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Estimation of conditional laws given an extreme

component

Anne-Laure Fougères∗ Philippe Soulier†

March 7, 2009

Abstract

Let (X,Y ) be a bivariate random vector. The estimation of a prob-
ability of the form P (Y ≤ y | X > t) is challenging when t is large,
and a fruitful approach consists in studying, if it exists, the limiting
conditional distribution of the random vector (X,Y ), suitably normal-
ized, given that X is large. There already exists a wide literature on
bivariate models for which this limiting distribution exists. In this
paper, a statistical analysis of this problem is done. Estimators of
the limiting distribution (which is assumed to exist) and the normal-
izing functions are provided, as well as an estimator of the conditional
quantile function when the conditioning event is extreme. Consistency
of the estimators is proved and a functional central limit theorem for
the estimator of the limiting distribution is obtained. The small sam-
ple behavior of the estimator of the conditional quantile function is
illustrated through simulations.

1 Introduction

Let (X,Y ) be a bivariate random vector for which the conditional distri-
bution of Y given that X > t is of interest, for values of t such that the
conditioning event is a rare event. This happens for example when the
possible contagion between two dependent market returns X and Y is in-
vestigated, see e.g. Bradley and Taqqu (2004) or Abdous et al. (2008). The
estimation of a probability of the form P (Y ≤ y | X > t) starts to be
challenging as soon as t is large, since the conditional empirical distribution
becomes useless when no observations are available. A fruitful alternative
approach consists in studying, if it exists, the limiting distribution of the
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†Université Paris Ouest-Nanterre

1



random vector (X,Y ) conditionally on X to be large. This corresponds to
assuming that there exist functions m, a and ψ, and a bivariate distribution
function (cdf) F such that

lim
t→∞

P(X ≤ t+ ψ(t)x ;Y ≤ m(t) + a(t)y | X > t) = F (x, y) . (1)

This approach was suggested by Heffernan and Tawn (2004) and investigated
by Heffernan and Resnick (2007). Models for which condition (1) holds have
already been investigated in many references. Eddy and Gale (1981) and
Berman (1992) proved that (1) holds for spherical distributions; bivariate
elliptic distributions were investigated by Abdous et al. (2005) multivariate
elliptic distributions and related distributions by Hashorva (2006); Hashorva
et al. (2007). The analysis of the underlying geometric structure (ellipticity
of the level sets of the densities) has lead to various generalizations by Barbe
(2003) and Balkema and Embrechts (2007). See also Fougères and Soulier
(2008) for a recent review on the subject.

An important issue that still has to be addressed is the statistical esti-
mation of the functions a and m that appear in (1), as well as the limiting
distribution function F . This is the aim of the present paper. Two problems
are considered. The first one is the nonparametric estimation of the limiting
distribution and of the normalizing functions. This allows for instance to
test for a specific limiting distribution, e.g. the standard Gaussian distri-
bution as in many examples. Since we are also interested in the case where
the conditionning event is beyond the range of observations, a semiparamet-
ric procedure will be defined to allow this extrapolation. This can only be
done under more restrictive assumptions, which are satisfied by most models
already investigated in the literature.

The paper is organized as follows. In Section 2, we rephrase (1) in terms
of vague convergence of measures in order to use the point process techniques
and the results of Heffernan and Resnick (2007). We also introduce moment
assumptions which are needed to prove the consistency of the non parametric
estimators introduced in Section 3. A functional central limit theorem is
obtained under a second order condition, and its use in a goodness of fit
test is discussed. A specific analysis of the case of a limiting distribution
with product form is done in Section 4. Semi-parametric estimators that
allow extrapolations beyond the range of the observations are studied and
applied to the estimation of conditional quantiles when the conditioning
event is extreme. A simulation study is given in Section 5, which illustrates
the behavior of the goodness of fit test proposed in Section 3 and of the
estimator of the conditional quantile proposed in Section 4. Section 6 finally
collects some proofs.
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2 Assumptions and preliminary results

We first rephrase the convergence (1) in terms of vague convergence of mea-
sures, in order to use point process techniques and the results of Heffernan
and Resnick (2007).

Assumption 1. There exists monotone functions a, b, m and ψ such that
the measure νn defined by

νn(·) = nP

({

X − b(n)

ψ ◦ b(n)
,
Y −m ◦ b(n)

a ◦ b(n)

}

∈ ·
)

(2)

converges vaguely to a measure ν on (−∞,∞]×[−∞,∞] such that ν([0,∞)×
(−∞,∞)) = 1.

Define the probability distribution functions Fn and F by

Fn(x, y) = νn([0, x] × (−∞, y]) , F (x, y) = ν([0, x] × (−∞, y]) .

Assumption 1 implies the convergence of Fn to F at all points of continuity
of F .

Remark 1. Assumption 1 implies that the marginal distribution of X, say
FX belongs to a max-domain of attraction. Thus the functions ψ and b are
determined by the marginal distribution of X only. The function b can and
will be chosen as b = (1/(1 − FX))← where FX is the distribution function
of X. The function ψ satisfies

lim
x→x1

ψ(x+ ψ(x)u)

ψ(x)
= 1 + γu , (3)

where x1 is the right endpoint of the support of the distribution ofX and γ is
the extreme value index of X. In the sequel, we will assume that x1 = +∞.
The first marginal of ν is the generalized Pareto distribution Gγ , defined
if γ 6= 0 by Gγ(x) = 1 − (1 + γx)−1/γ for x such that 1 + γx > 0 and by
G0(t) = 1 − e−t for t > 0 otherwise. Thus, all results concerning only the
marginal distribution of X are obtained by applying the usual extreme value
theory.

Remark 2. Assumption 1 has little implications on the functions a and m
and the second marginal of the measure ν. Let Ψ denote this distribution,
defined by

Ψ(z) =

∫ ∞

0

∫ z

−∞
ν(dx,dy) .

If Y is independent of X, then Ψ is the distribution of Y , a ≡ 1 and m ≡
0. Thus Ψ can be any probability distribution. In particular, it is not
necessarily an extreme-value distribution.
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Remark 3. If the pair (X,Y ) satisfies Assumption 1, then so does any affine
transformation of (X,Y ). For instance, if X and Y have finite mean and
variance, then ((X − E[X])/var1/2(X), (Y − E[Y ])/var1/2(Y )) also satisfies
Assumption 1. But non linear transformations of (X,Y ) do not neces-
sarily satisfy the assumption. In particular, the usual (in extreme value
theory) transformation of X and Y to random variables with prescribed
marginal distributions, is not always possible, as investigated in (Heffernan
and Resnick, 2007, Section 7). It is never possible in the cases where the
joint limiting distribution is a product measure. Consequently, we do not
make any specific assumption on the marginal distributions of X and Y .

Obviously, the functions a and m are defined up to asymptotic equiva-
lence, i.e. if m′ and a′ satisfy

lim
x→∞

a′(x)

a(x)
= 1 , lim

x→∞

m(x) −m′(x)

a(x)
= 0 ,

then the measure ν ′n defined as νn but with a′ and m′ instead of a and m
converges vaguely to the same limit measure ν. Beyond this trivial remark,
the following result summarizes (Heffernan and Resnick, 2007, Proposition 1
and 2) and contains most of what can be infered from Assumption 1.

