ⊕,⊗,
−→
⊗ of the nodes of types I, II, III, fedg is a binary relation representing

the edges created between sons of nodes of type IV, and also the linear orderings
on the sons of father nodes of type III : fedg(x, y) if and only if x /x∨y y when x, y

are sons of x ∨ y, which is a node labeled by
−→
⊗ .9 We can consider Gdec(G) as a

graph with two types of edges, corresponding to the binary relations ≤ and fedg.
The symbols ⊕,⊗,

−→
⊗ are thus vertex labels.

Lemma 5.1. A graph G can be defined from Gdec(G) as a graph the vertices of
which are the leaves of mdec(G).

Proof. As in Proposition 2.2. �

Example 5.1. Consider the graph G of Figure 2. The thick edges stand for all
edges between the copy of Gη (from Example 4.4) and their end vertices to the
right. The graph G is robust of type (IV). It has a unique prime factor P shown
on Figure 3. It has a unique elementary factor of type (III), and countably many
elementary factors of type (I) and (II) (those of the copies of Gη), and it has one

9The linear order on the sons of a node of type III is encoded by fedg. If in this ordering,
every element has as successor and a predecessor (unless it is minimal or maximal), it is enough
to encode by fedg the successor of each node.
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Gη

Figure 2. The graph G

Figure 3. The skeleton of the robust graph G

factor of type (I) and arity 3 as well as one factor of type (II) and arity 3. The tree
mdec(G) and the graph representation Gdec(G) are shown on Figure 4. A strong

P ∗

Figure 4. The tree mdec(G) and the graph representation Gdec(G)

module that is a son but not a father in the tree of strong modules is marked ◦ ;
the singleton robust modules are marked •.

Definition 5.4. (Modular trees.) A limit node in a tree is a node which is the least
upper bound of a directed set of strictly smaller elements. A father node is a node
that has at least one son. In a join-tree, a father node may also be a limit node.

A join-tree is said to be modular if it satisfies the following conditions :

(1) No node is both a limit node and a father node.
(2) Every father node is the join of two leaves.
(3) Every limit node has degree one

Hence, a tree is modular when a non-leaf node is a father if and only if it is not
a limit node, if and only if it is the join of two leaves, if and only if it has degree
more than 1.
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Proposition 5.2. The tree of the modular decomposition of a graph is a modular
tree.

Proof. Corollaries 4.2 and 4.3. �

Proposition 5.3. Every leafy tree T is the tree induced on the set of leaves and

father nodes of a unique modular tree denoted by T̂. (Unicity is understood up to
isomorphisms preserving T pointwise.)

Sketch of proof. The construction of T̂ from T is a completion, where we add only
the elements needed as greatest elements of certain directions. (Similar but different
completions are used in semantics of recursive program schemes, see [9]).

Let T̂ consist of the following sets : of all directions relative to the inner nodes,
and of the sets of the form Tu (={w ∈ T : w ≤ u}) for all nodes u (a direction can

be of the form Tu). We claim that (T̂ ,⊆) is a join-tree (cf. Lemma 3.1-9) and that

the mapping that associates Tu with u is a join-embedding of T into T̂ . The ”new”

elements in T̂ are the directions which have no greatest element. �

Proposition 5.4. For every graph G, mdec(G) = ̂rdec(G), where rdec(G) is the
leafy tree of robust modules of G.

Proof. A module in mdec(G) not in rdec(G) is a subrobust module, hence is the
union of the robust modules forming the unique direction D relative to it. We use

here Corollary 4.1-3. It can be identified with D̂ in ̂rdec(G). Conversely, the union
of the modules forming a direction D is a subrobust module. �

Proposition 5.5. Every countable modular tree is the tree of the modular decom-
position of some countable graph, whose nodes are all of type (I) or (II).

We omit the proof because we will not need this result. It justifies the terminol-
ogy ”modular tree”.
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6. The monadic second-order construction of modular

decompositions

From now on, we only consider countable graphs, i.e. finite or countably infinite
graphs.

The objectives of this section are to prove that Gdec(G) (Definition 5.3) and G

can be defined from each other by transformations of relational structures speci-
fied by monadic second-order (MS in short) formulas, and thus to obtain that the
monadic second-order properties of the modular decomposition of a graph G are
monadic second-order expressible in G. Monadic second-order logic and monadic
second-order transformations of structures (called MS transductions) are reviewed
in the appendix.

We only recall here that an MS transduction is a transformation of relational
structures that is specified by MS formulas forming its definition scheme. It trans-
forms a structure S into a structure T (possibly over different relational signatures)
such that the domain DT of T is a subset of DS × {1, ..., k}. (The numbers 1, ..., k
are just a convenience for the formal definition ; we are actually interested by rela-
tional structures up to isomorphism). In many cases, this transformation involves a
bijection of DS onto a subset of DT , and the definition scheme can be constructed
in such a way that this bijection is the mapping : x 7→ (x, 1). Hence, in this case
DT containsDS×{1}, an isomorphic copy of DS and we will say that the MS trans-
duction is domain extending, because it defines the domain of T as an extension of
that of S. (This does not imply that the relations of T extend those of S).

An MS-transduction is order-invariant if it uses an auxiliary linear ordering of
the domain of the input structure that is of type ω if the domain is infinite, such that
for any two such orderings the output structures are isomorphic. These orderings
will be denoted by 4.

A graph G is handled as the binary structure 〈VG, edgG〉.

6.1. The monadic second-order definition of modules. In this lemma, the
types I to IV of robust modules are as in Proposition 5.1, with the same notation.

Lemma 6.1. (1) There exist MS formulas ϕ1(X,Y ) (resp. ϕ2(X,Y )) such
that, for all sets of vertices M,M ′ of a graph G, ϕ1(M,M ′) (resp. ϕ2(M,M ′))
holds in G if and only if M is a robust module of type I, (resp. of type II),
and M ′ is one of the corresponding modules Ci.

(2) There exists an MS formula ϕ3(X,Y, Z) such that for all sets of vertices
M,M ′,M ′′ of a graph G, ϕ3(M,M ′,M ′′) holds in G if and only if M is
a robust module of type (III), M ′ is a module Ci, M

′′ is a module Cj and
i < j.

(3) There exists an MS formula ϕ4(X,Y, Z) such that for all sets of vertices
M,M ′,M ′′ of a graph G, ϕ4(M,M ′,M ′′) holds in G if and only if M is
a robust module of type (IV), M ′ is a module Ci, M

′′ is a module Cj and
ui −→ uj in the graph P.

Proof. Straightforward constructions from the definitions. �

6.2. Reconstructing trees from their leaves. Our first objective will be to
define by MS formulas a subset W of the set V of vertices of the considered graph
G and a bijection of W onto the set of robust modules that are not singletons. This
will give us a definition inside a graph G, and by MS formulas, of the leafy tree
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of its robust modules. Then we will complete this tree by using the completion of
Proposition 5.3 which is an MS transduction. By Proposition 5.4, we will obtain
mdec(G) in this way. The following definitions are adapted from Section 5 of [13].

Definition 6.1. (The structure λ(T ) on the leaves of a tree T .) For a join-tree T ,
we let λ(T ) = 〈Leaves(T ), RT 〉 where RT (x, y, z) is defined to hold if and only if
x ≤ y ∨ z, i.e. if x belongs to Ty∨z.

It is proved in [13] that for a finite leafy tree T , if Leaves(T ) is linearly ordered by
some auxiliary order 4, then T is definable from (λ(T ),4)10 by a domain extending
MS-transduction. The resulting tree T does not depend on the linear order 4. We
will generalize this result.

Proposition 6.1. There exists a domain extending MS transduction that trans-
forms (λ(T ),4) into T , whenever T is a leafy tree and 4 is an ω-order on the set
Leaves(T ).

Hence the mapping which associates a leafy tree T with λ(T ) is an order-invariant
MS-transduction.

Proof. The proof simplifies and generalizes that of Theorem. 5.3 of [13]. Let T be
a leafy tree and 4 be an ω-order the set of its leaves.

For every internal (i.e., non-leaf) node x of T we define :

• fl1(x) as the 4-smallest leaf below x, called the first leaf below x,
• D1(x) as dirx(fl1(x)), called the first direction relative to x,
• rep(x) as the 4-smallest leaf below x and not in D1(x) (this is well-defined

because in a leafy tree, every internal node has degree at least two).

We call rep(x) the leaf representing x. We have fl1(x) < x, rep(x) < x, and
fl1(x) ≺ rep(x).

Claim 6.1. Let x, y be two internal nodes. If rep(x) = rep(y) then x = y.

Proof. By contradiction. Let x, y be distinct internal nodes such that u = rep(x) =
rep(y). Since u is below x and y, x and y are comparable. We can assume that
x < y. By the definitions, u is not in D1(x). Hence fl1(x) ≺ u. Also fl1(x) < x.
Hence u and fl1(x) are in the same direction relative to y. It follows that rep(y)
is the 4-smallest leaf in a set containing u and fl1(x). Hence rep(y) 4 fl1(x) and
rep(y) cannot be equal to u. �

The proof of this claim is illustrated in Figure 5.
One defines (up to a bijection) the nodes of T as the elements of a subset of

Leaves(T )× {1, 2} (cf. the definition of MS transductions in the appendix). Each
leaf u is mapped to (u, 1), hence the transduction we construct is domain extending.
Each internal node u is mapped to (rep(u), 2).

