N

N

A Data-Parallel Algorithm to Reliably Solve Systems of
Nonlinear Equations
Frédéric Goualard, Alexandre Goldsztejn

» To cite this version:

Frédéric Goualard, Alexandre Goldsztejn. A Data-Parallel Algorithm to Reliably Solve Systems of
Nonlinear Equations. Ninth International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT ’08), 2008, Dunedin, New Zealand. pp.39-46, 10.1109/PD-
CAT.2008.26 . hal-00288207

HAL Id: hal-00288207
https://hal.science/hal-00288207v1
Submitted on 16 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00288207v1
https://hal.archives-ouvertes.fr

A Data-Parallel Algorithm to Reliably Solve
Systems of Nonlinear Equations

Frédéric Goualarll and Alexandre Goldsztejn

Tuniversité de Nantes, Nantes Atlantique UniversitesRSNLINA, UMR 6241.
2 rue de la Houssiniére, BP 92208, F-44000 NANTES
SCNRS, LINA, UMR 6241. 2 rue de la Houssiniére, BP 92208, BABINANTES

Abstract

Numerical methods based on interval arithmetic are effigiegans to reliably solve nonlinear systems of equa-
tions. Algorithm bc3revise is an interval method that tegig variables’ domains by enforcing a property called
box consistency. It has been successfully used on difficalilpms whose solving eluded traditional numerical
methods. We present a new algorithm to enforce box consigtiat is simpler than bc3revise, faster, and eas-
ily data parallelizable. A parallel implementation withtéhSSE2 SIMD instructions shows that an increase in
performance of up to an order of magnitude and more is adblieva

Keywords: nonlinear equations, interval arithmetic, SIMD algorithm

1 Introduction

Interval methodslﬂZ] are numerical algorithms that in¢erval arithmetic[@] to avoid rounding error problems
intrinsic to floating-point arithmetic[[?]. They give enelares of all solutions of nonlinear systems of equations
with the guarantee that no solution is ever lost.

Straight interval extensions of classical numerical atgars such as the Newton method are not well-suited
to problems with many solutions or with large initial domsifior the variables. To tackle these shortcomings,
elaborate algorithms have been devised in the contekitefval Constraint Programmingfl]l; they are usually
employed as the inner stage of a free-steering nonlineas$sseidel method to exclude parts of a variable’s
domain that do not contain zeroes of a unidimensional egouailomain tightening is achieved by enforcing some
local consistency propertaox consistenc[ﬂ] is one such consistency notion, which has been provedieitiin
handling hard problems whose solving eluded traditionaherical methods for year§|[6]. It is usually enforced
by Algorithm bc3revise [B]], which combines a binary search with interval NewtorpstfL]] to isolate leftmost
and rightmost zeroes of a unidimensional equation in theailowf a variable.

Thanks to ubiquitous Intel SSE2 SIMD instructions, it is gibe to perform many interval operations at
roughly the same cost as floating-point operations by comguhe two bounds of the result in paralldéagsic
interval vectorizatioh [f]. We outline in Sectiorf]2 a novel way to do even better anddmpute an interval
function for two differentintervals in parallel (a four tes speed-up compared to “sequential” interval evaluation)

As all interval methods, Algorithrhc3revise—described in Sectidi) 3—can benefit from basic intervalorect
ization without any modification. On the other hand, it cartake full advantage of the new arithmetic described
in Sectior[R. Hence the introduction of Algorithshc in Sectior{ 4]1: it is a new algorithm that enforces box con-
sistency by “shaving” domains from the left and right bouimdgard. Experiments show that a sequential version
of sbc is already faster thabc3revise on a set of test problems. We then describe in Sen 4. 2camitdm
that exploits the potential for a high level of data par@lelin sbc by using SSE2 instructions to perform inter-
val arithmetic evaluations of functions at four times theesph of a sequential code. Experiments are reported in
Sectior[b and show increases in performancesloe@revise of up to an order of magnitude and more.

l Corresponding author's emalfr eder i c. Goual ar d@ini v- nantes. fr.

2 Interval Arithmetic and its Vectorization

Classical iterative numerical methods suffer from defsoish as loss of solutions, absence of convergence, and
convergence to unwanted attractors due to the use of fleptimg numbers (akfloaty. At the end of the fifties,
Moore [11] popularized the use of intervals to control th®es made while computing with floats. Additionnally,
interval extensions of iterative numerical methods aregsconvergent.

