
HAL Id: hal-00288207
https://hal.science/hal-00288207v1

Submitted on 16 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Data-Parallel Algorithm to Reliably Solve Systems of
Nonlinear Equations

Frédéric Goualard, Alexandre Goldsztejn

To cite this version:
Frédéric Goualard, Alexandre Goldsztejn. A Data-Parallel Algorithm to Reliably Solve Systems of
Nonlinear Equations. Ninth International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT ’08), 2008, Dunedin, New Zealand. pp.39-46, �10.1109/PD-
CAT.2008.26�. �hal-00288207�

https://hal.science/hal-00288207v1
https://hal.archives-ouvertes.fr

A Data-Parallel Algorithm to Reliably Solve
Systems of Nonlinear Equations

Frédéric Goualard¶,‖ and Alexandre Goldsztejn§

¶Université de Nantes, Nantes Atlantique Universités, CNRS, LINA, UMR 6241.

2 rue de la Houssinière, BP 92208, F-44000 NANTES
§CNRS, LINA, UMR 6241. 2 rue de la Houssinière, BP 92208, F-44000 NANTES

Abstract

Numerical methods based on interval arithmetic are efficient means to reliably solve nonlinear systems of equa-
tions. Algorithm bc3revise is an interval method that tightens variables’ domains by enforcing a property called
box consistency. It has been successfully used on difficult problems whose solving eluded traditional numerical
methods. We present a new algorithm to enforce box consistency that is simpler than bc3revise, faster, and eas-
ily data parallelizable. A parallel implementation with Intel SSE2 SIMD instructions shows that an increase in
performance of up to an order of magnitude and more is achievable.

Keywords: nonlinear equations, interval arithmetic, SIMD algorithm

1 Introduction

Interval methods [12] are numerical algorithms that useinterval arithmetic[11] to avoid rounding error problems
intrinsic to floating-point arithmetic [7]. They give enclosures of all solutions of nonlinear systems of equations
with the guarantee that no solution is ever lost.

Straight interval extensions of classical numerical algorithms such as the Newton method are not well-suited
to problems with many solutions or with large initial domains for the variables. To tackle these shortcomings,
elaborate algorithms have been devised in the context ofInterval Constraint Programming[1]; they are usually
employed as the inner stage of a free-steering nonlinear Gauss-seidel method to exclude parts of a variable’s
domain that do not contain zeroes of a unidimensional equation. Domain tightening is achieved by enforcing some
local consistency property.Box consistency[2] is one such consistency notion, which has been proved efficient in
handling hard problems whose solving eluded traditional numerical methods for years [6]. It is usually enforced
by Algorithm bc3revise [2], which combines a binary search with interval Newton steps [11] to isolate leftmost
and rightmost zeroes of a unidimensional equation in the domain of a variable.

Thanks to ubiquitous Intel SSE2 SIMD instructions, it is possible to perform many interval operations at
roughly the same cost as floating-point operations by computing the two bounds of the result in parallel (basic
interval vectorization) [5]. We outline in Section 2 a novel way to do even better and to compute an interval
function for two different intervals in parallel (a four times speed-up compared to “sequential” interval evaluation).

As all interval methods, Algorithmbc3revise—described in Section 3—can benefit from basic interval vector-
ization without any modification. On the other hand, it cannot take full advantage of the new arithmetic described
in Section 2. Hence the introduction of Algorithmsbc in Section 4.1: it is a new algorithm that enforces box con-
sistency by “shaving” domains from the left and right boundsinward. Experiments show that a sequential version
of sbc is already faster thanbc3revise on a set of test problems. We then describe in Section 4.2 an algorithm
that exploits the potential for a high level of data parallelism in sbc by using SSE2 instructions to perform inter-
val arithmetic evaluations of functions at four times the speed of a sequential code. Experiments are reported in
Section 5 and show increases in performances overbc3revise of up to an order of magnitude and more.