Claim 6.2. One can write a first-order formula α(x, y, z) such that (λ(T ),4) |=
α(x, y, z) if and only if x 6= y and z = rep(x ∨ y)

Proof. We will express the definition of rep by an FO formula. We first observe
that an FO formula β(x, y, z) can express that x 6= y and z = fl1(x ∨ y). Then a
formula γ(x, y, u, v) can express that x 6= y, u < x∨ y, v < x∨ y, and u∨ v = x∨ y,
which means that u and v are not in the same direction relative to x ∨ y. The
construction of α(x, y, z) follows easily. �

10(λ(T ), 4) denotes the structure 〈Leaves(T ), RT ,4〉.
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rep(x)fl1(x)

x

y

D1(x) D2(x)

Figure 5. The leaf representing of x is the first element of the
second direction of x, in other words, the second element of the
lexicographically first pair (u, v) of leaves for which u ∨ v = x and
u < v.

We let N = (Leaves(T )×{1})∪ (REPT ×{2}), where REPT is the set of leaves
of the form rep(x ∨ y) for some leaves x, y 6= x. We order N by letting :

• (x, 1) ≤ (y, 1) if and only if x = y,
• (x, 2) ≤ (y, 1) is always false,
• (x, 1) ≤ (y, 2) if and only if there exist leaves u, v such that y = rep(u ∨ v)

and RT (x, u, v) holds,
• (x, 2) ≤ (y, 2) if and only if there exist leaves u, v, w, z such that x =
rep(u ∨ v), y = rep(w ∨ z), RT (u,w, z) and RT (v, w, z) hold.

Claim 6.3. Ordered in this way, N is isomorphic to T where a leaf u of T corre-
sponds to (u, 1), and an internal node x corresponds to (rep(x), 2).

Proof. The four above clauses correspond to the facts that two different leaves are
incomparable, that an internal node cannot be below a leaf, that a leaf x is below
an internal node u∨ v iff RT (x, u, v) holds, and that an internal node u∨ v is below
(possibly equal to) w ∨ z if and only if u and v are both below w ∨ z. The result
follows then from the definition of RT and the representation of the internal nodes
x ∨ y by leaves. �

The proof of Proposition 6.1 is then immediate. �

Proposition 6.2. The mapping rdec associating with a graph G, ω-ordered by 4,
the leafy tree of its robust modules is a domain extending MS-transduction. The
vertices of G are in bijection with the leaves of the tree rdec(G).

The function rdec is thus an order-invariant MS-transduction.

Proof. In the leafy tree T = rdec(G), a leaf S(x, x) corresponds to the vertex x
of the graph G, an internal node S(x, y) is nothing but S(x, x) ∨ S(y, y). The
relation RT (z, x, y) is ”z ∈ S(x, y)” which is expressible by an MS formula. Hence
λ(T ) = λ(rdec(G)) is definable from G by an MS-transduction. If in addition
G, hence the set of leaves of T , is ω-ordered by 4 we can obtain T , i.e. rdec(G)
from (λ(T ),4), by a domain extending MS-transduction, whence from (G,4) also
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by a domain extending MS-transduction because the composition of two domain
extending MS transductions is a domain extending MS transduction. �

6.3. The monadic second-order definition of modular decompositions and

their graph representations. We know from Proposition 5.4 that mdec(G) is
the completion of rdec(G). Our next aim is now to prove that the completion
operation defined in Proposition 5.3 is a domain extending MS-transduction, using
again an auxiliary ω-ordering.

Proposition 6.3. There is an order-invariant domain extending MS-transduction

that associates with a leafy tree (T,≤) the modular tree T̂ .

Proof. The technique is similar to the one used in Proposition 6.1. The idea is
to represent by some leaf in a well-defined way each direction to be completed

(cf. the definition of T̂ , in Proposition 5.3). The following facts are straightforward
to check.

Let 4 denote an auxiliary ω-ordering of T .

• There exists an FO formula δ(X, x) expressing that x is an internal node
and X is a direction relative to x.

• There exists an FO formula ε(X,u) expressing that u is the 4-smallest leaf
in a set of nodes X . We will denote this by u = fl(X).

• There exists an FO formula ζ(X,Y, x) intended to order linearly the direc-
tions relative to x ; we construct it so as it expresses :

δ(X, x) ∧ δ(Y, x) ∧ ”fl(X) 4 fl(Y )”

Since two directions relative to a same node are disjoint sets, this defines a linear
ordering of each set Dir(x, T ) which is finite or of type ω. A direction is maximal
if it is the greatest element for this order in its set Dir(x, T ).

For every direction X in Dir(x, T ) that is not maximal (the existence of such a
set X implies that x has degree at least 2), we let rep− dir(X, x) be fl(Y ) where
Y is the union of the directions relative to x strictly larger than X . Note that
rep− dir(X, x) /∈ X and fl(X) ≺ rep− dir(X, x).

Claim 6.4. The mapping rep− dir is one-to-one.

Proof. Assume z = rep− dir(X, x) = rep− dir(Y, y).
Case 1 : x = y. We must have X = Y from the definition of rep− dir.
Case 2 : x 6= y. We have z < x and z < y, hence x and y are comparable.
Without loss of generality let us assume that x < y. The nodes x and z are in the
same direction relative to y, say Z. This direction is strictly larger than Y by the
definition of z as rep− dir(Y, y). Hence z 4 fl(Z).

From the definition of z as rep − dir(X, x), fl(X) ≺ z, and fl(Z) 4 fl(X)
since X ⊆ Z. This givesfl(Z) ≺ z contradicting a previous observation. Hence we
cannot have x 6= y. �

In Figure 6, ri is the leaf representing the direction Di−1. The maximal direction
Dmax is represented by x.

It is then clear that there exists an MS formula η(X, x, y) expressing that X ∈
Dir(x, T ), X is not maximal, and y = rep − dir(X, x). We are now ready to

construct T̂ from (T,≤,4) by an MS transduction.



30 BRUNO COURCELLE AND CHRISTIAN DELHOMMÉ

Dmax

x

r2r1

D1 D2 D3

Figure 6

We let N = (T ×{1})∪ (MaxT ×{2})∪ (DirT ×{3}), where MaxT is the set of
nodes of finite degree at least 2, having a maximal direction such that this maximal
direction, say X , has no greatest element, and DirT is the set of leaves of the form
rep−dir(X, x) such that x has degree at least 2 and the direction X has no greatest
element.

The directions X involved in this definition are exactly those for which X̂ must

be added to T in order to construct T̂ . Since the mapping rep − dir does not
represent maximal directions, we treat them separately, as pairs (x, 2). The others
are defined as pairs (y, 3) where y is the leaf rep−dir(Y ) representing the direction
Y .

The order on T̂ defined by Proposition 5.3 is then straightforward to express by
MS formulas. This completes the proof of the Proposition. �

Theorem 6.1. There is an order-invariant domain extending MS transduction γ
constructing Gdec(G) from G. There is an FO transduction δ such that δ(Gdec(G)) =
G for every graph G.

Proof. We begin with the definition of δ as an FO transduction. The vertices of
G are the leaves of the tree underlying Gdec(G), hence can be identified by FO
formulas. Given two vertices x and y of G, whether there is in G an edge x −→ y
can be determined from the label of x ∨ y in Gdec(G) as follows : there is no edge

if the label is ⊕ ; there is an edge if the label is ⊗, or if it is
−→
⊗ and there exist

sons u, v of x ∨ y such that u /x∨y v
11, x ≤ u, and y ≤ v ; when x ∨ y satisfies case

IV, the existence of an edge in P between the submodules containing x and y is
determined by the condition ”there exist sons u, v of x ∨ y such that fedg(u, v),
x ≤ u, and y ≤ v”.

For proving the first assertion, we express the mapping γ that transforms (G,4)
into Gdec(G) as the composition of several MS transductions :

(1) The first one transforms :

(VG, edgG,4) into (VG, edgG,4, R)

where R is the ternary relation such that R(x, y, z) ⇔ x ∈ S(y, z). Since
VG = Leaves(rdec(G)) and S(y, z) = y∨z in the tree rdec(G), R is nothing
but Rrdec(G) (cf. Section 6.2). The definition of R by an MS formula is a
straightforward translation of the definitions.

11The strict linear ordering /x∨y is defined in Definition 5.3. It is represented in Gdec(G) by

the relation fedg.
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(2) The second MS transduction is based on Proposition 6.1, which gives a
domain extending MS transduction transforming (VG,4, R) into rdec(G).
Hence, by using it we can build an MS transduction that transforms :

(VG, edgG,4, R) into (VG ∪N
int
rdec(G), edgG,4,≤rdec(G))

where N int
rdec(G) is the set of internal nodes of rdec(G) and rdec(G) =

(VG ∪N int
rdec(G),≤rdec(G)).