In the following, we use the notations sponsored by Keadot others|]9], where interval quantities are
boldfaced.

Interval arithmetic replaces floating-point numbers byselb connected sets of the fodm= [I,I] = {a €
R | I < a < I} fromthe sefl of intervals whereI andI are floating-point numbers. In addition, eactary real
function with domainD4 C R" is extended to an interval functioh with domainDs C 1™ in such a way that
thecontainment principlés verified:

VAeDy VI €Dg: Acl = ¢(A) € d(I), Q)
as illustrated by the following example.
Example 1 Thenatural interval extensiors addition and multiplication are defined by:

L+1L=[1+I],11 +I1]
I x Iy = min(| I Iz |, | 1 T2 |, | 1 Iz |, | 1 Iz |), max(1 Iy L2 1, T 11 12 T, T I1 121, T I 12 1))

where|r | (resp.,Tr1) is the greatest floating-point number smaller or equal fteshe smallest floating-point
number greater or equal) to.

Then, given the real functiofi(z, y) = = x = + y, we may define its natural interval extensionfiyr, y) =
x X x + y, and we have that, e.gf([2, 3], [-1, 5]) = [3, 14].

Implementations of interval arithmetic use outward romgdd enlarge the domains computed so as not to violate
the containment principld](1), should some bounds be uaseptable with floating-point numbers.

Interval addition, subtraction, multiplication, divisipand integral exponentiation may be computed at roughly
the same speed as their floating-point counterpart thanB$M® instructions, and in particular, to Intel SSE2
instructions.

Intel SSE2 instructions manipulate 128 bits registers i@y be interpreted in various ways. Most notably,
the registers may pack 2 double precision or 4 single pratiioating-point numbers. An SSE2 operator may
then compute 2 or 4 floating-point operations in paralled (Ekgur)).

2 packed double Four packed single
[o] (e[eTola] [af=]s]=]
+ + + + + + + + + +
[[e [le e [olofr]-]
1 1 I 1 1 1 n n I n
‘ b+d ‘ atc ‘ ‘ d+h ‘ c+g ‘ b+ ‘ ate ‘ ‘ d+h ‘ -c-g ‘ b+ ‘ -a-e ‘
(Least significant byte to the right) (Least significant byte to the right) (Least significant byte to the right)
(a) SIMD floating-point arithmetic (b) Two interval addi-
tions with one SSE2 in-
struction

Figure 1: Floating-point arithmetic and interval arithimeh SSE2 registers

The direction of rounding for SSE2 instructions is seledtetbpendently of that of the Floating-Point Unit
(FPU). An SSEZ2 instruction uses the same rounding for alfadfmns performed in parallel. Nevertheless, thanks
to simple floating-point properties, it is still possiblevtoite algorithms that compute in parallel the two outward-
rounded bounds of the result of interval operations. Formgpta, we may use the property:

la+bl=—T-a—-b1

wherea andb are floating-point numbers.

By storing the negation of the left bourd an interval, and by setting once and for all the roundingation
for SSE2 instructions te-co, the two interval additiong:, b]+[e, f] and[c, d]+[g, k] can be performed by the sole
SIMD instruction depicted in Figub). All the other optars may be defined accordingly. Goualard’s pa@er [5]
illustrates these principles for the case of basic inteveatorization (two double precision bounds computed in
parallel). The algorithms to compute four bounds in pataite new and are reported in an unpublished paper
currently under review.

Armed with an interval library whose operators compute taterival operations in parallel, we may evaluate
the interval extension of a functigf for two different intervals for the same cost@se floating-poinevaluation
of f. Inthe following, we note F(I1), f(I2)] such a parallel evaluation gf for two differentinterval arguments.

3 Box Consistency and the bc3revise Algorithm

Interval Constraint Programmingﬁ_l] is a successful approach to reliably isolate all sohsiof systems of equa-
tions. It makes cooperat®ntracting operator$o prune the domains of the variables (intervals with flagpoint
bounds from the sdf) with smartpropagation algorithm@]—akin to free-steering nonlinear Gauss-Seidel—to
ensure consistency among all the constraints.