‖Corresponding author’s email:Frederic.Goualard@univ-nantes.fr.

1

2 Interval Arithmetic and its Vectorization

Classical iterative numerical methods suffer from defectssuch as loss of solutions, absence of convergence, and
convergence to unwanted attractors due to the use of floating-point numbers (akafloats). At the end of the fifties,
Moore [11] popularized the use of intervals to control the errors made while computing with floats. Additionnally,
interval extensions of iterative numerical methods are always convergent.

In the following, we use the notations sponsored by Kearfottand others [9], where interval quantities are
boldfaced.

Interval arithmetic replaces floating-point numbers by closed connected sets of the formI = [I, I] = {a ∈
R | I 6 a 6 I} from the setI of intervals, whereI andI are floating-point numbers. In addition, eachn-ary real
functionφ with domainDφ ⊆ R

n is extended to an interval functionΦ with domainDΦ ⊆ I
n in such a way that

thecontainment principleis verified:

∀A ∈ Dφ, ∀I ∈ DΦ : A ∈ I =⇒ φ(A) ∈ Φ(I), (1)

as illustrated by the following example.

Example 1 Thenatural interval extensionsof addition and multiplication are defined by:

I1 + I2 = [↓I1 + I2↓, ↑I1 + I2↑]

I1 × I2 = [min(↓I1I2↓, ↓I1I2↓, ↓I1I2↓, ↓I1I2↓), max(↑I1I2↑, ↑I1I2↑, ↑I1I2↑, ↑I1I2↑)]

where↓r↓ (resp.,↑r↑) is the greatest floating-point number smaller or equal (resp., the smallest floating-point
number greater or equal) tor.

Then, given the real functionf(x, y) = x × x + y, we may define its natural interval extension byf(x, y) =
x× x + y, and we have that, e.g.,f([2, 3], [−1, 5]) = [3, 14].

Implementations of interval arithmetic use outward rounding to enlarge the domains computed so as not to violate
the containment principle (1), should some bounds be unrepresentable with floating-point numbers.

Interval addition, subtraction, multiplication, division, and integral exponentiation may be computed at roughly
the same speed as their floating-point counterpart thanks toSIMD instructions, and in particular, to Intel SSE2
instructions.

Intel SSE2 instructions manipulate 128 bits registers thatmay be interpreted in various ways. Most notably,
the registers may pack 2 double precision or 4 single precision floating-point numbers. An SSE2 operator may
then compute 2 or 4 floating-point operations in parallel (see Figure 1(a)).

abcd

efgh

a+eb+fc+gd+h

+ + + +

= = = =

Four packed single

(Least significant byte to the right)

++

= =

ab

d c

b+d a+c

2 packed double

(Least significant byte to the right)

(a) SIMD floating-point arithmetic

−ab−cd

−ef−gh

−a−eb+f−c−gd+h

+ + + +

= = = =

(Least significant byte to the right)

(b) Two interval addi-
tions with one SSE2 in-
struction

Figure 1: Floating-point arithmetic and interval arithmetic in SSE2 registers

The direction of rounding for SSE2 instructions is selectedindependently of that of the Floating-Point Unit
(FPU). An SSE2 instruction uses the same rounding for all operations performed in parallel. Nevertheless, thanks
to simple floating-point properties, it is still possible towrite algorithms that compute in parallel the two outward-
rounded bounds of the result of interval operations. For example, we may use the property:

↓a + b↓= − ↑−a− b↑

wherea andb are floating-point numbers.

2

By storing the negation of the left boundof an interval, and by setting once and for all the rounding direction
for SSE2 instructions to+∞, the two interval additions[a, b]+[e, f] and[c, d]+[g, h] can be performed by the sole
SIMD instruction depicted in Figure 1(b). All the other operators may be defined accordingly. Goualard’s paper [5]
illustrates these principles for the case of basic intervalvectorization (two double precision bounds computed in
parallel). The algorithms to compute four bounds in parallel are new and are reported in an unpublished paper
currently under review.

