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Mesoscopic modelling of financial markets

Stephane Cordier∗ Lorenzo Pareschi† Cyrille Piatecki‡

April 29, 2008

Abstract

We derive a mesoscopic description of the behavior of a simple financial market where
the agents can create their own portfolio between two investments alternatives: a stock
and a bond. The model is derived starting from the Levy-Levy-Solomon microscopic
model [13, 14] using the methods of kinetic theory and consists of a linear Boltzmann
equation for the wealth distribution of the agents coupled with an equation for the
price of the stock. From this model under a suitable scaling we derive a Fokker-Planck
equation and show that the equation admits a self-similar lognormal behavior. Several
numerical examples are also reported to validate our analysis.

Keywords: wealth distribution, power-law tails, stock market, self-similarity, kinetic equa-
tions.

1 Introduction

In recent years there has been a constantly growing interest of physicists in new inter-
disciplinary areas such as sociology and economy originating what is today named socio-
economical physics[1, 3, 4, 6, 9, 12, 13, 19, 23]. This new area in physics borrowed several
methods and tools from classical statistical mechanics, where complex behavior arises from
relatively simple rules due to the interaction of a large number of components. The moti-
vation behind this is the attempt to identify and characterize universal and non-universal
features in economical data in general.

The large part of the research in this area is concerned with power-law tails with univer-
sal exponents as was predicted more than one century ago by Pareto[4, 15, 22]. In particular,
by identifying the wealth in an economic system with the energy of the physical system, the
application of statistical physics makes it possible to understand better the development of
tails in wealth distributions. Starting from the microscopic dynamics, mesoscopic models
can be derived with the tools of classical kinetic theory of fluids[1, 5, 6, 7, 12, 20, 21, 24].
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At variance with microscopic dynamics where their behavior often can be studied only
empirically through computer simulations, kinetic models based on PDEs allow to derive
analytically general information on the model and its asymptotic behavior. For example,
the knowledge of the large-wealth behavior is of primary importance, since it determines a
posteriori if the model can fit data of real economies.

In some recent papers the explicit emergence of power laws in the wealth distribution,
with Pareto index strictly larger the one, has been proved for open market economies where
agents can interact through binary exchanges together with a simple source of speculative
trading [1, 5, 21, 24].

The present work is motivated by the necessity to have a more realistic description of the
speculative dynamics in the above models. To this goal we derive a mesoscopic description
of the behavior of a simple financial market where a population of homogeneous agents
can create their own portfolio between two investments alternatives: a stock and a bond.
The model is closely related to the Levy-Levy-Solomon (LLS) microscopic model in finance
[13, 14]. This model attempted to construct from simple rules complex behavior that could
then mimic the market and explain the price formation mechanism. As a first step towards
a more realistic description, we derive and analyze the model in the case of a single stock
and under the assumption that the optimal proportion of investments is a function of the
price only. In principle several generalizations are possible (different stocks, heterogeneous
agents, a time dependent optimal proportion of investments, . . . ), and we leave them for
future investigations.

In our non-stationary financial market model the average wealth is not conserved and
produces the price variations. Let us point out that, even if the model is linear since no
binary interaction dynamic between agents is present, the study of the large time behavior
is not immediate. In fact, despite conservation of the total number of agents we don’t have
any other additional conservation equation or entropy dissipation. Although we prove that
the moments do not grow more then exponentially the determination of an explicit form
of the asymptotic wealth distribution of the kinetic equation remains difficult and requires
the use of suitable numerical methods.

A complementary method to extract information on the tails is linked to the possibil-
ity to obtain particular asymptotics which maintain the characteristics of the solution to
the original problem for large times. Following the analysis in[5] we shall prove that the
Boltzmann model converges in a suitable asymptotic limit towards a convection-diffusion
equation of Fokker-Planck type for the distribution of wealth among individuals. Other
Fokker-Planck equations were obtained using different approaches in [1, 26, 17].

In this case, however, we can show that the Fokker-Planck equation admits self-similar
solutions that can be computed explicitly and which are lognormal distributions. One
is then lead to the conclusion that the formation of Pareto tails in the wealth distribution
observed in[1, 5] is a consequence of the interplay between the conservative binary exchanges
having the effect of redistribute wealth among agents and the speculative trading causing
the grow of the mean wealth and social inequalities.

The rest of the paper is organized as follows. In the next section, we introduce briefly
the microscopic dynamic of the LLS model. The mesoscopic model is then derived in
Section 3 and its properties discussed in Section 4. These properties justify the asymptotic
procedures performed in section 5. The model behavior together with its asymptotic limit
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is illustrated by several numerical results in section 6. Some conclusions and remarks on
future developments are then made in the last section.

2 The microscopic dynamic

Let us consider a set of financial agents i = 1, . . . , N who can create their own portfolio
between two alternative investments: a stock and a bond. We denote by wi the wealth of
agent i and by ni the number of stocks of the agent. Additionally we use the notations S
for the price of the stock and n for the total number of stocks.