The amount of pruning obtained from one equation is cordolly the level of consistency enforced. Box
consistency[]2] is defined as follows:

Definition 1 (Box consistency)An equationf(z1,...,2,) = 0 is box consistent with respect to a variahlge
and aboxB = I x --- x I, ifand only if:

0e f(Il7 cee aIi—17 [£7£+]5Ii+15 e aIn)
and (2)
0 f(Iy,.... Lie1,[I; L), Iiga, ..., 1),
whereI = [I, 1] is an interval with floating-point bounds;" (resp.,a™) is the smallest floating-point number
greater than (resp., the largest floating-point number demathan) the floating-point number, and f is the

natural interval extension of.

Given a real functiory : R®™ — R, and a box of domain8 = I, x --- x I, € I, we definegf I —Tas
theith unary interval projection with respect 1 of its interval extensioryf:

gl (@) = f(I1,..., Li—1,2,1i41,...,I,), i€{l,...n}.

In the following, we will mostly manipulatg? instead off. The original real functiorf, the boxB of domains
considered and/or the variable on which the projection is performed will often be left imgtiand omitted from
the notation ofy.

In order not to lose any potential solution, an algorithmt taforces box consistency of an equation with
respect to a variable; and a box of domains must return the largest donfgia I; that verifies Eq.[{2).

Algorithm 1 Computing a box consistent interval with respecgtine usual way
[bc3revise Jin: g: T—T;in: T €1
Returns the largest interval included in I that is box consistent with respect to g
begin
1 I « left_narrow(g, I)
20f I # @:
3 I, « right_narrow(g, [[;, I])
4 return O (I; U I,.) # returns the smallest interval w.r.t. set inclusion that contains I U I,
5 else:
6 returng
end

Algorithmbc3revise [E], presented by Algorithnﬂs 1 arﬂ 2, considers the unarjeption of ann-ary equation
on a variable:; (where all variables but; have been replaced by their current domain) and a dofalhenforces

box consistency by searching the leftmost and rightmasbnical domainsfor which g evaluates to an interval
containingd. The search is performed by a dichotomic search aided withtdfesteps to accelerate the process.
AIgoritth describes the search of a quasi-zero to updatdetth side ofI;. The procedureight_narrow to
update the right bound works along the same lines and igfiirey;, omitted.

Algorithm 2 Computing a box consistent left bound with Newton steps apidary search
[left _narrow]in: g: T—T;in: T €1

Returns an interval included in T

with the smallest left bound [such that 0 € g([l,17])

begin
1if0 ¢ g(I): # No solution in I
2 returng
3 else:
4 if It > I: # canonical(I):
5 return I
6 else:
7 I — Newton(g, g’, I) # Interval Newton steps
8 if 0 € g([Z, I'*]): # Box consistent left bound?
9 return 1
10 else:
1 (I, I) «— split(I) # I «— [, m(I)], I — [m(I),T]
12 I — left_narrow(g, I1)
13 ifl =a:
14 return left_narrow(g, I2)
15 else:
16 return I
end

Algorithm bc3revise first tries to move the left bound df; to the right, and then proceeds to move its right
bound to the left. Thé&Newton procedure computes a fixpoint of the Interval Newton algmni], where a
Newton step at iteration+ 1 is:

TG+ 1) A <m(1(j)) ~ %I((jj));))

with m(I) the midpoint of the interval . As in Ratz’s work [1J3], the Newton step uses an extendedoers the
interval division to return a union of two semi-open-endweivals whenevey’ (I'9)) containg). The subtraction
and the intersection operators are modified accordingl ifitersection operator is applied to an inteng¥{)

and a union of two intervals (result of the subtraction), egtdrns an interval. Figu@ 2 presents graphically the
steps performed to enforce box consistency. The enciraletbers label the steps.

Algorithmsbc3revise, left_narrow andright_narrow do not offer opportunities to exploit full data parallelism
as they do not require close evaluations of the same functien different domains. The same holds for the
Newton procedure: in the general cageandg’ are different functions, and therefore cannot be evalueted
parallel with SIMD instructions.