Armed with an interval library whose operators compute two interval operations in parallel, we may evaluate
the interval extension of a functionf for two different intervals for the same cost asone floating-pointevaluation
of f . In the following, we note [[f(I1), f(I2)]] such a parallel evaluation off for two different interval arguments.

3 Box Consistency and the bc3revise Algorithm

Interval Constraint Programming[1] is a successful approach to reliably isolate all solutions of systems of equa-
tions. It makes cooperatecontracting operatorsto prune the domains of the variables (intervals with floating-point
bounds from the setI) with smartpropagation algorithms[10]—akin to free-steering nonlinear Gauss-Seidel—to
ensure consistency among all the constraints.

The amount of pruning obtained from one equation is controlled by the level of consistency enforced. Box
consistency [2] is defined as follows:

Definition 1 (Box consistency)An equationf(x1, . . . , xn) = 0 is box consistent with respect to a variablexi

and a boxB = I1 × · · · × In if and only if:

0 ∈ f(I1, . . . , Ii−1, [Ii, Ii
+], Ii+1, . . . , In)

and

0 ∈ f(I1, . . . , Ii−1, [Ii
−

, Ii], Ii+1, . . . , In),

(2)

whereI = [I, I] is an interval with floating-point bounds,a+ (resp.,a−) is the smallest floating-point number
greater than (resp., the largest floating-point number smaller than) the floating-point numbera, and f is the
natural interval extension off .

Given a real functionf : R
n → R, and a box of domainsB = I1 × · · · × In ∈ I

n, we definegB
i : I → I as

theith unary interval projection with respect toB of its interval extensionf :

gB
i (x) = f (I1, . . . , Ii−1, x, Ii+1, . . . , In), i ∈ {1, . . . n}.

In the following, we will mostly manipulategB
i instead off . The original real functionf , the boxB of domains

considered and/or the variablexi on which the projection is performed will often be left implicit and omitted from
the notation ofg.

In order not to lose any potential solution, an algorithm that enforces box consistency of an equation with
respect to a variablexi and a box of domains must return the largest domainI′

i ⊆ Ii that verifies Eq. (2).

Algorithm 1 Computing a box consistent interval with respect tog the usual way

[bc3revise] in: g : I→ I; in: I ∈ I

Returns the largest interval included in I that is box consistent with respect to g

begin
1 Il ← left narrow(g, I)
2 if Il 6= ∅ :
3 Ir ← right narrow(g, [Il, I])
4 return � (Il ∪ Ir) # returns the smallest interval w.r.t. set inclusion that contains Il ∪ Ir

5 else :
6 return ∅

end

Algorithmbc3revise [2], presented by Algorithms 1 and 2, considers the unary projection of ann-ary equation
on a variablexi (where all variables butxi have been replaced by their current domain) and a domainIi. It enforces

3

box consistency by searching the leftmost and rightmostcanonical domains∗ for whichg evaluates to an interval
containing0. The search is performed by a dichotomic search aided with Newton steps to accelerate the process.
Algorithm 2 describes the search of a quasi-zero to update the left side ofIi. The procedureright narrow to
update the right bound works along the same lines and is, therefore, omitted.

Algorithm 2 Computing a box consistent left bound with Newton steps and abinary search

[left narrow] in: g : I→ I; in: I ∈ I

Returns an interval included in I

with the smallest left bound l such that 0 ∈ g([l, l+])
begin

1 if 0 /∈ g(I) : # No solution in I

2 return∅

3 else:
4 if I+

> I: # canonical(I):
5 return I

6 else:
7 I ← Newton(g, g′, I) # Interval Newton steps
8 if 0 ∈ g([I, I+]): # Box consistent left bound?
9 return I