Proposition 1. Under Assumption 1, there exists ζ ∈ R such that the
function a ◦ b is regularly varying at infinity with index ζ and the function
m satisfies

lim
t→∞

m ◦ b(tx) −m ◦ b(t)
a ◦ b(t) = Jζ(x) ,

with Jζ(x) = (xζ − 1)/ζ if ζ 6= 0 and J0(x) = c log(x) for some c ∈ R, and
the convergence is locally uniform on (0,∞).

Assumption 1 alone is not sufficient for statistical purposes (which typ-
ically require bounded convergence arguments), since it has no implication
on the joint moments of X of Y . Therefore the following assumption is
introduced.

Assumption 2. There exists p∗ > 0, q∗ > 0 such that

lim
n→∞

∫ ∞

0

∫ ∞

−∞
xp

∗|y|q∗νn(dx,dy) =

∫ ∞

0

∫ ∞

−∞
xp

∗|y|q∗ν(dx,dy) . (4)

For the reason mentioned in Remark 1, Assumption 1 implies the con-
vergence (4) with q∗ = 0 and p∗ < 1/γ. In applications, it will be assumed
that q∗ ≥ 2. The function a and the limiting measure ν are defined up to a
change of scale, thus, without loss of generality, we assume henceforth that

∫ ∞

0

∫ ∞

−∞
y2 ν(dx,dy) =

∫ ∞

−∞
y2Ψ(dy) = 1 .
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Condition (4) can be equivalently written as the convergence of conditional
moments. For all q ≤ p∗ and p ≤ q∗, it holds that

lim
t→∞

E[(X − t)q|Y −m(t)|p | X > t]

ψq(t)ap(t)
=

∫ ∞

0

∫ ∞

−∞
xq|y|pν(dx,dy) . (5)

More generally, for any measurable function g such that |g(x, y)| ≤ C(x ∨
1)p

∗
(|y| ∨ 1)q

∗
, it holds that

lim
t→∞

E[g{(X − t)/ψ(t), (Y −m(t))/a(t)} | X > t]

=

∫ ∞

0

∫ ∞

−∞
g(x, y)ν(dx,dy) . (6)

This can also be stated equivalently with the measure νn defined in Assump-
tion 1. For all measurable function g such that |g(x, y)| ≤ C(x ∨ 1)p

∗
(|y| ∨

1)q
∗
, it holds that

lim
n→∞

∫ ∞

0

∫ ∞

−∞
g(x, y)νn(dx,dy) =

∫ ∞

0

∫ ∞

−∞
g(x, y)ν(dx,dy) .

The following result will be needed for statistical purposes, and illustrates
the use of the moment Assumption 2. For a sequence (Xi, Yi), 1 ≤ i ≤ n,
let X(n:i) denote the i-th order statistic and Y[n:i] denote its concomitant.

Recall that an intermediate sequence is a sequence of integers kn such
that limn→∞ kn = limn→∞ n/kn = ∞. In accordance with common use and
for the clarity of notation, the dependence on n will be implicit in the sequel.

Define the random measure

ν̃n =
1

k

n
∑

i=1

δ({Xi−b(n/k)}/ψ◦b(n/k),{Yi−m◦b(n/k)}/a◦b(n/k)) . (7)

Proposition 2. If Assumption 1 and 2 hold, then for any intermediate se-
quence k and any measurable function g such that |g(x, y)| ≤ C(x∨1)p

∗
(|y|∨

1)q
∗
,

∫ ∞

0

∫ ∞

−∞
g(x, y)ν̃n(dx,dy) →P

∫ ∞

0

∫ ∞

−∞
g(x, y)ν(dx,dy) . (8)

The proof is in section 7. For historical interest, we can also mention
the following consequence of Assumption 1, first stated in (Eddy and Gale,
1981, Theorem 6.1) in a restricted case of spherical distributions.

Proposition 3. Under Assumption 1, {Y[n:n] −m ◦ b(n/k)}/a ◦ b(n/k) con-
verges weakly to Ψ. If moreover ν is a product measure, then {Y[n:n] −m ◦
b(n/k)}/a ◦ b(n/k) is asymptotically independent of X(n:n).
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Let us finally mention that Davydov and Egorov (2000) obtained func-
tional limit theorems for sums of concomitants corresponding to a number k
of order statistics such that k/n 9 0. Their problem differs from ours. Their
assumptions on the joint distribution of the random pairs are much weaker
than Assumption 1, but their results are of a very different nature and it
does not seem possible to use them to derive Proposition 2 for instance.

3 Nonparametric estimation of ψ, a, m and F

In this section, we introduce nonparametric estimators of the functions ψ,
m, a and F based on i.i.d. observations (X1, Y1), . . . , (Xn, Yn) of a bivariate
distribution which satisfy Assumption 2.

3.1 Definitions and consistency

In order to estimate nonparametrically the limiting distribution F , we first
need nonparametric estimators of the quantities ψ(X(n:n−k)), m(X(n:n−k))
and a(X(n:n−k)), with k an intermediate sequence, i.e. such that k → ∞
and k/n → 0. The estimation of ψ(X(n:n−k)) is a well known estimation
issue, see e.g. Beirlant et al. (2004) or De Haan and Ferreira (2006) If the
extreme value index γ of X is less than 1, then ψ can be estimated as the
mean residual life. Let γ̂ be a consistent estimator of γ (see e.g. Beirlant
et al. (2004)) and define

ψ̂(X(n:n−k)) =
1 − γ̂

k

k
∑

i=1

{X(n:n−i+1) −X(n:n−k)} . (9)

It follows straightforwardly from Proposition 2 that ψ̂(X(n:n−k))/ψ ◦ b(n/k)
converges weakly to (1 − γ)

∫∞
0 xGγ(dx) = 1. If it is moreover assumed (as

in Section 4 below) that γ = 0, then the estimator above can be modified
accordingly:

ψ̂(X(n:n−k)) =
1

k

k
∑

i=1

{X(n:n−i+1) −X(n:n−k)} . (10)

In order to estimate m, define

m̂(X(n:n−k)) =

∑k
i=1 Y[n:n−i+1]{X(n:n−i+1) −X(n:n−k)}
∑k

i=1{X(n:n−i+1) −X(n:n−k)}
. (11)

Proposition 4. If Assumption 1 holds and Assumption 2 holds with p∗ ≥ 1
and q∗ ≥ 1, then, for any intermediate sequence k, it holds that

m̂(X(n:n−k)) −m ◦ b(n/k)
a ◦ b(n/k) →P µ ,
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where µ = (1−γ)
∫∞
0

∫∞
−∞ xyν(dx,dy). If moreover m(x) = ρx and if µ = 0

or a(x) = o(x) then m̂(X(n:n−k))/X(n:n−k) is a consistent estimator of ρ.