(3) The third transformation uses Proposition 5.3 and Lemma 4.4-3. Since

mdec(G) = ̂rdec(G), we have an MS transduction that transforms :

(VG ∪N
int
rdec(G), edgG,4,≤rdec(G)) into (VG ∪N

int
mdec(G), edgG,≤mdec(G))

The output does not contain the linear order 4 because it is not used in
the next step.

(4) The last MS transduction transforms (VG ∪N int
rdec(G), edgG,≤mdec(G)) into

Gdec(G). Its definition is a straightforward translation from the definition
using Lemma 6.1.

By composing these four MS transductions, one gets the desired domain extending
MS transduction that transforms (VG, edgG,4) into Gdec(G). �

Corollary 6.1. (1) The first-order (resp. monadic second-order) properties of
a graph G are first-order (resp. monadic second-order) properties of the
structure Gdec(G).

(2) For any graph G, the monadic second-order properties of Gdec(G) are
order-invariant monadic second-order properties of G.

Proof. Immediate from Theorem 6.1 and Proposition 9.1 from the Appendix. �
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7. Representing modular decompositions by low degree relational

structures

Our objective in this section is to represent trees and modular decompositions by
relational structures of lowest possible degree (the notion of degree is as for graphs)
by generalizing the observation that the dense structure (Q,≤) is isomorphic to
the set of nodes of the complete infinite binary tree, a graph of degree 3 ordered
appropriately. We will extend to countable linear orders a construction of [17]
that builds on the elements of a finite linear order a structure of binary tree such
that the associated inorder on nodes is the given linear order. Furthermore, this
construction can be done by an MS-transduction using an auxiliary ω-ordering of
the given set.

Let us give some motivations for this investigation.
For finite objects like graphs and partial orders, space efficient representations

are of interest. For an example, every finite partial order can be represented by its
Hasse diagram, which may contain O(m1/2) edges whereas its directed graph has
m edges. The modular decomposition of a finite graph has a graph representation
with at most 3n + m edges where n is the number of vertices and m is the total
number of edges of its prime factors. In both cases the original partial order (or
graph) can be determined from its Hasse diagram (or its modular decomposition)
by computations of transitive closures, hence by MS transductions.

The motivation of getting space efficient representations does not apply to infinite
graphs, but bounds on degrees of infinite structures are nevertheless interesting
because they yield structural properties. For example, every ”equational graph”
of bounded degree is ”prefix recognizable”, see Caucal [5], (or Barthelmann [1] for
a similar result). As another result, MS logic with edge set quantifications is as
powerful as MS logic without them on relational structures with sparse relations,
see [16].

In the present section, we define mutual transformations of relational structures :
trees, graphs, binary rooted trees, and in each case we prove they are MS trans-
ductions.

7.1. Representing linear orders by standard binary trees. We first consider
the case of linearly ordered sets.

Definition 7.1. (Standard binary trees.) By a standard binary tree, we mean a
simple directed edge-labeled graph T = (NT , lsonT , rsonT ) where NT is the finite
or countable set of nodes, lsonT and rsonT are two binary functional relations
defining for each node its left son and its right son. A node may have no son, two
sons, or only a right son or only a left son. The root is the unique node of indegree
0 and every node is reachable from it by a unique directed path. Whether a struc-
ture A = (DA, lsonA, rsonA) is a standard binary tree can be expressed in MS logic.

For a standard binary tree T , and x, y ∈ NT , we will write x −→l y if y is the
left son of x, x −→r y if y is the right son of x, and x −→ y if y is the left or the
right son of x.

A linear order, the in-order, on NT can be defined as follows.
x ≤in,T y if and only if x = y or x −→r z −→∗ y or y −→l z −→∗ x for some z,

or t −→l z −→
∗ x and t −→r z

′ −→∗ y for some t, z, z′.
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We let Ω(T ) denote the linearly ordered set (NT ,≤in,T ). It is clear that the
mapping Ω is an MS-transduction because the transitive closure of given binary
relation is expressible by an MS formula. Our objective is to construct T from
Ω(T ) by an MS transduction.

Proposition 7.1. ([17]) There exist two first-order formulas λ(x, y) and ρ(x, y)
that define in every structure (N,v,4) such that v is a linear order and 4 is an
ω-order, two binary relations lson and rson such that (N, lson, rson) is a standard
binary tree T , the root of which is the 4-least element of N and such that Ω(T ) =
(N,v). This tree T is defined from (N,v,4) by an FO transduction.

The formulas λ and ρ do not depend on N .

Proof. Let (N,v,4) be given as in the statement. We leave out the case where N
is finite, for which the construction is immediate, without using 4.

We will take r, the 4-least element ofN as root of the tree T we are constructing.
For every x in N , x 6= r, we let

• m(x) be the v-largest element y such that y @ x and y ≺ x,
• M(x) be the v-smallest element y such that x @ y and y ≺ x.

We have m(x) @ x and x @ M(x) whenever m(x) or M(x) is defined.

(a) If M(x) is undefined, we let (m(x), x) belong to rson.
(b) If m(x) is undefined, we let (M(x), x) belong to lson.

If M(x) and m(x) are both defined, we have m(x) @ x @ M(x) and
(c) if m(x) ≺M(x) we let (M(x), x) belong to lson and finally
(d) if M(x) ≺ m(x) we let (m(x), x) belong to rson.

This can be formalized by first-order formulas λ and ρ defining lson and rson.

We make some observations to help the understanding of the forthcoming proof.
For every pair (y, x) in lson or in rson, y is before x in the enumeration defined by
4. This guarantees the absence of circuits.

The construction consists in putting in a tree the elements of N in the order
defined by 4. There are four ways to add a node x :

• as right son of the rightmost node m(x), by clause a) above.
• as left son of the leftmost node M(x), by clause b) above ;
• in cases c) and d) the node x must be placed between m(x) and M(x) which

are the elements of N before x with respect to 4 which are closest to x
with respect to v (they already exist in the tree). Depending on whether
m(x) ≺M(x) or M(x) ≺ m(x), x is defined as left son of M(x) (case c) ),
or right son of m(x) (case d) ;

It remains to prove that (N, lson, rson) is actually a tree T , and that Ω((N, lson, rson)) =
(N,v).

For every x in N we let T (x) be the restriction of the structure (N, lson, rson)
to the set A(x) = {y : y 4 x}.

Claim 7.1. T (x) is a finite standard binary tree and Ω(T (x)) = (A(x),v).

Proof. By induction on the order 4. The least element of N is r. The tree T (r) is
reduced to r and the assertion holds.

Consider x 6= r and x′, its predecessor with respect to 4. Hence T (x′) satisfies
the property.
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From the definitions, x is the second component of a unique pair (y, x) either in
lson or in rson, and furthermore, y ≺ x.

We review the different cases.

(1) In Case a), y = m(x), M(x) is undefined, we have m(x) @ x. Then y has
no right son in T (x′) because otherwise, if it had one say z, then either
x @ z and M(x) would be defined or z @ x and m(x) would not be y (y
would not be the @ -predecessor of x in A(x))

Hence by setting x as right son of y, we get a standard binary tree T (x)
satisfying Ω(T (x)) = (A(x),v).

(2) In Case b) the argument is the same by exchanging left and right, and m(x)
and M(x).

In the next two cases M(x) and m(x) are both defined and we have
m(x) @ x @ M(x). This means that x must be inserted ”between” m(x)
and M(x) which are consecutive in (A(x′),v). Furthermore, in T (x′),
m(x) is an ancestor of M(x) or vice-versa, because otherwise, they have a
common ancestor, say z, m(x) @ z @ M(x) hence they are not consecutive
in (A(x′),v).

(3) If m(x) ≺M(x) (case c) ), we have y = M(x), x is set as left son of y, m(x)
is an ancestor of M(x). (This cannot be the reverse because m(x) ≺M(x)).
Assume y has already a left son, say z, in T (x′). Either x @ z and M(x)
would not be y (because x @ z @ y) or z @ x but then m(x) @ z (because
m(x) is an ancestor of M(x), so that M(x) is, or is below, the right son of
m(x)) but this contradicts the definition of m(x). Hence we can set x as
left son of y. And we get thus a tree T (x) satisfying Ω(T (x))= (A(x),v).

(4) If M(x) ≺ m(x) (case d)) the proof is fully similar.

�

We now complete the proof of Proposition 7.1. One takes for T the union of the
standard binary trees T (x) which extend one another. Every x in N is a node of
this tree, because the isomorphism type of 4 is ω, hence it is added at some step.
The tree T is thus (N, lson, rson). We have noted that lson and rson are definable
by first-order formulas. This completes the proof of the Proposition. �

This definition is illustrated on Figure 7. We show the tree associated with the
linear order N = (9, 8, 1, 6, 0, 7, 2, 5, 3, 4), where the numbers define the enumera-
tion.