The essence of the dynamic is the choice of the agent’s portfolio. More precisely at each
time step each agent selects which fraction of wealth to invest in bonds and which fraction
in stocks. We indicate with r the (constant) interest rate of bonds.

To simplify the notations let us neglect for the moment the effects due to the stochastic
nature of the process, the presence of dividends, and so on. Thus if an agent has invested
γiwi of its wealth in stocks and (1 − γi)wi of its wealth in bonds at the next time step in
the dynamic he will achieve the new wealth value

w′
i = (1 − γi)wi(1 + r) + γiwi(1 + x′), (1)

where x′ is the rate of return of the stock given by

x′ =
S′ − S

S
, (2)

and S′ is the new price of the stock.
Since we have the identity

γiwi = niS, (3)

we can also write

w′
i = wi + wi(1 − γi)r + wiγi

(

S′ − S

S

)

(4)

= wi + (wi − niS)r + ni(S
′ − S). (5)

Note that independently of the number of stocks of the agent at the next time level, it is
only the price variation of the stock (which is unknown) that characterizes the gain or loss
of the agent on the stock market at this stage.

The dynamic now is based on the agent choice of the new fraction of wealth he wants
to invest in stocks at the next stage. Different models can be used for this (see [14]).
For example maximizing a von Neumann-Morgenstern utility function with a constant risk
aversion of the type

U(w) =
w1−α

1 − α
, (6)

where α is the risk aversion parameter. As they don’t know the future stock price S′ the
investors estimate the stock’s next period return distribution and find an optimal mix of
the stock and the bond that maximizes their expected utility E[U ]. In practice, for any
hypothetical price Sh, each investor find the optimal proportion γh

i which maximizes his/her
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expected utility. Note that, if we assume that all investors have the same risk aversion α
then they will have the same proportion of investment in stocks regardless of their wealth,
thus γh

i (Sh) = γh(Sh).
Following [14], each agent formulates a demand curve

nh
i = nh

i (Sh) =
γh(Sh)wh

i (Sh)

Sh

characterizing the desired number of stocks as a function of the hypothetical stock price Sh

and the hypothetical new wealth value wh
i obtained from (1) with S′ = Sh. This number

of share demands is a monotonically decreasing function of the hypothetical price Sh. As
the total number of stocks

n =
N

∑

i=1

ni, (7)

is preserved the new price of the stock at the next time level is given by the market clearance
condition. Thus the new stock price S′ is the unique price at which the total demands equals
the supply

N
∑

i=1

nh
i (S′) = n. (8)

This will fix the value w′ in (1) and the model can be advanced to the next time level. To
make the model more realistic typically a source of stochastic noise, which characterizes
all factors causing the investor to deviate from his optimal portfolio, is introduced in the
proportion of investments γi and in the rate of return of the stock x′.

3 Kinetic modelling

We define f = f(w, t), w ∈ R+, t > 0 the distribution of wealth w, which represents the
probability for an agent to have a wealth w. We assume that at time t the percentage of
wealth invested is of the form γ(ξ) = µ(S) + ξ, where ξ is a random variable in [−z, z],
z = min{−µ(S), 1−µ(S)} is distributed accordingly to some probability density Φ(µ(S), ξ)
with zero mean and variance ζ2. This probability density characterizes the individual
strategy of an agent around the optimal choice µ(S). We assumed Φ to be independent
of the wealth of the agent. Here the optimal demand curve µ(·) is assumed to be a given
monotonically non increasing function of the price S ≥ 0 such that 0 < µ(0) < 1.

Note that given f(w, t) the actual stock price S satisfy the demand-supply relation

S =
1

n
E[γw], (9)

where E[X] denotes the mathematical expectation of the random variable X and f(w, t)
has been normalized

∫ ∞

0
f(w, t)dw = 1.

More precisely, since γ and w are independent, at each time t the price S(t) satisfies

S(t) =
1

n
E[γ]E[w] =

1

n
µ(S(t))w̄(t), (10)
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with

w̄(t)
def
:= E[w] =

∫ ∞

0
f(w, t)wdw, (11)

being the mean wealth and by construction

µ(S) =

∫

Φ(µ(S), ξ)ξ dξ.

At the next round in the market the new wealth of the investor will depend on the
future price S′ and the percentage of wealth invested γ accordingly with

w′(S′, γ, η) = (1 − γ)w(1 + r) + γw(1 + x(S′, η)), (12)

where the expected rate of return of stocks is given by

x(S′, η) =
S′ − S + D + η

S
. (13)

In the above relation D ≥ 0 represent a constant dividend payed by the company and η is
a random variable distributed accordingly to Θ(η) with zero mean and variance σ2 which
takes into account fluctuations due to price uncertainty and dividends[14, 11]. We assume
η to take values in [−d, d] with 0 < d ≤ S′ + D so that w′ ≥ 0 and thus negative wealths
are not allowed in the model. Note that equation (13) requires to estimate the future price
S′ which is unknown.