4 Box Consistency by Shaving

To obtain a higher level of data parallelism, we propose aalgarithm to enforce box consistency on the projec-
tion gf of an equatiory = 0 on a variabler;: starting from the original domaifh; for x;, consider separately its
left half and its right half; for the left part, linearizeat I; as for a Newton step, solve the resulting linear equation
and intersect the resulting domain with the left halflpf do the same for the right half by lineariziggat I;. A
new smaller domain that preserves solutions is then olatalterate until reaching a fixpoint.

*A non-empty intervala, b] is canonical ifa® > b.
TNote that we are free to choose any pointlinnot the midpoint only. We take advantage of this in the aijors presented in the next
section.

N Y~ \/ v
quasi-zero S

®

Figure 2: Enforcing box consistency witlt3revise

4.1 A Sequential Algorithm: sbc
Figure[:]; illustrates graphically the process just desdribed AIgorithrT[[S presents the actual algorithm.

Proposition 1 (Termination, Correctness, and Completenesofsbc) Given am-ary equatiore: f(z1,...,x,) =
0, aboxIy x --- x I,, of domains, and a projectioa: g;(x) = 0 of ¢, we have:

Termination. The call tosbc(g;, I;) always terminates;
Correctness. The equatiore is box consistent with respectig andsbc(g;, I;);

Completeness.No solution is lost during the tightening process:

V(ry,...,mp) € I1 x -+ x In: f(r1,...,7,) =0 = r; € sbc(gs, I;).

Proof. In the following, the interval corresponds to the domaify of ;.

(Termination). Algorithsbc terminates in any case since we always tighfein the loop 2—23 (either by splitting it on
Line 3, or by tighteningl; and I, with Newton steps on Lines 10 and 19). Since we considenvaitewith floating-point
bounds, of which there are finitely many, we have to reach miaitp of I eventually. At that point, eithey; (I) containso,
and we have reached box consistency, or it does not, and weataly narrow! to @, which both make us leave the loop.

(Correctness). We leave the loop 2-23 ifs empty or if the canonical intervals at left and right bogra@bntain solutions
of g; (Lines 5 and 14). In the latter case, we have the two con(ﬁt'm‘rEq(E) for box consistency; the former case occurs if
both I; and I. do not contain a solution af (Lines 7 and 16) or if the Newton steps on Lines 10 and 19 natih@m down to
. By correctness of the interval Newton method, this casgaadurs if, once againl; and I, do not contain a solution af.

(Completeness). By completeness of the Newton operattighdening only occurs either through Newton steps, or by
discarding intervals that have been proved on Lines 5, 7p46 not to contain solutions. O

For each iteration of the loop 2—-23 in Algorittsic, we have to computg for intervals(I;, I,], [I,. ,I,], I,

L., I, I], and[I,, I,]. We also have to computg for intervalsI; andI,.. All these evaluations are candidates
for parallelization with SIMD instructions, as presentadtie next section.

Figure 3: Domain reduction obtained with one iteration & lihop insbc

4.2 An SIMD Algorithm for Box Consistency: vsbc

Algorithm [} presents a modification of Algorithebc to make good use of its higher level of data parallelism
thanks to the SIMD interval arithmetic that has been preskirt SectiorﬂZ. The evaluations gfand g’ are
reordered to appear in pairs that can be evaluated in parailaddition, we reuse the evaluation @f(I;, I, *])

andg([Z, ,I,]) of Line 4 for the Newton steps of Line 22 insteadgifI,, I;]) andg([I., I,.]) as was done in
Algorithm sbc. This choice avoids two evaluationsgt the cost of potentially slightly decreasing the tighteni
ability of the Newton step. The domain computed is unaffé@biethis optimization. In particular, box consistency
is still obtained eventually.

At each iteration of the loop between Lines 2 and 24, we perféinterval evaluations ofy and 2interval
evaluations ofy’ for the same cost asfating-pointevaluations off and 1floating-pointevaluation off’.

5 Experiments

To evaluate the impact of our new algorithms, we have sele?ieinstances of 12 classical test problems. Some
are polynomial and others are not. The characteristics edettiest problems are summarized in T{ble 1. All
problems are structurally well constrained, with as manya¢igns as variables. Column “Size” reports the num-
ber of equations/variables. Column “Equations” indicaté®ther all equations are polynomial (quadratic, if no
polynomial has a degree greater than 2). A problem is latb&fien-polynomial”if at least one constraint contains
a trigonometric, hyperbolic or otherwise transcenderpakator. All test problems are presented on the COPRIN
web page[[8].