49

1

0

2

76

5

38

Figure 7. The tree of a linear order N

The transduction of Proposition 7.1 is not order-invariant.
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This proposition proves that one can represent a linear order by a suitable order-
ing of the set of all nodes of a standard binary tree that is not necessarily complete.
We now prove that one can represent it by the same ordering on the set of leaves of
a standard binary tree. Furthermore, this tree is definable by an FO transduction,
as in Proposition 7.1.

Lemma 7.1. There exists a domain extending FO transduction that transforms a
standard binary tree T into a standard binary tree U such that (Leaves(U),≤in,U )
is isomorphic to (NT ,≤in,T ).

Proof. We first describe the construction in set theoretical terms. Then we will
show that it can be performed by an FO transduction.

Given T , we construct U such that NT ⊆ NU and a mapping h from NT to
Leaves(U) intended to be the desired isomorphism.

For constructing U , we consider each node x of T . There are several cases (see
the first two columns of Figure 8).

• Case 1 : x is a leaf. It remains a leaf in U . We let h(x) = x.
• Case 2 : x has a left son y and no right son. We add a new node x′ as right

son in U of x, and we let h(x) = x′.
• Case 3 : x has a right son z and no left son. We add a new node x′ as left

son in U of x, and we let h(x) = x′.
• Case 4 : x has a left son y and a right son z. We add two nodes, an internal

node x′′ and a leaf x′ such that in U :
– x′′ is the right son of x,
– z is the right son of x′′,
– y is the left son of x, as in T ,
– x′ is the left son of x′′,

and we let h(x) = x′.

These transformations can be done simultaneously for all nodes x of T , giving
U and h is a bijection of NT onto Leaves(U).

It is clear that h(x) ≤in,U h(y) if and only if x ≤in,U y.

It remains to define U from T by an FO transduction. This transduction will
specify NU as a subset of NT ×{1, 2, 3}. Furthermore, we will do that in such a way
that the above defined mapping h is actually h(x) = (x, 1) for every x in NT . In
order to reach this goal, the new nodes x′′ in case 4 will be defined as pairs (x, 3).
The nodes x′ in cases 2,3,4 will be defined as pairs (x, 1). The nodes x in cases
2,3,4 will be defined as pairs (x, 2) as nodes of U . The nodes x in case 1 will be
defined as pairs (x, 1) as nodes of U . (Note in particular that, if r is the root of T ,
the root of U is (r, 1) if T is reduced to a single node, and (r, 2) otherwise.) See
the last column of the table of Figure 8. We denote by y and z the results of this
transformation applied to y and to z.

There exist first-order formulas γi(x), i = 1, ..., 4 such that T |= γi(x) if and only
if the node x is of the type of Case i.

We show how first-order formulas can be constructed which specify

rsonU ((u, i), (v, j)) and lsonU ((u, i), (v, j))

in the desired way.
Let us consider which pairs ((u, i), (v, j)) must be put in rsonU and in lsonU by

the specification of Case 4.
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Let x satisfy γ4 (hence is of the type of Case 4) with left son y and right son z
in T . Then we must have

(x, x′′) and (x′′, z) in rsonU , and (x, y) and (x′′, x′) in lsonU . From the way
nodes of U are defined as pairs (u, i), this gives :

((x, 2), (x, 3)) and ((x, 3), z) in rsonU , and ((x, 2), y) and ((x, 3), (x, 1)) in lsonU .
If Case 1 applies to y, then y is (y, 1), otherwise y is (y, 2), and similarly for z.

Collecting all cases, we get the following description of rsonU : rsonU ((u, i), (v, j))
holds if and only if

• either u = v ∧ i = 2 ∧ j ∈ {1, 3},
• or u 6= v, rsonT (u, v) and we have the following cases :

– either : γ3(u) ∧ γ1(v) ∧ i = 2 ∧ j = 1,
– or : γ3(u) ∧ (γ2(v) ∨ γ3(v) ∨ γ4(v)) ∧ i = j = 2,
– or : γ4(u) ∧ γ1(v) ∧ i = 3 ∧ j = 1,
– or : γ4(u) ∧ (γ2(v) ∨ γ3(v) ∨ γ4(v)) ∧ i = 3 ∧ j = 2.

The characterization of lsonU is similar. The translation into first-order formulas
specifying an FO transduction is then a routine task. �

To conclude this subsection we apply these two results to build an MS trans-
duction that transforms a diagram-connected ordered tree into a standard binary
tree. This transformation is classical, but our effort consists in defining it as an MS
transduction.

Definition 7.2. (Ordered trees.) A join-tree (T,≤) is ordered if it is equipped with
a strict linear ordering /x on each set Dir(x, T ). These strict linear orderings yield
a linear ordering v extending ≤ given by x v y if and only if x ≤ y or x and y are
incomparable and dirx∨y(x) /x∨y dirx∨y(y).

According to Definition 5.3, /x is defined only for nodes representing linear sums.
For simplifying certain constructions, we will choose for /x an arbitrary linear order



THE MODULAR DECOMPOSITION OF COUNTABLE GRAPHS 37

for all other father nodes x. All our logical constructions use a ω-ordering 4 on the
given graph. This (arbitrary) ω-order can be used to specify non-ambiguoulsy the
linear orderings /x for nodes of types I , II and IV . We denote in the same way by
/x the ordering of the sons of x and of its directions.

Definitions 7.3. (Compressing and stretching trees.) Let T be a diagram-connected
ordered tree. Its son relation is sufficient to define (by taking the transitive closure)
the ancestor relation because T is diagram-connected. Hence, without loss of in-
formation, T can be represented by the logical structure (NT , sonT , orderT ) where
NT is its set of nodes, sonT and orderT are binary relations such that sonT (x, y)
holds if and only if y is a son of x, and orderT (x, y) holds if and only if x and y 6= x
have the same father, say z, and dirz(x) /z dirz(y) (cf. Definitions 5.3 and 7.2).12

Our intention is to represent T by a structure U = (DU , nodeU , lsonU , rsonU )
which is a standard binary tree (equipped with a unary predicate node) such that :

• NT is the set of elements x of DU that satisfy nodeU (x),
• sonT (x, y) holds if and only if nodeU (x), nodeU (y), and x −→+ y (we use

the notation of Definition 7.1) hold, and the elements on the path x −→+ y
are not in NT except x and y.

• and orderT (x, y) holds if and only if nodeU (x), nodeU (y), and u −→l

w −→∗ x, u −→r w′ −→∗ y hold for some u,w,w′, where the elements
on the paths w −→∗ x, w′ −→∗ y are not in NT , except x and y.

In such a situation, we will say that U is a stretching of T and that T is the
compression of U . We will write T = Compress(U).

Proposition 7.2. There exists a domain extending MS transduction σ that defines
an ω-ordered stretching of any rooted, diagram-connected ordered and ω-ordered tree
T . The mapping Compress is an MS transduction.

Proof. Our aim is to construct an MS transduction σ such that σ(T,4) is a stretch-
ing of T and Compress(σ(T,4)) = T for every rooted, diagram-connected ordered
tree T ω-ordered by 4. From its definition it is clear that Compress is an MS
transduction.

We now define σ. By composing the transductions of Proposition 7.1 and
Lemma 7.1, we get a domain extending MS transduction that associates with a
linear order (N,v) that is also ω-ordered by 4, a standard binary tree U such that
the structure (Leaves(U),≤in,U ) is isomorphic to (N,v). In this construction, the
root of U is the pair (t0, 2) where t0 is the 4-smallest element of N , because this
is the root of the tree constructed by Proposition 7.1 and the root r of a tree T
transformed into (r, 2) by Lemma 7.1. See Figure 8. We will denote this tree by
τ(N,v,4). Consider a diagram-connected ordered tree T given by the structure
(NT , sonT , orderT ).

The structure U is constructed from T as follows :

(1) to each element x of NT corresponds the element (x, 1) of DU and we let
it belong to nodeU ,

(2) for each internal node x of T , its set of sons SonsT (x) is linearly ordered
by orderT , and we construct the tree τ(SonsT (x), orderT ,4), by using the
domain extending MS transduction τ , with the slight modification that the

12The relation orderT is the union of the relations /z . It is usually not an order relation.
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root of τ(SonsT (x), orderT ,4) is defined as (x, 1) and not as (y, 2) where
y is the 4-smallest son of x.

Hence, the construction of U consists in introducing new nodes and in replacing the
edges from fathers to their sons in T by paths through these new nodes. The edges
of these paths are of types left or right, in such a way that the in-order on these
paths represents the left-right order of sons. If a node has out-degree 1 or 2, then
no node is inserted between it and his son or his sons. In particular, a standard
binary tree is not modified. The root of U is that of T .

It is clear that this construction is a domain extending MS transduction.
The statement of the proposition demands also an ω-order on the constructed

structure. But Lemma 9.1 in the appendix shows that an MS transduction taking
as input ω-ordered structures can be equipped so as to define also an ω-order on
the output structures.