The dynamic is then determined by the agent’s new fraction of wealth invested in stocks
γ′(ξ′) = µ(S′)+ξ′ where ξ′ is a random variable in [−z′, z′], where z′ = min{µ(S′), 1−µ(S′)}
distributed accordingly to Φ(µ(S′), ξ′). We have the demand-supply relation

S′ =
1

n
E[γ′w′], (14)
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which permits to write the following equation for the future price

S′ =
1

n
E[γ′]E[w′] =

1

n
µ(S′)E[w′]. (15)

Now
w′(S′, γ, η) = w(1 + r) + γw(x(S′, η) − r), (16)

thus

E[w′] = E[w](1 + r) + E[γw](E[x(S′, η)] − r), (17)

= w̄(t)(1 + r) + µ(S)w̄(t)

(

S′ − S + D

S
− r

)

. (18)

This gives the identity

S′ =
1

n
µ(S′)w̄(t)

[

(1 + r) + µ(S)

(

S′ − S + D

S
− r

)]

. (19)

Using equation (10) we can eliminate the dependence on the mean wealth and write

S′ =
µ(S′)

µ(S)

[

(1 − µ(S))S(1 + r) + µ(S)(S′ + D)
]

=
(1 − µ(S))µ(S′)

(1 − µ(S′))µ(S)
(1 + r)S +

µ(S′)

1 − µ(S′)
D. (20)

Remark 3.1

The equation for the future price deserves some remarks.

• Equation (20) determines implicitly the future value of the stock price. Let us set

g(S) =
1 − µ(S)

µ(S)
S.

Then the future price is given by the equation

g(S′) = g(S)(1 + r) + D

for a given S. Note that

dg(S)

dS
= −

dµ(S)

dS

S

µ(S)2
+

1 − µ(S)

µ(S)
> 0,

then the function g(S) is monotonically increasing with respect to S. This guarantees
the existence of a unique solution

S′ = g−1 (g(S)(1 + r) + D) > S. (21)

Moreover if r = 0 and D = 0 the unique solution is S′ = S and the price remains
unchanged in time.
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For the average stocks return we have

x̄(S′) − r =
(µ(S′) − µ(S))(1 + r)

(1 − µ(S′))µ(S)
+

µ(S′)D

S(1 − µ(S′))
, (22)

where

x̄(S′) = E[x(S′, η)] =
S′ − S + D

S
. (23)

Now the right hand side of (22) has non constant sign since µ(S′) ≤ µ(S). In particular
the average stocks return is above the bonds rate r only if the (negative) rate of
variation of the investments is above a certain threshold

µ(S′) − µ(S)

µ(S)µ(S′)
S ≥ −

D

(1 + r)
.

• In the constant investment case µ(·) = C, with C ∈ (0, 1) constant then we have
g(S) = (1 − C)S/C and

S′ = (1 + r)S +
C

1 − C
D,

which corresponds to a dynamic of grow of the prices at rate r. As a consequence
the average stocks return is always larger then the constant return of the bonds

x̄(S′) − r =
D

S(1 − C)
≥ 0.

By standard methods of kinetic theory [2] the microscopic dynamics of agents originate
the following linear kinetic equation for the evolution of the wealth distribution

∂f(w, t)

∂t
=

∫ d

−d

∫ z

−z

(

β(′w → w)
1

j(ξ, η, t)
f(′w, t) − β(w → w′)f(w, t)

)

dξ dη. (24)

The above equations takes into account all possible variations that can occur to the distri-
bution of a given wealth w. The first part of the integral on the right hand side takes into
account all possible gains of the test wealth w coming from a pre-trading wealth ′w. The
function β(′w → w) gives the probability per unit time of this process.

Thus ′w is obtained simply by inverting the dynamics to get

′w =
w

j(ξ, η, t)
, j(ξ, η, t) = 1 + r + γ(ξ)(x(S′, η) − r), (25)

where the value S′ is given as the unique fixed point of (15).
The presence of the term j in the integral is needed in order to preserve the total number

of agents
d

dt

∫ ∞

0
f(w, t)dw = 0.

The second part of the integral on the right hand side of (24) is a negative term that takes
into account all possible losses of wealth w as a consequence of the direct dynamic (12).
The rate of this process now being β(w → w′). In our case the kernel β takes the form

β(w → w′) = Φ(µ(S), ξ)Θ(η). (26)
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The distribution function Φ(µ(S), ξ) together with the function µ(·) characterize the behav-
ior of the agents on the market (more precisely they characterize the way the agents invest
their wealth as a function of the actual price of the stock).

Remark 3.2 In the derivation of the kinetic equation we assumed for simplicity that the
actual demand curve µ(·) which gives the optimal proportion of investments is a function of
the price only. In reality the demand curve should change at each market iteration and so
should depend also on time. In the general case where each agent has a wealth dependent
individual strategy one should consider the distribution f(γ,w, t) of agents having a fraction
γ of their wealth w invested in stocks.