10 else:
11 (I1, I2)← split(I) # I1 ← [I, m(I)], I2 ← [m(I), I]
12 I ← left narrow(g, I1)
13 if I = ∅ :
14 return left narrow(g, I2)
15 else:
16 return I

end

Algorithm bc3revise first tries to move the left bound ofIi to the right, and then proceeds to move its right
bound to the left. TheNewton procedure computes a fixpoint of the Interval Newton algorithm [11], where a
Newton step at iterationj + 1 is:

I(j+1) ← I(j) ∩

(

m(I(j))−
g(m(I(j)))

g′(I(j))

)

with m(I) the midpoint of the intervalI†. As in Ratz’s work [13], the Newton step uses an extended version of the
interval division to return a union of two semi-open-ended intervals wheneverg′(I(j)) contains0. The subtraction
and the intersection operators are modified accordingly. The intersection operator is applied to an interval (I(j))
and a union of two intervals (result of the subtraction), andreturns an interval. Figure 2 presents graphically the
steps performed to enforce box consistency. The encircled numbers label the steps.

Algorithmsbc3revise, left narrow andright narrow do not offer opportunities to exploit full data parallelism
as they do not require close evaluations of the same functionover different domains. The same holds for the
Newton procedure: in the general case,g andg′ are different functions, and therefore cannot be evaluatedin
parallel with SIMD instructions.

4 Box Consistency by Shaving

To obtain a higher level of data parallelism, we propose a newalgorithm to enforce box consistency on the projec-
tion gB

i of an equationf = 0 on a variablexi: starting from the original domainIi for xi, consider separately its
left half and its right half; for the left part, linearizeg atIi as for a Newton step, solve the resulting linear equation
and intersect the resulting domain with the left half ofIi; do the same for the right half by linearizingg at Ii. A
new smaller domain that preserves solutions is then obtained; Iterate until reaching a fixpoint.

∗A non-empty interval[a, b] is canonical ifa+ > b.
†Note that we are free to choose any point inI, not the midpoint only. We take advantage of this in the algorithms presented in the next

section.

4

1 2 3 4 5 6−1−2−3

quasi-zero

f

1©

2©

3©

4©
5©

6©

7©

8©

9©

10©

11©

12©

13©

Figure 2: Enforcing box consistency withbc3revise

4.1 A Sequential Algorithm: sbc

Figure 3 illustrates graphically the process just described, and Algorithm 3 presents the actual algorithm.

Proposition 1 (Termination, Correctness, and Completeness ofsbc) Given ann-ary equationc : f(x1, . . . , xn) =
0, a boxI1 × · · · × In of domains, and a projectionc : gi(x) = 0 of c, we have:

Termination. The call tosbc(gi, Ii) always terminates;

Correctness. The equationc is box consistent with respect toxi andsbc(gi, Ii);

Completeness.No solution is lost during the tightening process:

∀(r1, . . . , rn) ∈ I1 × · · · × In : f(r1, . . . , rn) = 0 =⇒ ri ∈ sbc(gi, Ii).

Proof. In the following, the intervalI corresponds to the domainIi of xi.
(Termination). Algorithmsbc terminates in any case since we always tightenI in the loop 2–23 (either by splitting it on

Line 3, or by tighteningIl and Ir with Newton steps on Lines 10 and 19). Since we consider intervals with floating-point
bounds, of which there are finitely many, we have to reach canonicity of I eventually. At that point, eithergi(I) contains0,
and we have reached box consistency, or it does not, and we cansafely narrowI to ∅, which both make us leave the loop.

(Correctness). We leave the loop 2–23 ifI is empty or if the canonical intervals at left and right bounds contain solutions
of gi (Lines 5 and 14). In the latter case, we have the two conditions of Eq(2) for box consistency; the former case occurs if
bothIl andIr do not contain a solution ofc (Lines 7 and 16) or if the Newton steps on Lines 10 and 19 narrowthem down to
∅. By correctness of the interval Newton method, this case only occurs if, once again,Il andIr do not contain a solution ofc.