Proof. Write

m̂(X(n:n−k)) −m ◦ b(n/k)
a ◦ b(n/k) =

Sn
Tn

,

with

Sn =
1

k

k
∑

i=1

Y[n:n−i+1] −m ◦ b(n/k)
a ◦ b(n/k)

X(n:n−i+1) −X(n:n−k)

ψ ◦ b(n/k) ,

Tn =
1

k

k
∑

i=1

X(n:n−i+1) −X(n:n−k)

ψ ◦ b(n/k) .

We have already seen that Tn converges weakly to 1/(1 − γ). Denote

x̃n =
X(n:n−k) − b(n/k)

ψ ◦ b(n/k) . (12)

Under Assumption 1 (which implies that X belongs to a max-domain of
attraction), it is well known that x̃n = oP (1). Cf. De Haan and Ferreira
(2006, Theorem 2.2.1). Write now (with notation x+ = sup(x, 0))

Sn =
1

k

n
∑

i=1

Yi −m ◦ b(n/k)
a(X(n:n−k))

{

Xi − b(n/k)

ψ ◦ b(n/k) − x̃n

}

+

=

∫ ∞

x̃n

∫ ∞

−∞
(x− x̃n)y ν̃n(dx,dy)

=

∫ ∞

0

∫ ∞

−∞
xy ν̃n(dx,dy) + oP (1) .

Thus Sn converges weakly to µ/(1 − γ) by Proposition 2.

Remark 4. A sufficient condition for µ = 0 is the symmetry of the measure
ν with respect to the second variable. This happens in particular if ν is a
product measure, and the distribution Ψ is symmetric.

We now estimate a(X(n:n−k)). Many estimators can be defined, each
needing an ad hoc moment assumption. The one we have chosen needs
q∗ ≥ 2 in Assumption 2. Define

â(X(n:n−k)) =

{

1

k

k
∑

i=1

{Y[n:n−i+1] − m̂(X(n:n−k))}2

}1/2

. (13)
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Proposition 5. If Assumption 1 holds and Assumption 2 holds with p∗ ≥ 1
and q∗ ≥ 2, and if µ = 0, then, for any intermediate sequence k, it holds
that

â(X(n:n−k))/a ◦ b(n/k) →P 1 .

Proof. We show that â2(X(n:n−k))/a
2◦b(n/k) converges weakly to 1. Denote

ξn = {m̂(X(n:n−k)) −m ◦ b(n/k)}/a ◦ b(n/k) . (14)

By Proposition 4 ξn = oP (1), and noting that ν̃n{[x̃n,∞] × [−∞,∞]} = 1,
where ν̃n and x̃n are respectively defined by (7) and (12), we have

â2(X(n:n−k))

a2 ◦ b(n/k)

=
1

k

n
∑

i=1

{

Yi −m ◦ b(n/k)
a ◦ b(n/k) − ξn

}2 1
{
Xi−b(n/k)

ψ◦b(n/k)
≥x̃n}

=

∫ ∞

x̃n

∫ ∞

−∞
(y − ξn)

2 ν̃n(dx,dy)

=

∫ ∞

x̃n

∫ ∞

−∞
y2 ν̃n(dx,dy) − 2ξn

∫ ∞

x̃n

∫ ∞

−∞
y ν̃n(dx,dy) + ξ2n (15)

=

∫ ∞

0

∫ ∞

−∞
y2 ν̃n(dx,dy) + oP (1) .

Thus â(X(n:n−k))/a◦ b(n/k) converges weakly to 1 by Proposition 2 and the
chosen normalization

∫∞
−∞ y

2Ψ(dy) = 1.

Remark 5. If µ 6= 0, then ξn →P µ and â(X(n:n−k))/a ◦ b(n/k) →P τ , with

τ2 = 1 − 2µ

∫ ∞

−∞
yΨ(dy) + µ2 . (16)

We can now consider the nonparametric estimator of the limiting joint
distribution F . Define

F̂ (x, y) =
1

k

k
∑

i=1

1{X(n:n−i+1)≤X(n:n−k)+ψ̂(X(n:n−k))x}

× 1{Y[n:n−i+1]≤m̂(X(n:n−k))+â(X(n:n−k))y} . (17)

Theorem 6. Under Assumptions 1 and 2 with γ < 1, p∗ ≥ 1 and q∗ ≥ 2,
if µ = 0, and if F is continuous, then, for any intermediate sequence k,
F̂ (x, y) converges weakly to F (x, y).
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Proof. Denote un = ψ̂(X(n:n−k))/ψ ◦ b(n/k) and

vn = â(X(n:n−k))/a ◦ b(n/k) . (18)

Then

F̂ (x, y) = ν̃n([x̃n, x̃n + unx] × (−∞, ξn + vny]) ,

where ξn is defined by (14). Thus F̂ (x, y) converges weakly to F (x, y) by
Proposition 2, 4 and 5.

We can also define an estimator of the second marginal Ψ of F . Denote

Ψ̂(y) =
1

k

k
∑

i=1

1{Y[n:n−i+1]≤m̂(X(n:n−k))+â(X(n:n−k))y} . (19)

Then, under the assumptions of Theorem 6, Ψ̂n also converges to Ψ. Note
that if µ 6= 0, then Ψ̂(z) converges weakly to Ψ(µ + τz), with τ defined
in (16).

3.2 Central limit theorems

In order to obtain central limit theorems, we need to strengthen Assump-
tions 1 and 2.

Assumption 3. There exist positive real numbers p∗ and q∗, a function c
and a locally bounded function χ on R

2 such that

|P(X ≤ t+ ψ(t)x , Y ≤ m(t) + a(t)y | X > t) − F (x, y)| ≤ c(t)χ(x, y) ,
(20)

∫ ∞

0

∫ ∞

−∞
xp

∗+1|y|q∗+1χ(x, y) dxdy <∞ . (21)

Remark 6. Condition (20) is similar to de Haan and Resnick (1993, Con-
dition 4.1), but with a bound instead of a limit. It gives a rate of uniform
convergence on compact sets. Condition (21) yields the convergence of mo-
ments.

For a sequence k depending on n, define the random measure µ̃n by

µ̃n = k1/2 (ν̃n − ν)

and denote

Wn(x, y) = µ̃n((x,∞) × (−∞, y]).
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Proposition 7. If Assumption 3 holds with p∗ ≥ 2 and q∗ ≥ 4 and if the
sequence k is chosen such that (42) holds, then the sequence of processes
Wn converges weakly in D to a Gaussian process W with autocovariance
function

cov(W (x, y),W (x′, y′)) = ν([x ∨ x′,+∞) × (−∞, y ∧ y′]) .

Moreover, the sequence of random measures µ̃n converges weakly (in the
sense of finite dimensional distributions) to an independently scattered Gaus-
sian random measure W with control measure ν on the space of measurable
functions g such that |g(x, y)|2 ≤ C(x∨1)p

∗
(|y|∨1)q

∗
, i.e. W (g) is a centered

Gaussian random variable with variance
∫ ∞

0

∫ ∞

−∞
g2(s, t) ν(ds,dt)

and W (g), W (h) are independent if
∫

ghdν = 0.

The proof is in section 7. Applying Proposition 7, we easily obtain the
following corollary. For i, j ≥ 0, denote gi,j(x, y) = xiyj1{x>0}.