4 Properties of the kinetic equation

We will start our analysis by introducing some notations. Let M0 the space of all probability
measures in R+ and by

Mp =

{

Ψ ∈ M0 :

∫

R+

|ϑ|pΨ(ϑ) dϑ < +∞, p ≥ 0

}

, (27)

the space of all Borel probability measures of finite momentum of order p, equipped with
the topology of the weak convergence of the measures.

Let Fp(R+), p > 1 be the class of all real functions on R+ such that g(0) = g′(0) = 0,
and g(m)(v) is Hölder continuous of order δ,

‖g(m)‖δ = sup
v 6=w

|g(m)(v) − g(m)(w)|

|v − w|δ
< ∞, (28)

the integer m and the number 0 < δ ≤ 1 are such that m + δ = p, and g(m) denotes the
m-th derivative of g.

Clearly the symmetric probability density Θ which characterizes the stock returns be-
longs to Mp, for all p > 0 since

∫ d

−d
|η|pΘ(η)dη ≤ |d|p.

Moreover, to simplify computations, we assume that this density is obtained from a given
random variable Y with zero mean and unit variance. Thus Θ of variance σ2 is the density
of σY . By this assumption, we can easily obtain the dependence on σ of the moments of
Θ. In fact, for any p > 2

∫ d

−d
|η|pΘ(η)dη = E (|σY |p) = σpE (|Y |p) .

Note that equation (24) in weak form takes the simpler expression

d

dt

∫ ∞

0
f(w, t)φ(w)dw =

∫ ∞

0

∫ D

−D

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(φ(w′) − φ(w))dξ dη dw. (29)
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By a weak solution of the initial value problem for equation (24), corresponding to the
initial probability density f0(w) ∈ Mp, p > 1 we shall mean any probability density f ∈
C1(R+,Mp) satisfying the weak form (29) for t > 0 and all φ ∈ Fp(R+), and such that for
all φ ∈ Fp(R+)

lim
t→0

∫ ∞

0
f(w, t)φ(w) dw =

∫ ∞

0
f0(w)φ(w) dw. (30)

The form (29) is easier to handle, and it is the starting point to study the evolution of
macroscopic quantities (moments). The existence of a weak solution to equation (24) can
be seen easily using the same methods available for the linear Boltzmann equation (see [27]
and the references therein for example).

From (29) follows the conservation of the total number of investors taking φ(w) = 1.
The choice φ(w) = w is of particular interest since it gives the time evolution of the average
wealth which characterizes the price behavior. In fact, the mean wealth is not conserved in
the model since we have

d

dt

∫ ∞

0
f(w, t)w dw =

(

r + µ(S)

(

S′ − S + D

S
− r

))
∫ ∞

0
f(w, t)w dw. (31)

Note that since the sign of the right hand side is nonnegative the mean wealth is nonde-
creasing in time. In particular we can rewrite the equation as

d

dt
w̄(t) =

(

(1 − µ(S))r + µ(S)x̄(S′)
)

w̄(t). (32)

From this we get the equation for the price

d

dt
S(t) =

µ(S(t))

µ(S(t)) − µ̇(S(t))S(t)

(

(1 − µ(S(t)))r + µ(S(t))x̄(S′(t))
)

S(t), (33)

where S′ is given by (20) and

µ̇(S) =
dµ(S)

dS
≤ 0.

Now since from (22) it follows by the monotonicity of µ that

x̄(S′) ≤ M
def
:=r +

D

S(0)(1 − µ(S(0)))
,

using (32) we have the bound

w̄(t) ≤ w̄(0) exp (Mt) . (34)

From (10) we obtain immediately

S(t)

µ(S(t))
≤

S(0)

µ(S(0))
exp (Mt) ,

which gives

S(t) ≤ S(0) exp (Mt) . (35)
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Remark 4.1 For a constant µ(·) = C, C ∈ (0, 1) we have the explicit expression for the
grow of the wealth (and consequently of the price)

w̄(t) = w̄(0) exp(rt) − (1 − exp(rt))
nD

1 − C
. (36)

Analogous bounds to (34) for moments of higher order can be obtained in a similar way.
Let us consider the case of moments of order p ≥ 2 which we will need in the sequel. Taking
φ(w) = wp we get

d

dt

∫ ∞

0
wpf(w, t) dw =

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(w′p − wp)dξ dη dw. (37)

Moreover, we can write

w′p = wp + pwp−1(w′ − w) +
1

2
p(p − 1)w̃p−2(w′ − w)2,

where, for some 0 ≤ ϑ ≤ 1
w̃ = ϑw′ + (1 − ϑ)w.

Hence,
∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(w′p − wp)dξ dη dw

=

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(pwp−1(w′ − w) +

1

2
p(p − 1)w̃p−2(w′ − w)2)dξ dη dw

= p((1 − µ(S))r + µ(S)x̄(S′))

∫ ∞

0
wpf(w, t) dw +

1

2
p(p − 1)

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)w̃p−2w2((1 − γ)r + γx(S′, η))2dξ dη dw.