(Completeness). By completeness of the Newton operator, astightening only occurs either through Newton steps, or by
discarding intervals that have been proved on Lines 5, 7, 14,or 16 not to contain solutions. �

For each iteration of the loop 2–23 in Algorithmsbc, we have to computeg for intervals[Il, Il
+], [Ir

−
, Ir], Il,

Ir, [Il, Il], and[Ir, Ir]. We also have to computeg′ for intervalsIl andIr. All these evaluations are candidates
for parallelization with SIMD instructions, as presented in the next section.

5

x

y

Original domain I

Left part Il of I Right part Ir of I

New domain

f(x)

Derivative slopes on Il

Derivative slopes on Ir

Figure 3: Domain reduction obtained with one iteration of the loop insbc

4.2 An SIMD Algorithm for Box Consistency: vsbc

Algorithm 4 presents a modification of Algorithmsbc to make good use of its higher level of data parallelism
thanks to the SIMD interval arithmetic that has been presented in Section 2. The evaluations ofg andg′ are
reordered to appear in pairs that can be evaluated in parallel. In addition, we reuse the evaluation ofg([Il, Il

+])

andg([Ir
−

, Ir]) of Line 4 for the Newton steps of Line 22 instead ofg([Il, Il]) andg([Ir , Ir]) as was done in
Algorithm sbc. This choice avoids two evaluations ofg at the cost of potentially slightly decreasing the tightening
ability of the Newton step. The domain computed is unaffected by this optimization. In particular, box consistency
is still obtained eventually.

At each iteration of the loop between Lines 2 and 24, we perform 4 interval evaluations ofg and 2interval
evaluations ofg′ for the same cost as 2floating-pointevaluations off and 1floating-pointevaluation off ′.

5 Experiments

To evaluate the impact of our new algorithms, we have selected 20 instances of 12 classical test problems. Some
are polynomial and others are not. The characteristics of these test problems are summarized in Table 1. All
problems are structurally well constrained, with as many equations as variables. Column “Size” reports the num-
ber of equations/variables. Column “Equations” indicateswhether all equations are polynomial (quadratic, if no
polynomial has a degree greater than 2). A problem is labelled “non-polynomial” if at least one constraint contains
a trigonometric, hyperbolic or otherwise transcendental operator. All test problems are presented on the COPRIN
web page [8].

All experiments were conducted on an Intel Core2 Duo T5600 1.83GHz. The Whetstone test [3] for this
machine reports 1111 MIPS with a loop count equal to100, 000. All algorithms have been implemented in an
in-house C++ solver, withgaol [4] as the underlying interval arithmetic library. The SIMDinterval arithmetic
presented above has been implemented from scratch using Intel intrinsic instructions. In its current state, the
library only contains vectorized versions of the addition,subtraction, multiplication, division, and integral power.
All other SIMD functions are emulated with sequential interval arithmetic. As a consequence, only polynomial
equation systems are entirely solved in an SIMD environmentat present.

Table 2 reports the time spent in seconds to isolate all solutions of the test problems in domains with a width

6

Algorithm 3 Enforcing box consistency by shaving

[sbc] in: g : I→ I; in: I ∈ I

Returns the largest interval included in I that is box consistent w.r.t. g

begin

1 (left consistent, right consistent)← (false, false)

2 do:

3 (Il, Ir)← split(I)

4 if ¬left consistent: # Updating the left bound

5 if 0 /∈ g([Il, Il
+]): # I not box consistent to the left?

6 Il ← [Il
+, Il] # Considering the remainder of Il

7 if 0 /∈ g(Il): # No solution in the remainder of Il?

8 Il ← ∅

9 else:

10 Il ← Il ∩
(

Il − g([Il, Il])/g′(Il)
)

One Newton step

11 else:
12 left consistent← true
13 if ¬right consistent: # Updating the right bound

14 if 0 /∈ g([Ir
−

, Ir]): # I not box consistent to the right?