As final remark, consider a structure U = (DU , nodeU , lsonU , rsonU ). It is of
the form σ(T,4) for some ω-ordered diagram-connected rooted ordered tree T if
and only if it is a standard binary tree, and every infinite path in U starting at
the root contains infinitely many nodes in nodeU . This characterization is MS
expressible. �

Figure 9 shows a tree T and one of its stretchings U . The nodes of T , and their
copies in U are indicated by •. The ”new nodes” are indicated by ◦. The order
type of the set of sons of the root is ζ, that of integers.

Figure 9

7.2. A universal ordered join-tree. It is well known that the linearly ordered
set Q is universal for finite and countable linear orders : it embeds each of them and
is itself countable. We will construct a universal ordered tree, where universality
is relative to join-embeddings. We will use it in the next subsection to represent
modular decompositions by low degree relational structures.

Our objective is to define a universal ordered tree. As one may expect, the set
Q will play a prominent role in this construction.

Definition 7.4. (Ordered trees constructed from linear orders.) We let S and D
be two nonempty disjoint linearly ordered sets. We let Aseq(S,D) denote the set
of alternating sequences of the form :

s1d1s2d2...dksk+1
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for k ≥ 0, with si in S and dj in D for all i, j. These sequences have at least one
occurrence of an element in S.

We order Aseq(S,D) by ≤S,D defined as follows :
w ≤S,D u if and only if u = u′s, w = u′s′w′ for some u′ in (SD)∗, some w′ in

(DS)∗, some s, s′ in S with s′ ≤S s.
In particular, w ≤S,D u whenever u ≤pref w (where ≤pref denotes the prefix

order on sequences). The linear ordering on D will be used in Definition 7.5 below.

Lemma 7.2. The ordered set (Aseq(S,D),≤S,D) is a join-tree, denoted by T (S,D).

Proof. That (Aseq(S,D),≤S,D) is a tree is easy. We check the existence of joins.
Let x and y be incomparable. They have a longest common prefix u, and we

have two cases :

• either x = udw, y = ud′w′, d, d′ ∈ D, d 6= d′, w, w′ ∈ (SD)∗S and then
x ∨ y = u,

• or x = usw, y = us′w′, s, s′ ∈ S, s 6= s′, w,w′ ∈ (DS)∗, and then x ∨ y =
uMax{s, s′}, as one checks from the definitions.

�

The following lemma is easy to prove from the definitions.

Lemma 7.3. The directions in T (S,D) relative to a node us (for u ∈ (SD)∗,
s ∈ S) are the nonempty sets of the following forms :

D(0, us) = {us′w : s′ ∈ S, s′ <S s, w ∈ (DS)∗}, for s 6= Min(S) and

D(d, us) = {usdw : w ∈ S(DS)∗} for d ∈ D.

The direction D(0, us) is called the main direction relative to us.13

Definition 7.5. (Making T (S,D) into an order-invariant tree.) For disjoint lin-
early ordered sets (A,≤A) and (B,≤B), we denote by A + B the linearly ordered
set (A ∪ B,≤) where x ≤ y if and only if x ≤A y or x ≤B y or x ∈ A and y ∈ B.

We let D+ and D− be two disjoint linearly ordered sets and D = D− + D+,
and we make the join-tree T (S,D) into an ordered tree by ordering directions as
follows :

D(d, us) /us D(0, us) /us D(d′, us) for d ∈ D−, d
′ ∈ D+, for s 6= Min(S), and

D(d, us) /us D(d′, us) for d, d′ ∈ D,where d < d′.

We obtain an ordered tree denoted by UT (S,D−, D+). We denote by Pref(L)
the set of prefixes of a subset L of Aseq(S,D). With these notations :

Lemma 7.4. For every nonempty subset L of Aseq(S,D) such that Pref(L) ∩
Aseq(S,D) ⊆ L, the triple (L,≤S,D, /) is an ordered tree join-embeddable into
UT (S,D−, D+).

(In the triple (L,≤S,D, /), ≤S,D denotes actually the restriction to L of the order
≤S,D on Aseq(S,D) and similarly for /.)

Proof. Easy �

13We denote by Min(S) the smallest element of S if it exists. If s = Min(S), then D(0, us) is
undefined.
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We let Q− be the set of negative rational numbers and Q+ be the set of positive
ones. They are both order-isomorphic to Q, but it is more convenient to distinguish
them. The universal tree U = UT (Q,Q−,Q+) is shown on Figure 10.

Q

U U U U

U U U U

U

Q+Q−

Figure 10. The universal tree U

Theorem 7.1. Every ordered tree join-embeds into the tree U = UT (Q,Q−,Q+).

Proof. Since the case of a finite tree is trivial, we consider an infinite ordered tree
(T,≤, /), ω-ordered by 4, with corresponding enumeration denoted by t0, ..., tn, ...
We define a structuring of T that depends on this enumeration and associates a
finite depth with each node. This structuring will be the basis of a representation
of ordered trees by ”usual” binary trees that will be considered in Section 7.

Hence we begin by some definitions depending on 4. First, we associate with
every x ∈ T a subset U(x) characterized as follows :

(1) U(x) is a maximal chain and contains x,
(2) it is lexicographically minimal with this property, which means that for ev-

ery maximal chain W containing x and different from U(x), the 4-smallest
element of U(x) M W defined as (U(x)\W ) ∪ (W\U(x)) belongs to U(x).

For each x, there exists such a set U(x) : we let J(x) be the increasing sequence
of integers i0 < i1 < ... < in < ... defined inductively as follows :

• i0 is the smallest j such that x and tj are comparable,
• in+1 is the smallest j > in such that x, ti0 , ..., tin

, tj form a chain.

We let U(x) = {x, ti0 , ..., tin
, ...}.

Claim 7.2. U(x) is a maximal chain.

Proof. Any two nodes of U(x) are comparable, otherwise some set {x, ti0 , ..., tin
} is

not a chain, contradicting the definition. If U(x) is not a maximal chain, there is a
node y such that U(x) ∪ {y} is a chain. Let y = tj we have in < j < in+1 for some
n. From the definition of in+1, in+1 = j should hold : a contradiction. Hence U(x)
is a maximal chain. �
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It is clear that Conditions (1) and (2) define U(x) in a unique way. (Because if
another set W also satisfies them, the 4-smallest element of U(x) M W must be in
W and in U(x) : a contradiction.)

Claim 7.3. If y < z and y ∈ U(x), then z ∈ U(x).

Proof. Every maximal chain in a tree is an up-set of that tree. �

Claim 7.4. If y < x and y ∈ U(x), then U(y) = U(x).

Proof. U(x) is a maximal chain containing y. If W is a maximal chain containing
y, thus it contains also x by the proof of Claim 7.3. Hence the 4-smallest element
of W M U(x) belongs to U(x). Hence, U(x) satisfies the conditions characterizing
U(y), and thus U(y) = U(x). �

Claim 7.5. If U(x) 6= U(y), then U(x) ∩ U(y) = T z for some z. If x and y are
incomparable, then z = x ∨ y.

Proof. We first note that U(x) ∩ U(y) 6= ∅ because, since T is a join-tree, x ∨ y ∈
U(x) ∩ U(y).

Since U(x) and U(y) are incomparable, there are u in U(x)\U(y) and v in
U(y)\U(x), which are incomparable by Claim 7.3. Also by Claim 7.3, T u∨v ⊆
U(x) ∩ U(y). For the converse let w belong to U(x) ∩ U(y). It is comparable to u
and to v because U(x) and U(y) are chains. There are several cases : if u, v ≤ w
then u ∨ v ≤ w, which gives w ∈ T u∨v as wanted. The other cases are u, v ≥ w,
u ≤ w ≤ v, v ≤ w ≤ u, but u and v would be comparable. Hence they are excluded.
This proves the first assertion with z = u ∨ v.

If x and y are incomparable, then x ∈ U(x)\U(y) and y ∈ U(y)\U(x) (because
if x /∈ U(x)\U(y), then x ∈ U(x) ∩ U(y) and x and y are comparable). The first
part gives the result. �

We need some more definitions.
We let U = {U(x) : x ∈ T}. For U in U , we let a(U) be the 4-smallest x such

that U(x) = U . By Claim 7.5, for any three sets U,U ′, U ′′ in U , the sets U ∩ U ′

and U ∩ U ′′ are comparable for inclusion.
Thus for U in U , different from U(t0), we can define p(U) (for ”predecessor of

U”) as the set W ∈ U such that, under the condition that a(W ) ≺ a(U), the set
U ∩W is largest possible, and among those, a(W ) is the 4-smallest.

We also define U−, U+ and b(U) by U− = U\p(U) and U+ = U\U− = U∩p(U) =
T b(U).

Note that U = U− + U+ and b(U) ∈ U+, b(U) /∈ U−.
We also define the depth of U as follows : d(U) = 0 if U = U(t0), d(U) =

d(p(U)) + 1 otherwise.
Letting ia(U) denote the integer i such that a(U) = ti, we have :

Claim 7.6. The integers ia(U) and d(U) are well-defined and d(U) ≤ ia(U) for all
U in U .