From

w̃p−2 = wp−2(1 + ϑ((1 − γ)r + γx(S′, η)))p−2 ≤ wp−2(1 + r + x(S′, η))p−2

≤ Cpw
p−2(1 + rp−2 + |x(S′, η)|p−2)

and
((1 − γ)r + γx(S′, η)))2 ≤ 2(r2 + x(S′, η)2)

we have
∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)w̃p−2w2dξ dη dw

≤ 2Cp

∫ ∞

0

∫ d

−d
Θ(η)f(w, t)wp(1 + rp−2 + |x(S′, η)|p−2)(r2 + x(S′, η)2)dη dw.

Since
∫ d

−d
Θ(η)|x(S′, η)|p dη ≤

cp

Sp

(

(S′ − S)p + Dp + σpE(|Y |p)
)

(38)
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we finally obtain the bound

d

dt

∫ ∞

0
wpf(w, t) dw ≤ Ap(S)

∫ ∞

0
wpf(w, t) dw (39)

where
Ap(S) = 2Cp(r

p + rp−2
(

1 +
c2

S2
((S′ − S)2 + D2 + σ2E(|Y |2))

)

+r2
(

1 +
cp−2

Sp−2
((S′ − S)p−2 + Dp−2 + σp−2E(|Y |p−2))

)

and Cp, cp−2 and c2 are suitable constants.
We can summarize our results in the following

Theorem 4.1 Let the probability density f0 ∈ Mp, where p = 2 + δ for some δ > 0. Then,
the average wealth is increasing with time exponentially following (34). As a consequence,
if µ is a non increasing function of S, the price does not grow more than exponentially as
in (35). Similarly, higher order moments do not increase more than exponentially, and we
have the bound (39).

5 Fokker-Planck asymptotics and self-similar solution

The previous analysis shows that in general it is difficult to study in details the asymptotic
behavior of the system. In addition we must take into account the exponential growth of the
average wealth. In this case, one way to get information on the properties of the solution for
large time relies in a suitable scaling of the solution. As is usual in kinetic theory, however,
particular asymptotics of the equation result in simplified models (generally of Fokker-
Planck type), for which it is easier to analyze their behavior. Here following the analysis in
[5, 21], inspired by similar asymptotic limits for inelastic gases[8, 24], we consider the limit
of large times in which the market originates a very small exchange of wealth (small rates
of return r and x).

In order to study the asymptotic behavior of the distribution function f(w, t) we start
from the weak form of the kinetic equation

d

dt

∫ ∞

0
f(w, t)φ(w)dw =

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(φ(w′) − φ(w))dξ dη dw, (40)

and consider a second order Taylor expansion of φ around w

φ(w′) − φ(w) = w(r + γ(x(S′, η) − r))φ′(w) +
1

2
w2(r + γ(x(S′, η) − r))2φ′′(w̃),

where, for some 0 ≤ ϑ ≤ 1
w̃ = ϑw′ + (1 − ϑ)w.

Inserting this expansion in the collision operator, we get

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(φ(w′) − φ(w))dξ dη dw

11



=

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)w(r + γ(x(S′, η) − r))φ′(w)dξ dη dw

+
1

2

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)w2(r + γ(x(S′, η) − r))2φ′′(w)dξ dη dw

+Rr(S, S′)

where

Rr(S, S′) =
1

2

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)

(41)

w2(r + γ(x(S′, η) − r))2(φ′′(w̃) − φ′′(w)) dξ dη dw.

Recalling that E[ξ] = 0, E[η] = 0, E[ξ2] = ζ2 and E[η2] = σ2 we can simplify the above
expression to obtain

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S), ξ)Θ(η)f(w, t)(φ(w′) − φ(w))dξ dη dw

=

∫ ∞

0
f(w, t)w

(

r + µ(S)

(

S′ − S + D

S
− r

))

φ′(w) dw

+
1

2

∫ ∞

0
f(w, t)w2

(

r2 + (ζ2 + µ(S)2)

(

(S′ − S)2

S2
+

σ2 + D2

S2
+ 2D

S′ − S

S2

+ r2 − 2r
S′ − S + D

S

)

+ 2rµ(S)

(

S′ − S + D

S
− r

))

φ′′(w) dw

+Rr(S, S′).

Now we set
τ = rt, f̃(w, τ) = f(w, t), S̃(τ) = S(t), µ̃(S̃) = µ(S)

which implies that f̃(w, τ) satisfies the equation

d

dτ

∫ ∞

0
f̃(w, τ)φ(w)dw

=

∫ ∞

0
f̃(w, τ)w

(

1 + µ̃(S̃)

(

S̃′ + D − S̃

rS̃
− 1

))

φ′(w) dw

+
1

2

∫ ∞

0
f̃(w, τ)w2

(

r + (ζ2 + µ̃(S̃)2)

(

(S̃′ − S̃)2

rS̃2
+

σ2 + D2

rS̃2
+ 2D

S̃′ − S̃

rS̃2

+ r − 2
S̃′ + D − S̃

S̃

)

+ 2µ̃(S̃)

(

S̃′ + D − S̃

S̃
− r

))

φ′′(w) dw

+
1

r
Rr(S̃, S̃′).