15 Ir ← [Ir, Ir
−

] # Considering the remainder of Ir

16 if 0 /∈ g(Ir): # No solution in the remainder of Ir?

17 Ir ← ∅

18 else:

19 Ir ← Ir ∩
(

Ir − g([Ir , Ir])/g′(Ir)
)

One Newton step

20 else:
21 right consistent← true
22 I ← � (Il ∪ Ir) # Returns the “hull” [min(Il, Ir), max(Il, Ir)] of the union
23 while (I 6= ∅) ∧ (¬left consistent∨ ¬right consistent)

24 return I

end

smaller than10−6, starting from the standard domains given on the COPRIN web page. An entry “TO” indicates a
time-out (more than 30 minutes, here). Columnbc3revise presents the results obtained with Algorithmbc3revise
implemented with double precision interval arithmetic on the FPU; Columnbc3vd corresponds to Algorithm
bc3revise where interval arithmetic is performed in double precisionwith SSE2 instructions (basic vectorization);
Columnbc3vf corresponds to Algorithmbc3revise where interval arithmetic is performed in single precisionwith
SSE2 instructions (we still perform only one interval operation per SSE2 instruction, using only the lower half of
SSE2 registers, though); Columnsbc corresponds to Algorithmsbc implemented with double precision interval
arithmetic on the FPU; Columnsbcvd corresponds to Algorithmsbc where interval arithmetic is performed in
double precision with SSE2 instructions; Columnvsbc corresponds to Algorithmvsbc where interval arithmetic
is performed in single precision with SSE2 instructions (two interval operations are performed in parallel); lastly,
Columnvsbc&sbcvd corresponds to the cooperation ofvsbc andsbcvd: vsbc is used until the domains are all
smaller than a size fixed empirically to0.25; sbcvd is used afterwards.

6 Discussion

As can be seen from Columnsbc of Table 2, enforcing box consistency by shaving is faster than with Algo-
rithm bc3revise on all problems of our test set, the ratiobc3revise/sbc ranging from1.9 to 17.9 and beyond.
We also believe thatsbc is simpler to understand and easier to implement correctly thanbc3revise.

7

Algorithm 4 A data parallel algorithm for box consistency enforcement

[vsbc] in: g : I→ I; in: I ∈ I

Returns the largest interval included in I that is box consistent w.r.t. g

begin

1 (left consistent, right consistent)← (false, false)

2 do:

3 (Il, Ir)← split(I)

4 (Jl, Jr)← [[g([Il, Il
+]), g([Ir

−
, Ir])]]

5 if 0 /∈ Jl: # I not box consistent to the left?

6 Il ← [Il
+, Il] # Considering the remainder of Il

7 else:

8 left consistent← true

9 if 0 /∈ Jr: # I not box consistent to the right?

10 Ir ← [Ir, Ir
−

] # Considering the remainder of Ir

11 else:

12 right consistent← true

13 if ¬left consistent∨ ¬right consistent:

14 (Kl, Kr)← [[g(Il), g(Ir)]]

15 if 0 /∈Kl : # First checking an obvious absence of solution in Il

16 Il ← ∅

17 if 0 /∈Kr : # First checking an obvious absence of solution in Ir

18 Ir ← ∅

19 # Performing 2 Newton steps in parallel to update both bounds
20 # For better performances, we reuse Jl and Jr

21 # instead of g([Il, Il]) and g([Ir , Ir])

22 (Il, Ir)← [[Il ∩
(

[Il, Il
+]− Jl/g′(Il)

)

, Ir ∩
(

[Ir
−

, Ir]− Jr/g′(Ir)
)

]]

23 I ← � (Il ∪ Ir) # Returns the “hull” [min(Il, Ir), max(Il, Ir)] of the union

24 while (I 6= ∅) ∧ (¬left consistent∨ ¬right consistent)