All experiments were conducted on an Intel Core2 Duo T56@3GHz. The Whetstone tesﬁ [3] for this
machine reports 1111 MIPS with a loop count equal@0, 000. All algorithms have been implemented in an
in-house C++ solver, witigaol [f] as the underlying interval arithmetic library. The SIMBXerval arithmetic
presented above has been implemented from scratch usielgintrinsic instructions. In its current state, the
library only contains vectorized versions of the additisubtraction, multiplication, division, and integral pawe
All other SIMD functions are emulated with sequential int@rarithmetic. As a consequence, only polynomial
equation systems are entirely solved in an SIMD environraeptesent.

TabIe[:]Z reports the time spent in seconds to isolate allisolsibf the test problems in domains with a width

Algorithm 3 Enforcing box consistency by shaving
[sbclinig:T—T;in: IT€l
Returns the largest interval included in I that is box consistent w.r.t. g
begin
1 (left.consistentright_consistent — (false, false)
2 do:
3 (I, I,) « split(1)
4 if —left.consistent# Updating the left bound
5 if0 ¢ g([I;, I,]): # I not box consistent to the left?

6 I, — [I,*, T,] # Considering the remainder of I;

7 if 0 ¢ g(I;): # No solution in the remainder of I;?

8 I — o

9 else:

10 I — I (I — g([1i, L]) /¢’ (1)) # One Newton step
11 else:

12 left. consistent— true

13 if =right_consistent# Updating the right bound
14 if0 ¢ g([I. ,I.]): # I not box consistent to the right?

15 I — I, I,] # Considering the remainder of I,.

16 if 0 ¢ g(I,.): # No solution in the remainder of I,.?

17 I, — o

18 else:

19 I, — I.n (I, — g([I;, I]) /g’ (I,)) # One Newton step
20 else:

21 right_consistent— true

22 I« O(LUI,)#Returns the “hull” [min(1;, I,.), max(I;, I,.)] of the union
23 while (I # @) A (—left.consistent/ —right_consistent

24 return I
end

smaller thari0~5, starting from the standard domains given on the COPRIN vegfe pAn entry “TO” indicates a
time-out (more than 30 minutes, here). Colubu3revise presents the results obtained with AlgoritboBrevise
implemented with double precision interval arithmetic die +PU; Columrbc3vd corresponds to Algorithm
bc3revise where interval arithmetic is performed in double precisidgth SSE?2 instructions (basic vectorization);
Columnbc3vf corresponds to Algorithrbc3revise where interval arithmetic is performed in single precisioti
SSEZ2 instructions (we still perform only one interval ogiemaper SSE2 instruction, using only the lower half of
SSE?2 registers, though); Columshc corresponds to Algorithrebc implemented with double precision interval
arithmetic on the FPU; Columsbcvd corresponds to Algorithrsbc where interval arithmetic is performed in
double precision with SSE2 instructions; Colursbc corresponds to Algorithrasbc where interval arithmetic
is performed in single precision with SSE2 instructionso(interval operations are performed in parallel); lastly,
Columnvsbcé&sbcvd corresponds to the cooperationwsbc andsbcevd: vsbce is used until the domains are all
smaller than a size fixed empirically §025; sbcvd is used afterwards.

6 Discussion

As can be seen from Colunsbc of Table|]2, enforcing box consistency by shaving is fastanttith Algo-
rithm bc3revise on all problems of our test set, the rabo3revise/sbc ranging from1.9 to 17.9 and beyond.
We also believe thagbc is simpler to understand and easier to implement correeéigilic3revise.

Algorithm 4 A data parallel algorithm for box consistency enforcement

[vsbc]linig: T—T;in: T €1
Returns the largest interval included in I that is box consistent w.r.t. g
begin
1 (left.consistentright_consistent — (false, false)
2 do:
3 (I, I,) « split(1)
(Ji, Jr) — g, L)), g([I, , I])]
5 if0 ¢ J;: # I not box consistent to the left?

I

6 I, — [I,*,T,] # Considering the remainder of I
7 else:
8 left consistent— true

9 if0 ¢ J,.: # I not box consistent to the right?