Corollary 8. Under the assumptions of Proposition 7 and if moreover µ =
0, then

k1/2

{

X(n:n−k) − b(n/k)

ψ ◦ b(n/k) ,
m̂(X(n:n−k)) −m ◦ b(n/k)

a ◦ b(n/k) ,
â(X(n:n−k))

a ◦ b(n/k) − 1

}

converges jointly with k1/2(ν̃n − ν) to a Gaussian vector which can be ex-
pressed as (W (g0,0), (1 − γ)W (g1,1),

1
2W (g0,2)).

Proposition 7 and Corollary 8 straightforwardly yield a functional central
limit theorem for the estimator Ψ̂ of Ψ defined in (19). Denote G(x, y) =
ν([x,∞) × (−∞, y]).

Theorem 9. If Assumption 3 holds, if µ = 0 and if Ψ is absolutely contin-
uous, then k1/2(Ψ̂ − Ψ) converges in D to the process M defined by

M(y) = W (0, y)

+
∂

∂x
G(0, y)W (g0,0) + Ψ′(z){(1 − γ)W (g1,1) +

1

2
W (g0,2)z} . (22)

Proof of Theorem 9. Recall the definitions of x̃n, ξn and vn in (12), (14)
and (18), respectively. Then

k1/2{Ψ̂(y) − Ψ(y)}
= k1/2{ν̃n([x̃n,∞) × (−∞, ξn + vny]) − Ψ(y)}
= µ̃n([x̃n,∞) × (−∞, ξn + vny]) + k1/2{G(x̃n, ξn + vny) − Ψ(y)} .

10



By Proposition 7, the first term in the right hand-side of the last displayed
equation converges weakly to W (0, y). By Corollary 8 and the delta method,
k1/2{G(x̃n, ξn + vny) − Ψ(y)} converges weakly to

∂

∂x
G(0, y)W (g0,0) + Ψ′(y){(1 − γ)W (g1,1) +

1

2
W (g0,2)y} .

4 Case of a product measure

In this section, guided by examples (see e.g. Fougères and Soulier (2008)),
we make the following additional assumption.

Assumption 4.
The function ψ is an auxiliary function satisfying limx→∞ ψ(x)/x = 0, there
exists ρ ∈ R such that m(x) = ρx and the measure ν is of the form

ν((x,∞) × [−∞, y]) = e−xΨ(y) , (23)

where Ψ is a distribution function on R.

The condition limx→∞ ψ(x)/x = 0 implies that the extreme value index
of X is 0. Heffernan and Resnick (2007, Proposition 2) provides a necessary
and sufficient condition for ν to be a product measure.

Proposition 10. The measure ν is a product measure if and only if a ◦ b is
slowly varying at infinity and

lim
t→∞

b(tx) − b(t)

a ◦ b(t) = 0 . (24)

The main consequence of Assumption 4 and of this result is that

ψ(x) = o(a(x)) ,

(by application of De Haan and Ferreira (2006, Theorem B.2.21)) and this
implies that the deterministic centering in (2) can be replaced by a random
centering. Specifically, Assumptions 2 and 4 imply

lim
t→∞

P(X > t+ ψ(t)x , Y − ρX ≤ a(x)y | X > t) = e−xΨ(y) .
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4.1 Nonparametric estimation

Under Assumption 4, we can define new estimators of ρ, a and the marginal
distribution Ψ as follows:

ρ̂ =

∑k
i=1 Y[n:n−i+1]{X(n:n−i+1) −X(n:n−k)}

∑k
i=1X(n:n−i+1){X(n:n−i+1) −X(n:n−k)}

, (25)

ǎ(X(n:n−k)) =

[

1

k

k
∑

i=1

{Y[n:n−i+1] − ρ̂X(n:n−i+1)}2

]1/2

, (26)

Ψ̌(z) =
1

k

k
∑

i=1

1{Y[n:n−i+1]≤ρ̂X(n:n−i+1)+ǎ(X(n:n−k))z} . (27)

Proposition 11. If Assumptions 1, 2 and 4 hold and if µ = 0, then for
any intermediate sequence k, b(n/k)(ρ̂−ρ)/a◦b(n/k) converges weakly to 0,
ǎ(X(n:n−k))/a◦b(n/k) converges weakly to 1 and Ψ̌ is a consistent estimator
of Ψ. If a(x) = o(x) then ρ̂ converges weakly to ρ.

In order to prove central limit theorems, we now introduce a second order
assumption which is a modification of Assumption 3 in order to account for
the random centering.

Assumption 5. There exist positive real numbers p∗ and q∗, a fonction c̃
and a locally bounded function χ̃ on R

2 such that

|P(X ≤ t+ ψ(t)x;Y − ρX ≤ a(t)y | X > t) − F (x, y)| ≤ c̃(t)χ̃(x, y) , (28)
∫ ∞

0

∫ ∞

−∞
xp

∗+1|y|q∗+1χ(x, y) dxdy <∞ . (29)

The only difference with Assumption 3 is the presence of the term ρX
instead of ρx. To illustrate the importance of this change, consider the case
of a bivariate Gaussian vector with standard marginals and correlation ρ.
Abdous et al. (2005) have shown that limx→∞ P(Y ≤ ρx+

√

1 − ρ2y | X >
x) = Φ(y) (where Φ is the distribution function of the standard Gaussian
law), and a rate of convergence of order x−1 has been proved in Abdous
et al. (2008). But of course, since (Y − ρX)/

√

1 − ρ2 is standard Gaussian
and independent of X, for all x it holds that P(Y ≤ ρX +

√

1 − ρ2y | X >
x) = Φ(y). For general elliptical bivariate random vectors, it is also proved
in Abdous et al. (2008) that the rate of convergence with random centering
can be the square of the rate with deterministic centering. Assumption 5 can
also be checked for the generalized elliptical distributions studied in Fougères
and Soulier (2008).

Theorem 12. If Assumptions 4 and 5 hold and if the intermediate sequence
k is chosen such that limn→∞ k

1/2c̃◦b(n/k) = 0, then k1/2{Ψ̌−Ψ} converges
weakly in D to the process M defined in (22).

12



The proof of Proposition 11 and Theorem 12 is similar to the proof of the
previous results. The only difference is that instead of the random measure
ν̃n defined in (7) we use the measure ν̌n, defined by

ν̌n =
1

k

n
∑

i=1

δ({Xi−b(n/k)}/ψ◦b(n/k),{Yi−ρXi}/a◦b(n/k)) , (30)

which converges weakly to the measure ν, and if k satisfies the condition
stated in Theorem 12, then k1/2(ν̌n− ν) converges to the Gaussian measure
W defined in Proposition 7. We briefly sketch the proof of Proposition 11
at the end of Section 7. Theorem 12 is proved along the same lines as
Theorem 9.