25 return I

end

Table 1: Test problems characteristics

Name Code Size Equations

Bronstein bro 3 quadratic
Broyden-banded bb 100, 500, and1 000 quadratic
Broyden tridiagonal bt 10 and20 quadratic
Combustion comb 10 polynomial
Discrete Boundary Value Functiondbvf 10 and30 polynomial
Extended Freudenstein ef 30 and50 polynomial
Mixed Algebraic Trigonometric mat 3 non-polynomial
Moré-Cosnard mc 50 and100 polynomial
Robot rob 8 quadratic
Trigexp 3 te3 5 000 non-polynomial
Troesch tro 50, 100, and200 non-polynomial
Yamamura yam 6 and8 polynomial

8

Table 2: Experiments
Problem bc3revise bc3vd bc3vf sbc sbcvd vsbc vsbcvd&sbcvd
bro 2.6 0.9 0.4 0.3 0.3 0.06 0.2
bb100 10.4 3.3 3.2 2.7 1.2 0.7 0.8
bb500 123.7 39.1 27.0 24.8 10.8 5.3 5.5
bb1000 280.2 88.7 56.8 55.1 24.0 11.1 11.4
bt 10 16.9 5.8 3.4 2.1 1.0 0.4 0.5
bt 20 1127.4 382.2 260.3 141.1 66.7 28.6 30.4
comb 1.4 0.6 0.5 0.2 0.08 0.03 0.08
dbvf 10 1.7 0.5 0.6 0.3 0.1 0.08 0.1
dbvf 30 42.7 13.4 20.4 7.7 3.2 4.7 3.8▽

ef 30 2.1 0.8 TO 1.1 0.5 TO 0.3
ef 50 5.1 1.8 TO 2.2 0.9 TO 0.6
mat 26.9 13.6 13.2 1.5 1.1 0.4 1.0
mc50 23.7 6.5 5.7 11.0 4.4 3.0 4.1
mc100 175.5 49.0 46.2 86.9 36.8 28.0 35.6
rob 4.5 1.5 4.3 0.8 0.4 1.0 0.3
te35000 7.5 5.1 17.1 2.9 2.7 3.3 3.8▽

tro 50 24.8 15.3 29.1 4.4 3.6 2.6 3.4
tro 100 180.1 112.7 384.2 30.9 25.4 33.7 24.2
tro 200 1341.4 844.4 TO 231.1 188.1 TO 181
yam6 14.6 4.3 4.2 7.3 2.5 1.2 1.7
yam8 279.1 84.6 104.0 91.0 35.1 26.1 27.7
Times in seconds on an Intel Core2 Duo T5600 1.83GHz (whetstone100 000=1111 MIPS)
Best times in bold blue. Time outTO set to1 800 s.
Numbers followed by the symbol “▽” correspond to cases for whichvsbcvd&sbc performs worse thansbcvd alone.

Basic vectorization of interval arithmetic improves speedby up to three times (seebc3revise vs. bc3vd and
sbc vs.sbcvd) at no cost since algorithms do not have to be modified in orderto benefit from it.

If we take advantage of the data parallelism inherent to Algorithm sbc to vectorize interval evaluations, leading
to Algorithmvsbc, we obtain even better results on all problems butdbvf 30, ef 30, ef 50, rob, te3 5000, tro 100,
andtro 200. All other things being equal, if we emulate SIMD instructions with double precision floating-point
operations, we obtain back the times ofsbc, which means that the very size of single precision floating-point
numbers is the culprit here: as we vectorize 2 interval instructions with SSE2 registers, we must switch from
double precision floats used in the rest of the program to single precision floats (see Figure 1(b)). The cast leads to
less precision in the computation, which in turn has an impact on the ability to reject domains having no solutions.
The same problem occurs forbc3vf.