10 I, —[L, I,] # Considering the remainder of I,
11 else:
12 right_consistent— true

13 if —left.consistent/ —right_consistent
14 (Kl; KT) — [g(Il)ag(IT)]

15 if 0 ¢ K : # First checking an obvious absence of solution in I;
16 I, — o

17 if 0 ¢ K, : # First checking an obvious absence of solution in I,.
18 I, — o

19 # Performing 2 Newton steps in parallel to update both bounds
20 # For better performances, we reuse J; and J,

21 # instead of g([1;, ;]) and g([I.., I,-])

2 (L) < [0 (L LY - 1/g' (1) L0 (T = 3 /g (1))]
23 IO (Il U I,.) # Returns the “hull” [min(1;, I,.), max(1;, I,.)] of the union
24 while (I # @) A (—left.consistent/ —right_consistent
25 return I
end

Table 1: Test problems characteristics

Name Code Size Equations
Bronstein bro 3 quadratic
Broyden-banded bb 100, 500, and1 000 quadratic
Broyden tridiagonal bt 10 and20 quadratic
Combustion comb 10 polynomial
Discrete Boundary Value Functiondbvf 10 and30 polynomial
Extended Freudenstein ef 30 and50 polynomial
Mixed Algebraic Trigonometric mat 3 non-polynomial
Moré-Cosnard mc 50 and100 polynomial
Robot rob 8 quadratic
Trigexp 3 te3 5000 non-polynomial
Troesch tro 50, 100, and200 non-polynomial
Yamamura yam 6 and8 polynomial

Table 2: Experiments

Problem bc3revise bc3vd bc3vf shc sbhevd vshc vsbevd&shcvd
bro 2.6 0.9 0.4 0.3 0.3 0.06 0.2
bb 100 10.4 3.3 3.2 2.7 1.2 0.7 0.8
bb 500 123.7 39.1 27.0 24.8 10.8 5.3 5.5
bb 1000 280.2 88.7 56.8 55.1 24.0 11.1 11.4
bt 10 16.9 5.8 3.4 2.1 1.0 0.4 0.5
bt 20 1127.4 382.2 260.3 141.1 66.7 28.6 30.4
comb 1.4 0.6 0.5 0.2 0.08 0.03 0.08
dbvf 10 1.7 0.5 0.6 0.3 0.1 0.08 0.1
dbvf 30 42.7 13.4 20.4 7.7 3.2 4.7 3.8/
ef 30 2.1 0.8 TO 1.1 0.5 TO 0.3
ef 50 5.1 1.8 TO 2.2 0.9 TO 0.6
mat 26.9 13.6 13.2 1.5 1.1 0.4 1.0
mc50 23.7 6.5 5.7 11.0 4.4 3.0 4.1
mc100 175.5 49.0 46.2 86.9 36.8 28.0 35.6
rob 45 1.5 4.3 0.8 0.4 1.0 0.3
te35000 7.5 5.1 17.1 2.9 2.7 3.3 3.8/
tro 50 24.8 15.3 29.1 4.4 3.6 2.6 3.4
tro 100 180.1 112.7 384.2 30.9 25.4 33.7 24.2
tro 200 1341.4 844 .4 TO 231.1 188.1 TO 181
yamé 14.6 4.3 4.2 7.3 2.5 1.2 1.7
yam8 279.1 84.6 104.0 91.0 351 26.1 27.7

Times in seconds on an Intel Core2 Duo T5600 1.83GHz (whesto0 000=1111 MIPS)
Best times in bold blue. Time o0 set tol 800 s.
Numbers followed by the symbok;” correspond to cases for whialsbcvd&sbc performs worse thasbcvd alone.

Basic vectorization of interval arithmetic improves spégdip to three times (sd&c3revise vs. bc3vd and
sbc vs.sbecvd) at no cost since algorithms do not have to be modified in dadbenefit from it.