Now we consider the limit of very small values of the constant rate r. In order for such
limit to have a sense and preserve the characteristics of the model we must assume that

lim
r→0

σ2

r
= ν, lim

r→0

D

r
= λ. (42)

12



First let us note that the above limits in (20) imply immediately that

lim
r→0

S̃′ = S̃. (43)

We begin to show that the remainder is small for small values of r.
Since φ ∈ F2+δ(R+), and |w̃ − w| = ϑ|w′ − w|

∣

∣φ′′(w̃) − φ′′(w)
∣

∣ ≤ ‖φ′′‖δ|w̃ − w|δ ≤ ‖φ′′‖δ|w
′ − w|δ. (44)

Hence

|
1

r
Rr(S̃, S̃′)| ≤

‖φ′′‖δ

2r

∫ ∞

0

∫ d

−d

∫ z

−z
Φ(µ(S(τ)), ξ)Θ(η)

|(1 − γ)r + γx(S̃′, η)|2+δf̃(w, τ)w2+δdξ dη dw.

By the inequality

|(1 − γ)r + γx(S̃′, η)|2+δ ≤ 22+δ
(

r2+δ + |x(S̃′, η)|2+δ
)

,

and (38) we get

|
1

r
Rr(S̃, S̃′)| ≤ 21+δ‖φ′′‖δ·

·

(

r1+δ +
c2+δ

rS̃2+δ
((S̃′ − S̃)2+δ + D2+δ + σ2+δE(|Y |2+δ))

)
∫ ∞

0
f̃(w, τ)w2+δdw.

As a consequence of (42)-(43), from this inequality it follows that Rr(S̃, S̃′) converges to
zero as r → 0, if

∫ ∞

0
w2+δf̃(w, τ) dw

remains bounded at any fixed time τ > 0, provided the same bound holds at time τ = 0.
This is guaranteed by inequality (39) since Ap(S̃) → 0 in the asymptotic limit defined by
(42).
Next we write

µ̃(S̃′) = µ̃(S̃) + (S̃′ − S̃) ˙̃µ(S̃) + O((S̃′ − S̃)2),

where

˙̃µ(S̃) =
dµ̃(S̃)

dS̃
≤ 0.

Then using the above expansion in (20) from (42) we obtain

lim
r→0

S̃′ − S̃

r
= κ(S̃)

(

S̃ +
µ̃(S̃)

1 − µ̃(S̃)
λ

)

, (45)

with

0 < κ(S̃)
def
:=

µ̃(S̃)(1 − µ̃(S̃))

µ̃(S̃)(1 − µ̃(S̃)) − S̃ ˙̃µ(S̃)
≤ 1. (46)
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Now sending r → 0 within the same assumptions we obtain the weak form

d

dτ

∫ ∞

0
f̃(w, τ)φ(w)dw

=

(

1 + µ̃(S̃)

(

(κ(S̃) − 1) +
µ̃(S̃)(κ(S̃) − 1) + 1

1 − µ̃(S̃)

λ

S̃

))

∫ ∞

0
f̃(w, τ)wφ′(w) dw

+
1

2

(µ̃(S̃)2 + ζ2)

S̃2
ν

∫ ∞

0
f̃(w, τ)w2φ′′(w) dw.

This corresponds to the weak form of the Fokker-Planck equation

∂

∂τ
f̃ + A(τ)

∂

∂w
(wf̃) =

1

2
B(τ)

∂2

∂w2
(w2f̃),

or equivalently

∂

∂τ
f̃ =

∂

∂w

[

−A(τ)wf̃ +
1

2
B(τ)

∂

∂w
w2f̃

]

, (47)

with

A(τ) = 1 + µ̃(S̃)

(

(κ(S̃) − 1) +
µ̃(S̃)(κ(S̃) − 1) + 1

1 − µ̃(S̃)

λ

S̃

)

(48)

B(τ) =
(µ̃(S̃)2 + ζ2)

S̃2
ν. (49)

Thus we have proved

Theorem 5.1 Let the probability density f0 ∈ Mp, where p = 2 + δ for some δ > 0. Then,
as r → 0, σ → 0, D → 0 in such a way that σ2 = νr and D = λr the weak solution to the
Boltzmann equation (29) for the scaled density f̃r(w, τ) = f(v, t), with τ = rt converges,
up to extraction of a subsequence, to a probability density f̃(w, τ). This density is a weak
solution of the Fokker-Planck equation (47).