-10
-5

 0
 5

 10
-10 -5 0 5 10

-1000

-500

 0

 500

 1000

 1500

 2000

x+((5-y)*y-2)*y-13
x+((y+1)*y-14)*y-29

(a) Extended Freudenstein2

-10
-5

 0
 5

 10

-10
-5

 0
 5

 10

-1.5e+43

-1e+43

-5e+42

 0

 5e+42

 1e+43

 1.5e+43

2*x+(10/9)*sinh(10*x)-y
2*y+(10/9)*sinh(10*y)-x-1

(b) Troesch2

Figure 4: Slow convergence with single precision floating-point numbers

9

As a consequence, the exploration algorithm has more branching to perform to isolate solutions. This incurs
an increase in the running time that may be drastic for ill-conditioned problems such asTroeschor Extended
Freudenstein: as we may see in Figure 4 for the case of 2 equations and 2 variables, the curves for these two
problems are almost tangent to each other and to thexy-plane on a large surface. Each equation considered
separately leads to the computation of many quasi-zeroes that cannot be removed easily by the other equation of
the problem.

There is currently no easy cure to this problem as microprocessor makers do not seem to be ready to offer
SIMD instructions on 4 double precision floats any time soon.It is still possible to quickly isolate regions of
interest in “large” domains usingvsbc, and then switch tosbcvd to polish the results and obtain tighter domains
if necessary. Columnvsbc&sbcvd in Table 2 shows that this procedure indeed removes the time-out problems of
vsbc on ill-conditioned problems, while still preserving better performances compared tosbcvd alone. The best
cooperation scheme that maximizes performances as much as possible still remains to be found, though.

References

[1] Frédéric Benhamou. Interval constraints, interval propagation. In Panos M. Pardalos and Christodoulos
A. A. Floudas, editors,Encyclopedia of Optimization, volume 3, pages 45–48. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2001.

[2] Frédéric Benhamou, David McAllester, and Pascal Van Hentenryck. CLP(Intervals) revisited. InProcs. Intl.
Symp. on Logic Prog., pages 124–138. The MIT Press, 1994.

[3] H. J. Curnow and Brian A. Wichmann. A synthetic benchmark. Comput. J., 19(1):43–49, 1976.

[4] Frédéric Goualard.GAOL 3.1.1: Not Just Another Interval Arithmetic Library. Laboratoire d’Informatique de
Nantes-Atlantique, 4.0 edition, October 2006. Available at http://sourceforge.net/projects/
gaol.

[5] Frédéric Goualard. Fast and correct SIMD algorithms for interval arithmetic. InProceedings of PARA ’08,
May 2008.

[6] Laurent Granvilliers and Frédéric Benhamou. Progress in the solving of a circuit design problem.Journal of
Global Optimization, 20:155–168, 2001.

[7] Nicholas J. Higham.Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[8] INRIA project COPRIN: Contraintes, OPtimisation, Résolution par INtervalles. The COPRIN examples
page. Web page at
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html.

[9] Ralph Baker Kearfott, Mitsuhiro T. Nakao, Arnold Neumaier, Siegfried M. Rump, Sergey P. Shary, and Pascal
van Hentenryck. Standardized notation in interval analysis. InProc. XIII Baikal International School-seminar
“Optimization methods and their applications”, volume 4 “Interval analysis”, pages 106–113. Irkutsk: Insti-
tute of Energy Systems SB RAS, July 2005.

[10] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 1(8):99–118, 1977.

[11] Ramon Edgar Moore.Interval Analysis. Prentice-Hall, Englewood Cliffs, N. J., 1966.

[12] Arnold Neumaier. Interval methods for systems of equations, volume 37 ofEncyclopedia of Mathematics
and its Applications. Cambridge University Press, 1990.

[13] Dietmar Ratz. Inclusion isotone extended interval arithmetic. Technical Report 5/1996, Institut für Ange-
wandte Mathematik, Universität Karlsruhe, 1996.

10

http://sourceforge.net/projects/gaol