Kolmogorov-Smirnov Test

In the case γ = 0 and when the limiting measure ν has product form, then
∂
∂xG(0, y) = −Ψ(y). Define B(t) = W (0,Ψ−1(t)). Then B is a standard
Brownian motion on [0, 1] and

W (0, y) +
∂

∂x
G(0, y)W (g0,0) = B ◦ Ψ(y) − Ψ(y)B(1) = B ◦ Ψ(y)

where B is a standard Brownian bridge. Thus, supy∈R |M(y)| has the same
distribution as

Z = sup
t∈[0,1]

∣

∣

∣

∣

B(t) + Ψ′ ◦ Ψ−1(t){U +
1

2
Ψ−1(t)V }

∣

∣

∣

∣

, (31)

where U and V are jointly Gaussian random variables that can be expressed
as

U =

∫ 1

0
Ψ−1(s) dB(s) +N , V =

∫ 1

0
{Ψ−1(s)}2 dB(s) .

where N is a standard Gaussian random variable independent of the Brown-
ian motion B. These extra terms come from the estimation of the functions
a and m. If they were known, the limiting distribution would be the Brow-
nian bridge as expected. Nevertheless, this distribution depends only on Ψ,
so it can be used for a goodness-of-fit test. See Section 5.1 for a numerical
illustration.

4.2 Semi-parametric estimation

Two problems arise in practice: the estimation of the conditional probability
θ(x, y) = P(Y ≤ y | X > x) and of the conditional quantile y = θ←(x, p) for

13



some fixed p ∈ (0, 1) and for some extreme x, i.e. beyond the range of the
observations.

If x lies within the range of the observations, then θ(x, y) can be esti-
mated empirically by

θ̂emp(x, y) =
1

k

n
∑

i=1

1{Yi≤y}1{Xi>x} ,
for x = X(n:n−k). The most interesting situation for using the limit distri-
butions that arise in Assumption 1 is when x is outside the range of the
observations, so that an empirical estimate is no longer available. In such
a situation, a semi-parametric approach will be needed to extrapolate the
functions a(x), m(x) and ψ(x) for values x beyond X(n:n). This requires
some modeling restrictions. We still assume that Assumption 4 holds and
we assume moreover that there exists σ > 0 such that

a(x) = σ
√

xψ(x) . (32)

We will also assume that the limiting distribution function Ψ in (23) is
known. These assumptions hold in particular for bivariate elliptical distri-
bution, see Abdous et al. (2008). There, and in many other examples, Ψ is
the distribution function of the standard Gaussian law. See also Fougères
and Soulier (2008). Assumption 4 and (32) imply that

lim
x→∞

θ(x, ρx+ σ
√

xψ(x)z) = Ψ(z) , (33)

so that θ(x, y) can be approximated for x large enough by

Ψ

(

y − ρx

σ
√

xψ(x)

)

.

Thus, in order to estimate θ, we need a semi-parametric estimator of ψ. For
this purpose, we make the following assumption on the marginal distribution
of X.

Assumption 6. The distribution function H of X satisfies

1 −H(x) = e−x
β{c+O(xβη)}

with β > 0 and η < 0.

Under Assumption 6, an admissible auxiliary function is given by

ψ(x) =
1

cβ
x1−β . (34)

14



Under (32), the normalizing function a is then

a(x) =
σ√
cβ
x1−β/2 .

Let k and k1 be intermediate sequences. Semi-parametric estimators of β
and a(x) are given by

β̂ =

∑k
i=1 log log(n/i) − log log(n/k)

∑k
i=1 log(X(n:n−i+1)) − log(X(n:n−k))

, (35)

ă(x) = ǎ(X(n:n−k1+1))

(

x

X(n:n−k1+1)

)1−β̂/2

. (36)

Proposition 13. If Assumption 6 holds, and if k is an intermediate se-
quence such that

lim
n→∞

log(k)/ log(n) = lim
n→∞

k log2η(n) = 0 ,

then k1/2(β̂ − β) converges weakly to N(0, β−2).

Suppose moreover that Assumptions 4, 5 and (32) hold. Let (xn) be a
sequence and k1 be an intermediate sequence such that

lim
n→∞

k
1/2
1 c̃ ◦ b(n/k1) = lim

n→∞
k/k1 = 0 ,

lim
n→∞

log(b(n))/ log(xn) = 1 ,

lim
n→∞

k−1/2 log(xn) = 0 .

Then
k1/2

log(xn)

{

ă(xn)

a(xn)
− 1

}

converges weakly to N(0, β−2).

Remark 7. A similar result could hold if limn→∞ log(b(n))/ log(xn) = 0, but
this assumption may not be consistent with the other assumptions.

Proof of Proposition 13. The asymptotic normality of β̂ is proved (under
more general conditions) in Gardes and Girard (2006, Corollary 1). Consider
now ă(xn).

ă(xn)

a(xn)
− 1 =

â(X(n:n−k1+1))

a(X(n:n−k1+1))
X

(β̂−β)/2
(n:n−k1)x

(β−β̂)/2
n − 1

=

{

â(X(n:n−k1+1))

a(X(n:n−k1+1))
− 1

}

X
(β̂−β)/2
(n:n−k1)

x(β−β̂)/2
n

+
{

X
(β̂−β)/2
(n:n−k1)

− 1
}{

x(β−β̂)/2
n − 1

}

+X
(β̂−β)/2
(n:n−k1)

− 1 + x(β−β̂)/2
n − 1 .
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Since β̂ − β = OP (k−1/2), log(xn) = o(k1/2) and k/k1 → 0, we obtain

x(β−β̂)/2
n − 1 ∼ (β − β̂) log(xn)/2 ,

X
(β−β̂)/2
(n:n−k1+1) − 1 ∼ (β − β̂) log(X(n:n−k1+1))/2 ∼ (β − β̂) log(b(n))/2 ,

where the equivalence relations above hold in probability. Finally,

k1/2

log(xn)

{

ă(xn)

a(xn)
− 1

}

= k1/2(β − β̂) + oP (1) ,

and the proof follows from the asymptotic normality of k1/2(β − β̂).

The previous results lead to two natural estimators of the conditional
probability θ(x, y) = P(Y ≤ y | X > x) and of the conditional quantile
y = θ←(x, p). Define

θ̂(x, y) = Ψ

(

y − ρ̂x

ă(x)

)

. (37)

Under Assumptions 2, 4 and (32), Proposition 11 implies that for fixed x
and y, θ̂(x, y) is a consistent estimator of Ψ ((y − ρx)/a(x)), but a biased
estimator of θ(x, y). The remaining bias, which is an approximation error
due to the asymptotic nature of equation (33), can be bounded thanks to
the second order Assumption 5. For more details, see (Abdous et al., 2008,
Section 3.2) for a treatment in the elliptical case.

We now investigate more thoroughly the estimation of the conditional
quantile yn = θ←(xn, p) for some fixed p ∈ (0, 1) and some extreme sequence
xn, i.e. beyond the range of the observations, or equivalently, xn > b(n).
An estimator ŷn is defined by

ŷn = ρ̂xn + ă(xn)Ψ
−1(p) . (38)

Corollary 14. Under the assumptions of Proposition 13, if Ψ′(p) > 0, if
b(n/k1) ≍ b(n) ≍ xn and if

lim
n→∞

k1/2c̃ ◦ b(xn)
log(xn)

= 0 , (39)

then
k1/2xn

log(xn)a(xn)

{

ŷn
yn

− 1

}

converges weakly to a centered Gaussian law with variance
{

Ψ−1(p)/ρβ
}2

.
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Proof. Define ỹn = ρxn + a(xn)Ψ
−1(p). Then

ŷn − yn = ŷn − ỹn + ỹn − yn

= (ρ̂− ρ)xn + (â(xn) − a(xn))Ψ
−1(p) + ỹn − yn .