We remark that even for the Fokker-Planck model the mean wealth is increasing with
time. A simple computation show that

˙̄w(τ) =
d

dτ

∫ ∞

0
f̃(w, τ)w dw = A(τ)

∫ ∞

0
f̃(w, τ)w dw = A(τ)w̄(τ). (50)

Using (46) we get the bound

(1 − µ̃(S̃))w̄(τ) + nλ ≤ ˙̄w(τ) ≤ w̄(τ) +
nλ

1 − µ̃(S̃)
. (51)

Similarly for the second order moment we have

˙̄e(τ) =
d

dτ

∫ ∞

0
f̃(w, τ)w2 dw = (2A(τ) + B(τ))

∫ ∞

0
f̃(w, τ)w2 dw = (2A(τ) + B(τ))ē(τ).(52)
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In order to search for self-similar solutions we consider the scaling

f̃(w, τ) =
1

w
g̃(χ, τ), χ = log(w).

Simple computations show that g̃(χ, τ) satisfy the linear convection-diffusion equation

∂

∂τ
g̃(χ, τ) =

(

B(τ)

2
− A(τ)

)

∂

∂χ
g̃(χ, τ) +

B(τ)

2

∂2

∂χ2
g̃(χ, τ),

which admits the self-similar solution (see [16] for example)

g̃(χ, τ) =
1

(2b(τ)π)1/2
exp

(

−
(χ + b(τ)/2 − a(τ))2

2b(τ)

)

, (53)

where

a(τ) =

∫ τ

0
A(s) ds + C1, b(τ) =

∫ τ

0
B(s) ds + C2.

Reverting to the original variables we obtain the lognormal asymptotic behavior of the
model

f̃(w, τ) =
1

w(2b(τ)π)1/2
exp

(

−
(log(w) + b(τ)/2 − a(τ))2

2b(τ)

)

. (54)

The constants C1 = a(0) and C2 = b(0) can be determined from the initial data at t = 0.
If we denote with w̄(0) and ē(0) the initial value of the first two central moments we get

C1 = log(w̄(0)), C2 = log

(

ē(0)

(w̄(0))2

)

.

Finally a direct computation shows that

a(τ) =

∫ τ

0

˙̄w(s)

w̄(s)
ds + C1 = log(w̄(τ)), (55)

and

b(τ) =

∫ τ

0

(

˙̄e(s)

ē(s)
− 2

˙̄w(s)

w̄(s)

)

ds + C2 = log

(

ē(τ)

(w̄(τ))2

)

. (56)

Remark 5.1

• If we assume ζ and σ of the same order of magnitude in the Fokker-Planck limit the
noise introduced by the agents deviations with respect to their optimal behavior does
not play any role and the only source of diffusion is due to the stochastic nature of
the returns.

• In the case of constant investments µ̃(·) = C, C ∈ (0, 1) we have the simplified
Fokker-Planck equation

∂

∂τ
f̃ =

∂

∂w

[

−

(

1 +
C

1 − C

λ

S̃

)

wf̃ +
1

2

(C2 + ζ2)

S̃2
ν

∂

∂w
w2f̃

]

.

It is easy to verify that for such simplified situation the couple of ordinary differential
equations for the evolution of the first two central moments (50) and (52) can be
solved explicitly.
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• Imposing the conservation of the mean wealth with the scaling

f̃(w, τ) =
w̄(0)

w̄(τ)
f̂(v, τ), v =

w̄(0)

w̄(τ)
w (57)

we have the diffusion equation

∂

∂τ
f̂(v, τ) =

B(τ)

2

∂2

∂v2
(v2f̂(v, τ)).

This yields the asymptotic lognormal behavior

f̂(v, τ) =
1

v(2 log(Ē(τ)/w̄(0)2)π)1/2
exp

(

−
(log(v) + log(

√

Ē(τ)/w̄(0)))2

2 log(Ē(τ)/w̄(0)2)

)

, (58)

with
∫ ∞

0
f̂(v, τ)v dv = w̄(0), Ē(τ) =

∫ ∞

0
f̂(v, τ)v2 dv.

6 Numerical examples

In this section we report the results of different numerical simulations of the proposed
kinetic equations. In all the numerical tests we use N = 1000 agents and n = 10000 shares.
Initially each investor has a total wealth of 1000 composed of 10 shares, at a value of 50
per share, and 500 in bonds. The random variables ξ and η have been supposed distributed
accordingly to truncated normal distributions so that negative wealth values are avoided
(no borrowing and no short selling). In Test 1 and 2 we compare the results obtained
with the Monte Carlo simulation of the kinetic model together with a direct solution of
the price equation (33). In the last test case we consider the time averaged Monte Carlo
asymptotic behavior of the kinetic model and compare its numerical self-similar solution
with the explicit one computed in the last section using the Fokker-Planck model.

Test 1

In the first test we take a riskless interest rate r = 0.01 and an average dividend growth
rate D = 0.015 and assume that the agents simply follow a constant investments rule,
µ(·) = C, with C ∈ (0, 1) constant. As a consequence of our choice of parameters we have
C = 0.5 and the evolution of the mean wealth and of the price in the kinetic model are
known explicitly (36). We report the results after 400 stock market iterations with ξ and
η/S(0) distributed with standard deviation 0.2 and 0.3 respectively. In Figure 2 we report
the simulated price behavior together with the evolution computed from (33). The fraction
of investments in time in the Monte Carlo simulation fluctuates around its optimal value
and is given in Figure 3.