If we take advantage of the data parallelism inherent to Allgm sbc to vectorize interval evaluations, leading
to Algorithmvsbc, we obtain even better results on all problemsdiutf 3Q ef 3Q ef 5Q rob, te3 5000tro 100,
andtro 200. All other things being equal, if we emulate SIMD instructiowith double precision floating-point
operations, we obtain back the timessdifc, which means that the very size of single precision floapipgt
numbers is the culprit here: as we vectorize 2 interval utsions with SSE2 registers, we must switch from
double precision floats used in the rest of the program tdesiprgcision floats (see Fig@(b)). The cast leads to
less precision in the computation, which in turn has an ihpadhe ability to reject domains having no solutions.
The same problem occurs foc3vf.

9)'sinh(10'%)y ——
A

2%x+(10/9)*sinh(10
2°y+(10/9)*sinh(10%y)-x-

(a) Extended Freudenste (b) Troesch2

Figure 4: Slow convergence with single precision floatimgapnumbers

As a consequence, the exploration algorithm has more biragntt perform to isolate solutions. This incurs
an increase in the running time that may be drastic for iltdiboned problems such @goeschor Extended
Freudenstein as we may see in Figuﬂa 4 for the case of 2 equations and blesjahe curves for these two
problems are almost tangent to each other and tartfiplane on a large surface. Each equation considered
separately leads to the computation of many quasi-zere¢€#mnot be removed easily by the other equation of
the problem.

There is currently no easy cure to this problem as micromsmemakers do not seem to be ready to offer
SIMD instructions on 4 double precision floats any time sotinis still possible to quickly isolate regions of
interest in “large” domains usingsbc, and then switch tebcvd to polish the results and obtain tighter domains
if necessary. Columasbcé&sbcevd in Table|]2 shows that this procedure indeed removes thedumeroblems of
vsbc on ill-conditioned problems, while still preserving betperformances compared $bcvd alone. The best
cooperation scheme that maximizes performances as mudssibje still remains to be found, though.

References

[1] Frédéric Benhamou. Interval constraints, intervedgagation. In Panos M. Pardalos and Christodoulos
A. A. Floudas, editorsg=ncyclopedia of Optimizatigwolume 3, pages 45—48. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2001.

[2] Frédéric Benhamou, David McAllester, and Pascal Vamténryck. CLP(Intervals) revisited. Rrocs. Intl.
Symp. on Logic Progpages 124-138. The MIT Press, 1994.

[3] H. J. Curnow and Brian A. Wichmann. A synthetic benchm&kmput. J.19(1):43-49, 1976.

[4] Frédéric GoualardSAOL 3.1.1: Not Just Another Interval Arithmetic Libratyaboratoire d’Informatique de
Nantes-Atlantique, 4.0 edition, October 2006. Availaklléiat p: / / sour cef or ge. net/ pr oj ect s/
gaol .

[5] Frédéric Goualard. Fast and correct SIMD algorithmsifterval arithmetic. IrProceedings of PARA '08
May 2008.

[6] Laurent Granvilliers and Frédéric Benhamou. Progiiaghe solving of a circuit design probledournal of
Global Optimization20:155-168, 2001.

[7] Nicholas J. Higham.Accuracy and Stability of Numerical Algorithm$&ociety for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2002.

[8] INRIA project COPRIN: Contraintes, OPtimisation, Région par INtervalles. The COPRIN examples
page. Web page at
http://wwe+sop.inria.fr/coprin/logiciels/ALlI AS/ Benches/ benches. html .

[9] Ralph Baker Kearfott, Mitsuhiro T. Nakao, Arnold NeuregiSiegfried M. Rump, Sergey P. Shary, and Pascal
van Hentenryck. Standardized notation in interval analyisiProc. XIIl Baikal International School-seminar
“Optimization methods and their applicationsiolume 4 “Interval analysis”, pages 106—113. Irkutsktiins
tute of Energy Systems SB RAS, July 2005.

[10] Alan K. Mackworth. Consistency in networks of relat®rrtificial Intelligence 1(8):99-118, 1977.
[11] Ramon Edgar Moordnterval Analysis Prentice-Hall, Englewood Cliffs, N. J., 1966.

[12] Arnold Neumaier. Interval methods for systems of equatiomslume 37 ofEncyclopedia of Mathematics
and its ApplicationsCambridge University Press, 1990.

[13] Dietmar Ratz. Inclusion isotone extended intervathemietic. Technical Report 5/1996, Institut fur Ange-
wandte Mathematik, Universitat Karlsruhe, 1996.

10

http://sourceforge.net/projects/gaol