In order to study ỹn−yn, denote zn = (yn−ρxn)/a(xn). Then limn→∞ zn =
Ψ−1(p). Indeed, if the sequence zn is unbounded, then it tends to infinity at
least along a subsequence. Choose z > ψ−1(p). Then, for large enough n,

p = P(Y ≤ ρxn + a(xn)zn | X > xn) ≥ P(Y ≤ ρxn + a(xn)z | X > xn)

→ Ψ(z) > p .

Thus the sequence zn is bounded, and if it converges to z (along a subse-
quence), it necessarily holds that ψ(z) = p, thus zn converges to Ψ−1(p).
Since we have assumed that a(x) = o(x), this implies that yn ∼ ρxn and

ỹn − yn
yn

∼ a(xn){Ψ−1(p) − zn}
ρxn

→ 0 .

Moreover, since Ψ′(p) > 0, by a first order Taylor expansion, we have

Ψ−1(p) − zn =
1

Ψ′(ξn)
{θ(xn, yn) − Ψ(zn)} ,

where ξn = Ψ−1(p) + u{zn − Ψ−1(p)} for some u ∈ (0, 1). By Assump-
tion 5, ‖θ(xn, ·) − Ψ‖∞ = O(c̃ ◦ b(xn)). Since we have already shown
that zn converges to Ψ−1(p), 1/Ψ′(ξn) is bounded for large enough n, so
Ψ−1(p) − zn = O(c̃ ◦ b(xn)). Thus, by (39),

k1/2xn
log(xn)a(xn)

ỹn − yn
yn

= O

(

k1/2c̃ ◦ b(xn)
log(xn)

)

= o(1) .

Next,

ŷn − ỹn
yn

=
ρ̂− ρ

ρ
+
a(xn)Ψ

−1(p)

ρxn

{

ă(xn)

a(xn)
− 1

}

.

Applying Proposition 11 and 13, if k/k1 → 0 and xn ≍ b(n), we obtain

k1/2

log(xn)

xn
a(xn)

ŷn − ỹn
yn

=
k1/2xn(ρ̂− ρ)

ρa(xn) log(xn)
+

Ψ−1(p)

ρ

k1/2

log(xn)

{

ă(xn
a(xn)

− 1

}

.

The first term in the right-hand side tends to zero by Proposition 11 and
the assumptions on the sequences k1, k and xn. The second term converges
weakly to Ψ−1(p)/(ρβ)N(0, 1) by Proposition 13.
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5 Numerical Illustration

In this section, we perform a small sample simulation study with two pur-
poses. We analyze the behavior of the Kolmogorov-Smirnov test proposed in
Section 4.1 and we illustrate the behavior of the estimator of the conditional
quantile proposed in Section 4.2.

5.1 Goodness-of-fit test for the distribution Ψ

Assume that the hypotheses of Section 4 hold, so that the nonparametric
estimation procedure described in Section 4.1 can be used. Three types of
distributions are considered, each of them restricted to the positive quadrant
for convenience. These distributions are:
(a) the elliptical distribution with radial survival function P (R > t) = e−t;
(b) the distribution with radial representation R(cos(T ), sin(T )), where
P (R > t) = e−t

2/2 and T has a non uniform concave density function
fT (t) = 4/

{

π + π(2t− 1)2
}

;
(c) the distribution with radial representation R(cos(T ), sin(T )), where P (R >
t) = e−t

2/2 and T has a non uniform convex density function fT (t) =
2 − 4/

{

π(1 + (2t− 1)2
}

.

Case (a) is an example of the standard elliptical case, for which esti-
mation results already exist (see Abdous et al. (2008)), whereas (b) and
(c) illustrate the situation where the density level lines are “asymptotically
elliptic” (see Fougères and Soulier (2008)). In these three cases, Ψ is the
Normal distribution function (denoted by Φ). Figure 1 illustrates the es-
timation of Ψ via the nonparametric estimator Ψ̌ defined by (27) for one
sample (n = 1000, k = 100) of distribution (b).
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Figure 1: Estimation of Ψ via the nonparametric estimator Ψ̌n for one
sample (n = 1000, k = 100) of distribution (b).
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The Kolmogorov-Smirnov goodness-of-fit test performed here admits
therefore as test statistic

TKS = sup
y∈R

√
k|Ψ̌(y) − Φ(y)| . (40)

As shown in Section 4.1, TKS has asymptotically the same distribution as
the random variable Z defined in (31). Quantiles of this distribution have
been obtained numerically and are listed in Table 1.

Table 1: Quantiles qα of order 1 − α of Z.

α 0.01 0.05 0.10 0.15 0.20 0.25

qα 1.598 1.297 1.174 1.076 1.029 0.980

We have compared these theoretical levels to the empirical levels ob-
tained by simulation. In the three cases (a) to (c), 10000 samples of
size n = 103, 104 and 105, are simulated. The k observations having the
largest first component are kept (for k = 50, 100, 200), and the nonpara-
metric estimate Ψ̌ given in (27) is computed with this reduced sample. The
observed values of the test statistic TKS are compared to the quantiles listed
in Table 1. For brevity, we present only the results corresponding to the two
theoretical levels α = (0.05, 0.1). These empirical levels are shown in Ta-
ble 2.

Table 2: Empirical levels (α̂0.05, α̂0.1) associated to theoretical levels
(0.05, 0.1) for the goodness-of-fit test with statistic TKS. The original sample
size is denoted by n, and the number of observations used for the estimation
is denoted by k. Notation (a)–(c) refers to the three bivariate distributions
listed above.

n k (a) (b) (c)

50 (0.057, 0.104) (0.031, 0.062) (0.02, 0.048)
1000 100 (0.131, 0.224) (0.055, 0.102) (0.04, 0.083)

200 (0.599, 0.741) (0.144, 0.241) (0.157, 0.326)

50 (0.042, 0.076) (0.026, 0.055) (0.027, 0.043)
10000 100 (0.062, 0.114) (0.037, 0.073) (0.04, 0.086)

200 (0.096, 0.176) (0.054, 0.993) (0.074, 0.149)

50 (0.036, 0.071) (0.027, 0.054) (0.026, 0.043)
100000 100 (0.034, 0.073) (0.035, 0.069) (0.045, 0.07)

200 (0.065, 0.115) (0.031, 0.069) (0.078, 0.124)

A common feature for the three distributions is that the results are rather
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sensitive to the reduced number of observations k. However, the value of
k leading to the best adequation between empirical and theoretical levels
depends more on n than on the distribution, in most cases that we studied.