Test 2

In the next test case we take the same parameters as in Test 1 but with a non constant
profile µ(·). More precisely we take a monotone decreasing exponential law

µ(S) = C1 + (1 − C1)e
−C2S
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Figure 2: Test 1. Exponential grow of the price in time. Numerical simulation of the kinetic
model.
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Figure 3: Test 1. Fluctuations of the corresponding fraction of investments in time.
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Figure 4: Test 2. Price behavior in time. Numerical simulation of the the kinetic model.
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Figure 5: Test 2. Fluctuations of the corresponding fraction of investments in time.
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Figure 6: Test 1 and 2. Behavior of the mean wealth in the kinetic model. Top curve refers
to Test 1, bottom curve to Test2. The dashed line corresponds to the exponential growth
at a rate equal to r.
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Figure 7: Test 1 and 2. Log-log plot of the mean wealth distribution together with a
lognormal fitting. Top curves refers to Test 1, bottom curves to Test2.
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with C1 = 0.2 and C2 = log((1 − C1)/(0.5 − C1))/S0 ≈ 0.02 so that the price equation is
satisfied for S0 = 50. We have 0.2 < µ(·) ≤ 0.5. The results for the price evolution and the
investments behavior are plotted in Figures 4 and 5. The solution for the price in the kinetic
equation has been computed by direct numerical discretization of (33). Note that the final
price is approximatively 5 times smaller then the one in the constant investment case with
µ = 0.5. In Figure 6 we compare the behavior of the mean wealth in Test 1 and 2 together
with the exponential grow at a rate r obtained with simple investments in bonds. We can
observe that the time decay of investments in Test 2 is fast enough to produce a wealth
grow below the rate r. On the contrary, as observed in Section 3, a constant investment
strategy produces a curve above such rate. Finally in Figure 7 we plot the averaged wealth
distributions at the final computation time in log-log scale together with a lognormal fitting.
The results show a lognormal behavior of the tails even for the Boltzmann model. Note that
thanks to equation (3) the same distribution is observed for the number of stocks owned by
the agents.

Test 3

In the last test case we consider the asymptotic limit of the Boltzmann model and compare
its numerical self-similar solution with the explicit one computed in the last section using the
Fokker-Planck model. To this goal we consider the self similar scaling (57) and compute the
solution for the values r = 0.001, D = 0.0015 with ξ and η/S(0) distributed with standard
deviation 0.05. We report the numerical solution for a constant value of µ = 0.5 at different
times t = 50, 200, 500 in Figures 8 and 9. A very good agreement between the Boltzmann
and the lognormal Fokker-Planck solutions is observed as expected from the results of the
last section. We also compute the corresponding Lorentz curve L(F (w, t)) defined as

L(F (w, t)) =

∫ w

0
f(v, t)v dv

∫ ∞

0
f(v, t)v dv

, F (w, t) =

∫ w

0
f(v, t) dv,

and the Gini coefficient G ∈ [0, 1]

G = 1 − 2

∫ 1

0
L(F (w, t)) dw.

The Gini coefficient is a measure of the inequality in the wealth distribution [10]. A value of
0 corresponds to the line of perfect equality depicted in Figure 10 together with the different
Lorentz curves. It is clear that inequalities grow in time due to the speculative dynamics.

7 Conclusions

We have derived a simple linear mesoscopic model which describes a financial market under
the assumption that the distribution of investments is known as a function of the price.
The model is able to describe the exponential grow of the price of the stock and the grow
of the wealth above the rate produced by simple investments in bonds. The long time

20



0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

−3

w

f(
w

,t)

Figure 8: Test 3. Distribution function at t = 50, 200, 500. The continuous line is the
lognormal Fokker-Planck solution.
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Figure 9: Test 3. Log-log plot of the distribution function at t = 50, 200, 500. The continu-
ous line is the lognormal Fokker-Planck solution.
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Figure 10: Test 3. The corresponding Lorentz curves. The Gini coefficients are G = 0.1,
G = 0.2 and G = 0.3 respectively.

behavior of the model has been studied with the help of a Fokker-Planck approximation.
The emergence of a power law tail for the wealth distribution of lognormal type has been
proved. In order to produce the effect of a real financial market like booms, cycles and
crashes, the distribution of investments should be a function of time (the decision making
should be done by maximizing the expected utility) and one should consider heterogeneous
populations of investors as in [13, 14]. In this case the model should be modified and
consider the time evolution of µ(S, t). Another interesting research direction is related to
the possibility to introduce into the model stock options and to relate the kinetic approach
to Black-Scholes type equations. All these subjects are actually under investigation and we
hope to present other challenging results in the nearby future.
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