Proof. Since every x in T is equal to some ti, the integer ia(U) is well-defined for
all U . We now use induction on ia(U). We have d(U) = 0 if ia(U) = 0. Otherwise :
d(U) = d(p(U)) + 1 ≤ ia(p(U)) + 1 ≤ ia(U)), since ia(p(U)) < ia(U) by the
definition of p(U). �

Claim 7.7. For any two distinct sets U,W in U , we have U− ∩W− = ∅.
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Proof. Without loss of generality, let a(W ) ≺ a(U). We have U ∩W ⊆ U ∩ p(U)
by the definition of p(U). Hence W− ⊆ p(U) hence U− ∩W− = ∅. �

Finally, for every x in T , x /∈ U(t0), we define W−(x) = W−, p(x) = b(W ),
d(x) = d(W ), where W is the unique set (cf. Claim 7.7) such that x ∈ W−. We
call d(x) the depth of x.

Claim 7.8. For all x /∈ U(t0) : W−(x), p(x), and d(x) are well-defined, d(x) =
d(p(x)) + 1 and x < p(x).

Proof. Clearly, x belongs to some W with minimal ia(W ). Then x ∈ W− because
otherwise, x ∈ p(W ), and ia(p(W )) < ia(W ), contradicting the choice of W .

We have thus : d(x) = d(W )= d(p(W )) + 1 and d(b(W )) + 1 = d(p(x)) + 1.
We need only prove that d(p(W )) = d(b(W )). This is true because b(W ) ∈

p(W )−, which we prove as follows. If this were not the case, we would have b(W ) ≥
b(p(W )). But we would have W ∩ p(W ) = W ∩ p(p(W )) but ia(p(p(W ))) <
ia(p(W )), hence p(W ) would not be of minimal index with the property that W ∩
p(W ) is largest possible.

Hence we have d(x) = d(p(x)) + 1.
Finally x < p(x) because x ∈W− and p(x) = b(W ). �

For every z, we let Main(z) be the main direction relative to it, i.e., the unique
one which meets W−(z).

Claim 7.9. For every x, y ∈ T , either W−(x) ∩W−(y) = ∅, or W−(x) = W−(y),
p(x) = p(y) and dirp(x)(x) = dirp(x)(y).

If W−(x) ∩W−(y) = ∅ and p(x) = p(y) then dirp(x)(x) ∩ dirp(x)(y) = ∅.

Proof. The first assertion follows from Claim 7.7. The fact dirp(x)(x) = dirp(x)(y)
is clear since x, y < p(x) = p(y). Since x and y belong to a same chain, they are
comparable hence in the same direction relative to p(x).

In the second assertion, if z ∈ dirp(x)(x) ∩ dirp(x)(y), then z ∈ W−(x) ∩W−(y).
�

Claim 7.10. (1) If x and y are incomparable, and x is not in the main direction
relative to x ∨ y then x ∨ y = pn(x) for some n > 0.

(2) If x and y are incomparable, and x is in the main direction relative to x∨y
then x ∨ y > pn(x) for some n ≥ 0, such that pn(x) ∈W−(x ∨ y).

Proof. (1) The proof is by induction on d(x).
If d(x) = 0, then x is in the main direction, there is nothing to do.
Otherwise there are three cases :
• p(x) = x ∨ y : then we are done,
• p(x) < x∨y : then x∨y = p(x)∨y and the result follows by induction

since d(p(x)) < d(x),
• x < x ∨ y < p(x) : in this case W−(x) = W−(x ∨ y) hence x is in the

main direction, this cannot happen.
(2) If x ∈ W−(x ∨ y) then the result holds with n = 0. Otherwise there is

z in W−(x ∨ y) incomparable with x. By 1) there is n > 0, such that
pn(x) = x ∨ z. We have x ∨ z ∈ W−(x ∨ y), which completes the proof.

�
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We can now define an embedding of T into UT (Q,Q−,Q+) by using an induction
on the depth of nodes.

More precisely, we define a mapping h that associates with x of depth d(x) = k a
sequence of the form s1d1s2d2...dksk+1 where each si is in Q and each di in Q−∪Q+.

First we define an order-preserving embedding hU(t0) : U(t0) −→ Q, and for x
of depth 0, we let h(x) = hU(t0)(x).

For x of depth n+ 1 we need some constructions :

(1) we define an embedding ofW −→ Q denoted by hW whereW = W−(x) (the
same embedding will be used for W−(x) and W−(y) if W−(x) = W−(y)),

(2) for z = p(x), we write Dir(z, T ) as Dir−(z, T ) + {Main(z)}+Dir+(z, T )
where + is the concatenation of sets linearly ordered by /z; (in other
words, Dir−(z, T ) is the set of directions in Dir(z, T ) that are smaller
than Main(z) with respect to /z, and Dir+(z, T ) is the set of directions in
Dir(z, T ) that are larger than Main(z)),

(3) we define two embeddings kDir−(z,T ) : Dir−(z, T ) −→ Q−, and kDir+(z,T ) :
Dir+(z, T ) −→ Q+. We can now define, letting D be the direction of x
relative to z :
• h(x) = h(z)kDir−(z,T )(D)hW (x) if D Cz Main(z), and
• h(x) = h(z)kDir+(z,T )(D)hW (x) if Main(z) Cz D.

Note that since we use induction on depth, h(z) is well-defined, and so is
h(x).

Claim 7.11. h is a join-embedding of T into the ordered tree U = UT (Q,Q−,Q+).

Proof. We only check that h preserves joins.
Let x and y in T be incomparable, let D = dirx∨y(x) and D′ = dirx∨y(y).

• First case : none of D and D′ is the main direction relative to x∨ y. Using
the last assertion of Claim 7.9 and Claim 7.10, we have : d(x) = k > n =
d(x ∨ y), d(y) = m > n = d(x ∨ y).

We may assume that h(x ∨ y) = s1d1s2d2...dnsn+1. Hence h(x) =
s1d1s2d2...dnsn+1dn+1...dksk+1and h(y) = s1d1s2d2...dnsn+1d

′
n+1...d

′
ms

′
m+1,

where dn+1and d′n+1 are the codings of the directions D and D′. From
Lemma 7.2, we have :

s1d1s2d2...dnsn+1 = h(x) ∨ h(y)

as was to be proved.
• Second case : One of d and d′, say d′, is the main direction relative to x∨y.

We have in this case d(x) = k > n = d(x ∨ y), d(y) = m ≥ n = d(x ∨ y).
Again h(x ∨ y) = s1d1s2d2...dnsn+1. Then

h(x) = s1d1s2d2...dnsn+1dn+1...dksk+1 and

h(y) = s1d1s2d2...dns
′
n+1d

′
n+1...d

′
ms

′
m+1

with s′n+1 < sn+1 By Lemma 7.2 again we have s1d1s2d2...dnsn+1 = h(x)∨
h(y), because s′n+1 < sn+1.

�

This completes the proof of Theorem 7.1. �

Remarks 7.1. (1) UT (1,∅,N) is a tree into which each infinite tree in the
sense of [8] join-embeds.
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(2) Fräıssé defines in [29] (Theorem 6.2 of Chapter 10) a (countable) tree W,
which is actually the unordered tree underlying UT (Q,∅,1) and proves that
all finite or countable trees embed into it. His theorem concerns embeddings
of trees ; here we are concerned with join-embeddings of ordered trees. The
tree W is a binary join-tree and all binary join-trees join-embed into it.
Only binary join-trees do so, since W is binary and joins are preserved.
Corominas ([7]) defines a countable join-tree into which every countable
join-tree has a join-embedding.

7.3. Representing join-trees and modular decompositions by standard

binary trees. Along the lines of Definition 7.1, we will represent the ordered tree
U = UT (Q,Q−,Q+) as well as any ordered tree T by a node-labeled standard
binary tree. As a preliminary step, we represent an ordered tree T by a rooted,
diagram-connected ordered tree. We will then apply Proposition 7.2 to this tree and
obtain immediately the result.

Definition 7.6. The tree ∆(T,4) associated with an ordered tree T , ω-ordered by
4. Let T be an ordered tree, which is ω-ordered, and enumerated as t0, t1, ... We
will use some notions defined in the proof of Theorem 7.1, and in particular the
chains U(x), W−(x), W+(x), the node p(x) and the depth d(x), associated with
every node x ∈ T (the node p(x) and the chains W−(x), W+(x) are defined only
for x of positive depth).

A rooted diagram-connected ordered tree ∆ can be specified from T by the
following conditions :

(1) Its nodes are of types ν, δ− or δ+, the sons of the nodes of type ν are of
type δ− or δ+ and those of the nodes of type δ− or δ+ are of type ν.

(2) The nodes of type ν are the nodes of T ; a node x of depth n in T is at
distance 2n+ 1 to the root in ∆.

(3) The root of ∆ is of type δ+, and the linearly ordered set of its sons is U(t0),
the set of nodes of T of depth 0.