5.2 Semi-parametric estimation of the conditional quantile

function

Assume from now on that the limiting distribution Ψ is the standard Gaus-
sian distribution Φ and that Assumptions 4, 6 and equation (32) hold. The
small sample behavior of the semi-parametric estimator ŷn(p) of the quantile
function θ←(xn, p) defined by Equation (38) is illustrated in Figure 2 for the
three distributions presented in Section 5.1. In each case, 100 samples of size
10000 are simulated. A proportion of 1% of the observations is used, which
are the 100 observations with largest first component. For each sample, the
conditional quantile function θ←(x, p) is estimated for two values of x corre-
sponding to the theoretical X-quantiles of order 1 − ǫ, where ǫ = 10−4 and
ǫ = 10−5. Figure 2 summarizes the quality of these estimations by showing
the median, and the 2.5%- and 97.5%-quantiles of ŷn(p) for the two fixed
values of x specified above.

The estimation results are globally good, and the best ones are obtained
for cases (a) and (c), see rows 1 and 3 of Figure 2. Besides, one can observe
a slight improvement as the conditioning event becomes more extreme.

6 Data analysis

To illustrate the use of the new procedures, and more specifically the Kolmo-
gorov-Smirnov goodness-of-fit test proposed in Section 4.1, the hypothesis
of Ψ = Φ, where Φ is the standard Gaussian cdf, is tested using the series
of monthly returns for the 3M stock and the Dow Jones Industrial Average
from January 1970 to January 2008 (n = 457 values). These data were
used by Levy and Duchin (2004) and revisited by Abdous et al. (2008). In
the latter paper, the hypothesis of bivariate ellipticity was accepted through
a test of elliptical symmetry proposed by Huffer and Park (2007) and the
contagion from the Dow Jones to the 3M stock was tested. As shown in
Abdous et al. (2005), ellipticity implies that Condition (1) holds and that
the limiting distribution is the Gaussian law. The present procedure allows
to test for the Gaussian conditional limit law without assuming ellipticity,
but the weaker assumption (1). The observed values of the test statistic TKS
defined by (40) in terms of different choices of threshold k (or equivalently
in terms of the proportion r of observations used, k = nr) are summarized
in Table 3. According to Table 1, all these observed values correspond to a
p-value greater than 0.25, which leads to accept the hypothesis Ψ = Φ.
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Table 3: Observed values tKS of the test statistic TKS defined by (40) in
terms of the proportion r or number k of observations used.

p 0.05 0.10 0.15 0.20

k 22 45 68 91

tKS 0.842 0.847 0.777 0.948

7 Proofs

Proof of Proposition 2. By (Resnick, 2007, Theorem 4.1), Assumption (2)
implies that ν̃n converges weakly to ν. We now prove (8). The convergence of
ν̂n implies that for all compact set K of [0,∞)× (−∞,∞) and any bounded
function h, it holds that

lim
n→∞

∫∫

K
h(x, y)ν̃n([x,∞) × [y,∞)) dxdy

=

∫∫

K
h(x, y)ν([x,∞) × [y,∞)) dxdy .

For M > 0, define K = [0,M ]× [0,M ] and Kc = [0,∞)× (−∞,∞)\K. Let
h be a function on [0,∞)× (−∞,∞) such that h(x, y) ≤ C(x∨ 1)q

∗−1(|y| ∨
1)p

∗−1. We must prove

lim sup
M→∞

lim
n→∞

∫∫

Kc

h(x, y)ν̃n([x,∞) × [y,∞)) dxdy = 0 , (41)

in probability. Denote Gn(x, y) = νn/k((x,∞) × (−∞, y]). Then

E[ν̃n(x,∞) × (y,∞))] = Gn(x, y) .

Assumption 1 implies that Gn converges weakly to the function G defined by
G(x, y) = ν([x,∞]× (−∞, y]). Il follows from Assumption 2 and integration
by parts that

∫ ∞

0

∫ ∞

−∞
h(x, y)G(x, y) dxdy <∞ .

This implies

lim
M→∞

lim sup
n→∞

∫∫

Kc

h(x, y)E[ν̃n((x,∞) × (y,∞))] dxdy

= lim
M→∞

lim sup
n→∞

∫∫

Kc

h(x, y)Gn((x, y) dxdy

= lim
M→∞

∫∫

Kc

h(x, y)G(x, y) dxdy = 0 .

This yields (41) and concludes the proof of Proposition 2.
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Lemma 15. If Assumption 3 holds and if the sequence k is such that

lim
n→∞

k1/2c ◦ b(n/k) = 0 , (42)

then, for all measurable locally bounded functions h on (0,∞) × (−∞,∞)
such that

|h(x, y)| ≤ (x ∨ 1)p
∗

(|y| ∨ 1)q
∗

, (43)

it holds that

lim
n→∞

∫ ∞

0

∫ ∞

−∞
h(x, y) dµn = 0 . (44)

Proof of Lemma 15. Denote Rn(x, y) = µn([0, x] × (−∞, y]). With this no-
tation, (20) implies that for all x, y,

|Rn(x, y)| ≤ k1/2c ◦ b(n/k)χ(x, y) .

This bound and (42) yield

lim
n→∞

∫ ∞

0

∫ ∞

−∞
(x ∨ 1)p

∗+1(|y| ∨ 1)q
∗+1Rn(x, y) dxdy = 0 .

By integration by parts, this in turn implies that

lim
n→∞

∫ ∞

0

∫ ∞

−∞
(x ∨ 1)p

∗

(|y| ∨ 1)q
∗

µn(dx,dy) = 0 .

This implies (44) for any function h such that (43) holds.

Proof of Proposition 7. We start by proving the convergence of the finite
dimensional distributions of Wn. For the sake of concision, we introduce
more notation. Denote X̃i = {Xi − b(n/k)}/ψ ◦ b(n/k), Ỹi = {Yi − m ◦
b(n/k)}/a ◦ b(n/k) and

ξn,i(x, y) = k−1/2{1{X̃i>x , Ỹi≤y} − kn−1Gn(x, y)} .

Then for each n, the random variables ξn,i, 1 ≤ i ≤ n are i.i.d., centered,

cov(ξn,i(x, y), ξn,i(x
′, y′)) =

1

n
Gn(x ∨ x′, y ∧ y′){1 − k

n
Gn(x ∧ x′, y ∨ y′)} ,

and

Wn(x, y) =

n
∑

i=1

ξn,i(x, y) + k1/2{Gn(x, y) −G(x, y)} .
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Assumption 3 and (42) imply that k1/2(Gn − G) converges to zero locally
uniformly. The Lindeberg central limit theorem (cf. Araujo and Giné
(1980)) and (42) yield the convergence of finite dimensional distributions
of
∑n

i=1 ξn,i(x, y). Tightness can be obtained as in Einmahl et al. (1993) by
using an exponential inequality such as Inequality 1 in the aforementioned
reference.

We now prove the second part of Proposition 7. Let h be C∞ function
with compact support in R

2. The weak convergence of Wn in D implies that
∫∫

h(x, y)Wn(x, y) dxdy converges weakly to
∫∫

h(x, y)W (x, y) dxdy. Thus,
by integration by parts, it also holds that

∫∫

h(x, y)Wn(dx,dy) converges
weakly to

∫∫

h(x, y)W (dx,dy). Let now g be a measurable function such
that |g(x, y)|2 ≤ C(x∨ 1)p

∗
(|y| ∨ 1)q

∗
. Then, for all ǫ > 0, there exists a C∞

function h with compact support such that
∫

(g − h)2 dν ≤ ǫ. Then,

∫

g dµ̃n =

∫

hdµ̃n +

∫

(g − h) dµ̃n .

The first term in the right hand side converges weakly to W (h) and we prove
now that the second one converges in probability to 0. Denote u = g − h
and

µn = k1/2{νn/k − ν} .

Then,

∫

udµ̃n = k−1/2
n
∑

i=1

{u(X̃i, Ỹi) − E[u(X̃i, Yi)]} +

∫

udµn .

This yields

var(

∫

udµn) ≤
∫

u2 dνn +

{
∫

udµn

}2

.

By assumption on g, and since h has compact support, it also holds that
u2(x, y) ≤ C(x ∨ 1)p

∗
(|y| ∨ 1)q

∗
. Thus, by Lemma 15,

lim sup
n→∞

var(

∫

udµn) ≤
∫

u2 dν ≤ ǫ .

Taking into account that var(W (g) − W (h)) = var(W (g − h)) =
∫

(g −
h)2 dν ≤ ǫ, we conclude that Wn(g) converges weakly to W (g).

Proof of Corollary 8. We prove separately the claimed limit distributions.
The joint convergence is obvious. We start with x̃n, defined in (12). Denote
Gn(x) = ν̃n((x,∞) × (−∞,+∞)) and Ḡγ(x) = (1 + γx)−1/γ if γ > 0 and
Ḡ0(x) = e−x. By Proposition 7, k1/2(Gn−Ḡγ) converges weakly in D to the
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process B ◦ Ḡγ , where B is a standard Brownian motion on [0, 1]. By Ver-
waat’s Lemma (de Haan and Resnick, 1993, Lemma A.1), k1/2{G←n − Ḡ←γ }
jointly converges weakly in D to −(Ḡ←γ )′B. Since G

←
n (1) = x̃n, Ḡ

←
γ (1) = 0

and (Ḡ←γ )′(1) = −1, we get the claimed limit distribution for k1/2x̃n.

We now consider ξn, defined in (14). By definition,

ξn =

∑k
i=1{X(n:n−i+1) −X(n:n−k)}{Y[n:n−i+1] −m ◦ b(n/k)}

kψ ◦ b(n/k)a ◦ b(n/k)

÷
∑k

i=1{X(n:n−i+1) −X(n:n−k)}

kψ ◦ b(n/k)

=

∫∞
x̃n

∫∞
−∞(x− x̃n)yν̃n(dx,dy)

∫∞
x̃n

∫∞
−∞(x− x̃n)ν̃n(dx,dy)

.

Since µ = 0 by assumption, we obtain

k1/2ξn =

∫∞
x̃n

∫∞
−∞(x− x̃n)yµ̃n(dx,dy)

∫∞
x̃n

∫∞
−∞(x− x̃n)ν̃n(dx,dy)

.

Since x̃n = OP (k−1/2), it is easily seen that

k1/2ξn =

∫∞
0

∫∞
−∞ xyµ̃n(dx,dy) + oP (1)

∫∞
0

∫∞
−∞ xν̃n(dx,dy) + oP (1)

.

Applying Propositions 2 and 7, we obtain that k1/2ξn converges weakly to
(1 − γ)W (g1,1). Consider now â(X(n:n−k)). As in (15), we have

â2(X(n:n−k))

a2 ◦ (n/k)
=

∫ ∞

x̃n

∫ ∞

−∞
y2ν̃n(dx,dy) − 2ξn

∫ ∞

x̃n

∫ ∞

−∞
yν̃n(dx,dy) + ξ2n .

Since x̃n = OP (k−1/2) and ξn = OP (k−1/2), we get

k1/2

{

â2(X(n:n−k))

a2 ◦ b(n/k) − 1

}

=

∫ ∞

0

∫ ∞

−∞
y2µ̃n(dx,dy) + oP (1) .

Proposition 7 and the delta method yield that k1/2{â(X(n:n−k))/a ◦ b(n/k)−
1} converges weakly to 1

2W (g0,2).
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Proof of Proposition 11. Write b(n/k)(ρ̌ − ρ)/a ◦ b(n/k) = Sn/Tn with

Sn =
1

k

n
∑

j=1

(

Xi − b(n/k)

ψ ◦ b(n/k) − x̃n

)

+

(

Yi − ρXi

a ◦ b(n/k)

)

=

∫ ∞

x̃n

∫ ∞

−∞
(x− x̃n)y ν̌n(dx,dy) →P µ ,

Tn =
1

k

n
∑

j=1

(

Xi − b(n/k)

ψ ◦ b(n/k) − x̃n

)

+

+
ψ ◦ b(n/k)
b(n/k)

1

k

n
∑

j=1

Xi − b(n/k)

ψ ◦ b(n/k)

(

Xi − b(n/k)

ψ ◦ b(n/k) − x̃n

)

+

=

∫ ∞

x̃n

∫ ∞

−∞
(x− x̃n) ν̌n(dx,dy)

+
ψ ◦ b(n/k)
b(n/k)

∫ ∞

x̃n

∫ ∞

−∞
x(x− x̃n) ν̌n(dx,dy) = 1 + oP (1) .

The last term tends to zero since ψ(x) = o(x).

Next, denote αn = ψ ◦ b(n/k)/b(n/k), ζn = b(n/k)(ρ̌ − ρ)/a ◦ b(n/k), Ỹi =
(Yi − ρXi)/a ◦ b(n/k) and X̃i = {Xi − b(n/k)}/ψ ◦ b(n/k). Then αn → 0,
ζn →P 0 and

ǎ2(X(n:n−k))

a2 ◦ b(n/k) =
1

k

n
∑

i=1

{

Ỹi + αnζnX̃i + ζn

}2 1{X̃i≥x̃n}
=

∫ ∞

x̃n

∫ ∞

−∞
{y + αnζnx+ ζn}2 ν̌n(dx,dy)

=

∫ ∞

0

∫ ∞

−∞
y2ν(dx,dy) + oP (1) = 1 + oP (1) .

Denote ωn = â(X(n:n−k))/a ◦ b(n/k) − 1. Then ωn →P 0 and we can write

Ψ̌(z) =
1

k

n
∑

i=1

1{Ỹi≤αnζnX̃i+ζn+ωnz+z}
1{X̃i≥x̃n}

=

∫ ∞

x̃n

∫ ∞

−∞
1{y≤αnζnx+ζn+ωnz+z} ν̌n(dx,dy)

→P

∫ ∞

0

∫ ∞

−∞
1{y≤z} ν(dx,dy) = Ψ(z) .
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Figure 2: Median (solid line), 2.5%- and 97.5%-quantiles (dashed lines)
of the estimated conditional quantile function ŷ = θ←(x, p) defined in (38)
and theoretical conditional quantile function y (dotted line) as a function
of the probability p ∈ (0, 1). Each row (from 1 to 3) corresponds to a
distribution (from (a) to (c)) as described in Section 5.1. Each column
refers to a different value of x, respectively corresponding to the theoretical
X-quantiles of order 1 − ǫ, where ǫ = 10−4 and p = 10−5.
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