(4) The sons of a node x of type ν are the directions (in T ) relative to this
node, except for the main direction relative to x, i.e. the one that meets
W−(x) ; the nodes of type δ− are those which are strictly smaller than the
main direction relative to x, those of type δ+ are the directions which are
strictly larger than the main direction relative to x.

(5) A node w of type δ− or δ+ is a direction of the form dirT,p(x)(x) for some
x where p(x) is the father of w in ∆ and W−(x) ⊆ w. Then W−(x) is the
set of sons of w.

Lemma 7.5. There is a unique rooted, diagram-connected ordered tree ∆(T,4)
characterized by the above conditions. It can be defined from (T,4) by a domain
extending MS transduction. This transduction can also define an ω-order 4′ on
∆(T,4). The tree T can be defined from ∆(T,4) by an FO transduction denoted
by ∇.

Proof. By using induction on n, one can prove that for every n, the set of nodes of
∆(T,4) at distance at most n of the root is defined in a unique way.

It is clear that ∆(T,4) is a rooted, diagram-connected and ordered tree.
It can be defined from (T,4) by an MS transduction because U(x), U−(x),

U+(x), p(x) are definable by MS formulas : this follows immediately from the way
they are defined in the proof of Theorem 7.1.
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In order to define 4′ we use Lemma 9.1 of the appendix showing that every MS
transduction transforming a structure T into a structure U , can be enlarged so as to
transform any ω-order 4 on T into an ω-order 4′ on U . We let ∆′(T,4)=(∆(T,4
),4′).

Let us explain how T can be defined from ∆(T,4) :

(1) its nodes are those of ∆(T,4) of type ν,
(2) for two distinct nodes x, y of type ν in ∆(T,4), we let :

x <T y if and only if either x <∆(T,4) y or x ≤∆(T,4) u, u is a left brother
of y ; (this latter condition is equivalent to dirz(x) C∆(T,4),z dirz(y) where
z is the father of y).

Directions in T are ordered as follows :
(3) if x, y are distinct nodes of T and z = x ∨ y, then dirz(x) /T,z dirz(y) iff

• either dirz(x) /∆(T,4),z dirz(y),
• or x <∆(T,4) w where w is a son of z labeled by δ− and y ∈ U(z) (i.e.,
dirz(y) is the main direction relative to z),

• or w <∆(T,4) y where w is a son of y labeled by δ+ and x ∈ U(z) (i.e.,
dirz(x) is the main direction relative to z)

This definition is clearly expressible as an FO transduction, that we will denote by
∇. �

By combining Proposition 7.2 and Lemma 7.5 we obtain :

Corollary 7.1. There exists a domain extending MS transduction ∆ ◦ σ that as-
sociates with every ordered tree T that is also ω-ordered a node-labeled standard
binary ω-ordered tree W . An MS transduction can define T from W .

Proof. In one direction one uses ∆ ◦ σ, and in the other the mapping Compress◦
∇ which is an MS transduction, as composition of two MS transductions. �

We now apply this to the representation of modular decompositions. We re-
call that Gdec(G) is a modular tree augmented with some node-labels and a
binary relation fedg between some nodes. Formally, Gdec(G) is of the form
(T,≤, lab⊕, lab⊗, lab−→⊗ , fedg).

Assuming that (T,≤) is represented by a node-labeled standard binary tree
(W,≤ nodeT , lsonW , rsonW ) in the sense of Corollary 7.1, then we define a sparse
representation of the modular decomposition of G as a structure Sdec(G) = (W,≤
nodeT , lsonW , rsonW , lab⊕, lab⊗, lab−→⊗ , sedg), where sedg is the restriction of fedg

to the set of sons of nodes of type IV (corresponding to prime factors). The relation
fedg on sons of nodes of type III (occurrences of linear sums) is no longer necessary
because the linear order on directions in T is handled by the inorder on W derived
from the left and right types of sons.

Theorem 7.2. There exists a domain extending MS transduction that associates
with an ω-ordered graph G a sparse representation Sdec(G) of its modular decom-
position. The structure Sdec(G) is a vertex- and edge-labeled graph of degree m+3
where m is the maximum degree of a vertex in a prime factor of G (cf. case IV of
Proposition 5.1). There exists an MS-transduction that defines G from Sdec(G).

Proof. It suffices to combine the MS transductions of Theorem 6.1 and Corol-
lary 7.1.
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Note that the tree (T,≤) underlying Gdec(G) is not ordered : only the sons of
the nodes of type III are linearly ordered, whereas Corollary 7.1 uses ordered trees.
But since an ω-order is available in G whence in T , we can use it to make T into an
ordered tree, just by defining a linear order on the directions relative to the nodes
of types I, II and IV.

The bound on the degree of Sdec(G) follows from the definitions. �
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8. Concluding remarks and questions

We have proved that the graph Sdec(G) representing the modular decomposition
of a countable graph G can be defined from G and any ω-order of its vertices by
an MS transduction, and that, conversely, G is definable from Sdec(G) also by an
MS transduction.

Finite presentations of countable graphs of several types are studied by Blumen-
sath and Graedel in [3]. One can thus ask whether a finite presentation of G yields
one of same type of Sdec(G). A graph G is VR-equational (i.e. is the canonical
solution of a finite system of equations over so-called VR operations) if and only
if it is the image of the standard binary tree B = ({0, 1}∗, lsonB, rsonB) under
an MS transduction ([3]). If G is VR-equational, and if an ω-order of VG is MS
definable, then by Theorem 7.2 and Proposition 9.2-1, Sdec(G) is also the image
of B under an MS transduction, hence is VR-equational. (Since no ω-order on B

is MS definable, the second assumption cannot be deleted). Conversely, if Sdec(G)
is VR-equational, so is G.

Question 8.1. Is the former assertion true without the hypothesis that an ω-order
of VG is MS definable ?

It is possible that something weaker than an ω-order (e.g., a partial order of
some kind) is sufficient for Proposition 6.1 and Theorem 7.2 to hold.

Remark 8.1. Certain of our constructions consist actually in constructing au-
tomatic structures (we refer the readers to [38] or [3] for definitions). The class
of automatic structures contains the VR-equational graphs, characterized also as
prefix-recognizable graphs. These structures have domains defined as regular lan-
guages and relations defined by multihead synchronized automata. The tree B

ordered by inorder is an automatic structure. So is the universal tree UT (Q,Q−,
Q+) with domain defined as (LQ.LQ∗)∗LQ where LQ = (0 ∪ 11)∗10 represents B14

and LQ∗ = (0 ∪ 1)(0 ∪ 11)∗10 represents the linear order Q− + Q+.
Let us detail the first construction. Consider a standard binary tree T . Every

path from the root to a node can be represented by a word in {0, 1}∗ where 0
represents a transition from a node to its left son and 1 represents one from a
node to its right son. Hence the complete binary tree that encodes the set Q is
isomorphic to B = ({0, 1}∗, lsonB, rsonB) where lsonB(u, v) holds if and only if
v = u0, and rsonB(u, v) holds if and only if v = u1. In terms of the words coding
nodes, the inorder on B is defined by :
x ≤in,B y if and only if
x = y or x = t0x′ and y = t1y′, or y = x1y′, or x = y0x′ for some t, x′, y′.

It follows that B = ({0, 1}∗, lsonB, rsonB,≤in,B) is an automatic structure.

If in the structure Sdec(G) we replace lsonW and rsonW by ldesW and rdesW

such that ldesW (x, y) holds iff x ≤T u where lsonW (u, y) holds, and similarly
for rdesW , then we obtain a binary structure Fdec(G) (that is no longer sparse)
from which G can be constructed by an FO transduction. It follows that G is
automatic if Fdec(G) is, because the image of an automatic structure under an FO
transduction is automatic ([3] Proposition 4.3).

14We have two representations of B as an automatic structure. In the first one, the set of words
is {0, 1}∗. In the second one, it is a prefix-free language. The second representation ”implements”
the construction of Lemma 7.1.
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Question 8.2. For which graphs G is it true that the binary structure Fdec(G)
is automatic ?
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9. Appendix : MS logic and MS transductions

We review background definitions and results on monadic second-order logic, on
transformations of structures expressed in this language and its extensions. The
reader is referred to the book chapter [14], or to the preliminary sections of any of
the articles [11, 13, 16, 17]. However all necessary definitions are given in full in
the present section.

9.1. Relational structures and monadic second-order logic. A relational
signature is a finite set R = {A,B,C, ...} of relation symbols, each of them given
with a non-negative integer ρ(A) called its arity. We denote by ST R(R) the set of

R-structures S = 〈DS , (AS)A∈R〉 where AS ⊆ DS
ρ(A) if A ∈ R is a relation symbol.

Unless otherwise specified, structures have countable domains DS.
If R consist of relation symbols of arity one or two, then we say that the structures

in ST R(R) are binary.
A simple graph G is defined as an {edg}-structure G = 〈VG, edgG〉 where VG

is the set of vertices of G and edgG ⊆ VG × VG is a binary relation representing
the edges. Edges are directed. An undirected edge is a pair of opposite directed
edges. An ordered graph is a binary structure with two relations, the edge relation
and the order relation. If in addition we need vertex labels, we represent them by
unary relations. Binary structures can be seen as vertex- and edge labeled graphs.
If we have several binary relations, say A,B,C, the corresponding graphs will have
edges of types A,B,C.

Monadic second-order logic (MS logic for short) is the extension of first-order
logic (FO logic for short) by variables denoting subsets of the domains of the con-
sidered structures, and new atomic formulas of the form x ∈ X expressing the
membership of x in a set X . Uppercase letters denote set variables, lowercase
letters denote ordinary first-order variables.

We denote by FO(R,W ) (resp. by MS(R,W ) ) the set of First-order (resp.
Monadic Second-order) formulas written with the set R of relation symbols and
having their free variables in a set W consisting of individual as well as of set
variables. Hence, we allow first-order formulas with free set variables and written
with the atomic formulas x ∈ X . In first-order formulas, only individual variables
can be quantified.

As a typical and useful example of MS formula, we give a formula with free
variables x and y expressing that (x, y) belongs to the reflexive and transitive
closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X ] =⇒ y ∈ X)

If the relation A is not a relation of the structure but is defined by an MS
formula, then one replaces A(u, v) by this formula with appropriate substitutions
of variables.

A formula ϕ ∈ MS(R ∩ {4},W ) is order-invariant if it describes a property of
structures S in ST R(R) with help of an auxiliary linear ordering of DS of type
ω if DS is infinite. More precisely, we require that, for S ∈ ST R(R), for every
two linear orderings 41 and 42 of DS, both of order type ω when DS is infinite,
for every assignment γ of elements of DS to the individual variables of W , and of
subsets of DS to the set variables of W , we have :

(S,41, γ) |= ϕ if and only if (S,42, γ) |= ϕ
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If this is the case, ϕ defines the property of (S, γ) : P (S, γ) if and only if (S,4
, γ) |= ϕ for some linear ordering 4 of DS of type at most ω, and we say that P
is MS- (or FO-) order-invariant. Order-invariant properties are investigated in [13]
and [2].

If S = 〈DS , (AS)A∈R〉 and 4 is a linear ordering on DS , we denote by (S,4) the
relational structure 〈DS ,4, (AS)A∈R〉.

9.2. First-Order and Monadic Second-order transductions. We also use FO
and MS formulas to define certain graph transformations. As in language theory,
a binary relation τ ⊆ A × B is called a transduction : A → B. It is considered
as a multivalued partial mapping associating with certain elements of A (usually
graphs) one or more elements of B (also graphs).

An MS transduction is a transduction specified by MS formulas. It transforms
a structure S, given with an n-tuple of subsets of its domain called the parameters,
into a structure T , the domain of which is a subset of DS×{1, ..., k}. Furthermore,
each such transduction, has an associated backwards translation, a mapping that
transforms effectively every MS formula ϕ relative to T , possibly with free variables,
into one, say ϕ#, relative to S having free variables corresponding to those of ϕ (k
times as many actually) together with those denoting the parameters. This new
formula expresses in S the property of T defined by ϕ.

We now give some details. More can be found in [11, 14].
We let R and Q be two relational signatures. Let W be a finite set of set

variables, called parameters. A (Q,R)-definition scheme is a tuple of formulas of
the form :

∆ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k)

where k > 0, Q∗k := {(q,~j) : q ∈ Q,~j ∈ [k]ρ(q)},
ϕ ∈MS(R,W ), ψi ∈MS(R,W ∪ {x1}) for i = 1, · · · , k,

and θw ∈MS(R,W ∪ {x1, · · · , xρ(q)}), for w = (q,~j) ∈ Q∗k.

These formulas are intended to define a structure T in ST R(Q) from a structure
S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S. A Q-structure T
with domain DT ⊆ DS × [k] is defined in (S, γ) by ∆ if :

(i) (S, γ) |= ϕ
(ii) DT = {(d, i) : d ∈ DS , i ∈ [k], (S, γ, d) |= ψi}
(iii) for each q in Q : qT = {((d1, i1), · · · , (dt, it)) ∈ Dt

T : (S, γ, d1, · · · , dt) |=

θ(q,~j)}, where ~j = (i1, · · · , it) and t = ρ(q).

(By (S, γ, d1, · · · , dt) |= θ(q,~j), we mean (S, γ′) |= θ(q,~j), where γ′ is the assignment

extending γ, such that γ ′(xi) = di for all i = 1, · · · , t ; a similar convention is used
for (S, γ, d) |= ψi.)

Since T is associated in a unique way with S, γ and ∆ whenever it is defined,
i.e., whenever (S, γ) |= ϕ, we can use the functional notation def∆(S, γ) for T .

The transduction defined by ∆ is the relation

def∆ := {(S, T ) : T = def∆(S, γ) for some W -assignment γ in S} ⊆ ST R(R)×ST R(Q).

A transduction f ⊆ ST R(R)×ST R(Q) is an MS (definable) transduction if it is
equal to def∆ for some (Q,R)-definition scheme ∆ (equal up to isomorphisms of
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structures). In the case where W = ∅, we say that f is definable without parameters
(note that it is functional).

We will refer to the integer k by saying that def∆ is k-copying.
We will say that the MS transduction is domain extending, if k > 1, and ψ1 is

the formula True. In this case, DT contains DS × {1}, an isomorphic copy of DS.
This transduction defines the domain of T as an extension of that of S.

If in the definition scheme ∆ we only use FO formulas, then we will say that
def∆ is an FO transduction.

A transduction def∆ ⊆ ST R(R ∪ {4}) × ST R(T ) is order-invariant if for ev-
ery S ∈ ST R(R), every assignment γ of values in P(DS) to the parameters, for
every two linear orderings 41 and 42 on DS of order type at most ω, the struc-
tures def∆(S,41, γ) and def∆(S,42, γ) are isomorphic. In this case ∆ defines a
transduction : ST R(R)→ ST R(T ) with help of auxiliary linear orderings.

Lemma 9.1. Let an MS (or FO) transduction τ : ST R(R) −→ ST R(Q). Let
us add to R and to Q a binary relation symbol 4 intended to represent orders on
the domains of structures. One can transform τ into an MS (or FO) transduction
τ ′ : ST R(R ∪ {4}) −→ ST R(Q ∪ {4}) such that for every S in ST R(R), for
every ω-order 4 on its domain, τ ′(S,4) = (τ(S),4′) where 4′ is an ω-order on
the domain of τ(S).

Proof. Let τ be k-copying. It is easy to define FO formulas θw ∈ MS(R ∪ {4

},W ∪ {x1, x2}), for w = (4,~j) ∈ {4}∗k such that, in τ ′(S,4) :

(d1, i) 4′ (d2, j) if and only if either d1 ≺S d2 or (d1 = d2 and i ≤ j).

It is clear that 4′ is an ω-order on the domain of τ(S) if 4 is one on S. �

9.3. The fundamental property of definable transductions. The following
proposition says that if T = def∆(S, γ), then the monadic second-order properties
of T can be expressed as monadic second-order properties of (S, γ). The usefulness
of definable transductions is based on this proposition.

Let ∆ = (ϕ, ψ1, · · · , ψk, (θw)w∈Q∗k) be a (Q,R)-definition scheme, written with
a set of parameters W . Let V be a set of set variables disjoint from W . For
every variable X in V , for every i = 1, · · · , k, we let Xi be a new variable. We let
V ′ := {Xi : X ∈ V , i = 1, · · · , k}. Let S be a structure in ST R(R) with domain
D. For every mapping η : V ′ −→ P(D), we let ηk : V−→ P(D× [k]) be defined by
ηk(X) = η(X1)× {1} ∪ · · · ∪ η(Xk)× {k}. With this notation we can state :

Proposition 9.1. For every formula β in MS(Q, V ) one can construct a formula
β# in MS(R, V ′ ∪W ) such that, for every S in ST R(R), for every assignment
γ : W −→ P(DS) for every assignment η : V ′ −→ P(DS) we have :

(S, η ∪ γ) |= β#if and only if :
def∆(S, γ) is defined, ηk is a V –assignment in def∆(S, γ),
and (def∆(S, γ), ηk) |= β.

If the definition scheme and β are FO, then the formula β# is also FO.

Note that, even if T = def∆(S, γ) is well-defined, the mapping ηk is not necessarily
a V -assignment in T , because ηk(X) may not be a subset of the domain of T which
is a possibly proper subset of DS × [k]. We call β# the backwards translation of β
relative to the transduction def∆. Here are some important consequences of this
proposition and of Lemma 9.1.
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Proposition 9.2. (1) The composition of two MS (or FO) transductions is an
MS (or an FO) transduction.

(2) The inverse image of an MS-definable class of structures under an MS
transduction is MS-definable. A similar statement holds with FO instead
of MS.

(3) The inverse image of a class of structures defined by an order-invariant
MS-formula under an order-invariant MS-transduction is definable by an
order-invariant MS-formula.
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