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Modeling and estimation of conditional excesses

Anne-Laure Fougères∗ Philippe Soulier∗

June 14, 2008

Abstract

We investigate conditions for the existence of the limiting distribu-
tion of a bivariate random vector when one component becomes large.
We revisit the existing literature on the topic, and present some new
sufficient conditions. We focus on conditions which can be expressed
in terms of geometric properties of the level curves of the density of the
random vector. When the limiting conditional distribution exists, we
propose consistent nonparametric estimators of this distribution and of
the related normalizing sequences. We also provide a semi-parametric
extrapolation procedure that allows the estimation of conditional prob-
abilities when the conditioning event is extreme. A small simulation
study illustrates our results.

1 Introduction

In many practical situations, there is a need of modeling and estimating
multivariate extreme events. Extreme means, roughly speaking, that no
observations are available in the domain of interest. An increasing num-
ber of examples can be found in the literature, in the actuarial and fi-
nancial context (risk assessment, contagion) or in reliability theory (mul-
tivariate failure sets), among others. See for instance the recent books of
De Haan and Ferreira (2006), Balkema and Embrechts (2007) (in the finan-
cial contextx) and Resnick (2007) (for teletraffic applications).

Extreme value theory provides an efficient mathematical framework to
deal with these problems in the situation where the largest values of the
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Université Paris Ouest-Nanterre

1



variables of interest tend to occur simultaneously. This situation is referred
to as asymptotic dependence in extreme value theory. In the opposite case
of asymptotic independence, the standard theory needs to be refined. To
this purpose, building on the ideas of second order regular variation (see
for instance (De Haan and Ferreira, 2006, Appendix B)), Resnick (2002);
Maulik and Resnick (2004) have introduced the concept of hidden regular
variation. Another approach consists in studying, if it exists, the limiting
distribution of a random vector conditionally on one component to be large.
Formally stated in the bivariate case, this corresponds to assuming that
there exist functions m, a and ψ, and a bivariate distribution function (cdf)
K such that

lim
t→∞

P(X ≤ t+ ψ(t)x ;Y ≤ m(t) + a(t)y | X > t) = K(x, y) . (1)

This approach was suggested by Heffernan and Tawn (2004) and thoroughly
investigated by Heffernan and Resnick (2007). Two different kinds of issues
must be addressed.

The first one is to study models under which condition (1) holds. Results
of this kind were obtained by Eddy and Gale (1981) and Berman (1992) for
spherical distributions, for bivariate elliptic distributions by Abdous et al.
(2005) and for multivariate elliptical distributions and related distributions
by Hashorva (2006); Hashorva et al. (2007). One essential feature of ellip-
tical distributions is that the level sets of their density are ellipses in the
bivariate case, or ellipsoids in general. Such geometric considerations have
been deeply investigated and generalized in many directions by Barbe (2003)
and Balkema and Embrechts (2007). It must be noted that this geometric
approach is incompatible with the customary transformation of the marginal
distributions to prescribed ones, be it uniform, Fréchet or Gumbel, since such
transformations will generally ruin the geometric properties of the joint den-
sity. A specific feature of these models is that the property of asymptotic
dependence or independence is related to the nature of the marginal distribu-
tions. If they are regularly varying, then the components are asymptotically
dependent; if the marginal distributions are rapidly varying, i.e. belong to
the maximum domain of attraction of the Gumbel distribution, then the
components are asymptotically independent. In addition to the general re-
sults referred above, Heffernan and Tawn (2004) showed that Condition (1)
holds for a variety of commonly used bivariate distributions.

The second direction of research is to start from condition (1) and to inves-
tigate its consequences. This was done in Heffernan and Resnick (2007), in
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the framework of regular variation. A straightforward consequence of Con-
dition (1) is that X belongs to the domain of attraction of an extreme value
distribution. But, the limiting distribution K is not necessarily a bivariate
extreme value distribution. In particular, if X and Y are independent, then
choosing a ≡ 1 and m ≡ 0 in (1) yields a limiting distribution which is
the product of the marginal distribution functions of X and Y . Another
important finding of Heffernan and Resnick (2007) is that Condition (1) is
not robust to nonlinear transformations of the components of the vector.

Having investigated Condition (1), the remaining task is to develop sta-
tistical procedures for the estimation of the normalizing functions and the
limiting distribution. Heffernan and Resnick (2005) have developed estima-
tion procedures in the related framework of hidden regular variation. In the
conditional approach considered here, Heffernan and Tawn (2004) outlined
some heuristic procedures.

Our contribution to this problem is twofold. In Section 2, we present
bivariate models with rapidly varying marginal distributions that satisfy
Condition (1). We recall one result of Balkema and Embrechts (2007) and
complement it with a new result (Theorem 3) that also includes several ex-
amples that were obtained separately. Since the literature in this domain is
not yet widely developed, we hope that we provide a reasonably exhaustive
survey of the existing results and methods. In Section 3, we recall the main
results of Heffernan and Resnick (2007) and apply them to derive valid sta-
tistical procedures. We introduce new estimators of the functions a and m
and of the limiting distribution K. These estimators are studied by means
of the standard point process techniques that Condition (1), rephrased in
the terminology of vague convergence (cf. Resnick (2007)), allows to use.
We also present estimators suited to the case of rapidly varying marginal
distributions and asymptotic independence. In Section 3.2, we consider non
parametric estimators, which can be proved consistent under Condition (1)
only (and a technical moment assumption). In Section 3.4, we study semi-
parametric estimators, which are of interest when a model is assumed for
the tail of the marginal distribution of the conditioning variable, and when
extrapolation out of the range of the observations is needed. The paper is
concluded by a short numerical illustration in Section 4. The proofs of our
results are deferred to the appendix.
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2 Models

We start by recalling some definitions that will be used throughout the
paper. A random variable with value in [x0, x1) or its distribution function
H are said to have a rapidly varying upper tail if there exists a positive
function ψ such that

lim
t→x1

1 −H(t+ ψ(t)x)

1 −H(t)
= e−x . (2)

It is well known (cf. (De Haan and Ferreira, 2006, Theorem 1.2.5)) that
a random variable X is in the max-domain of attraction of the Gumbel
distribution if and only if its cdf F has a rapidly varying upper tail. The
function ψ is called an auxiliary function. It is defined up to asymptotic
equivalence and necessarily satisfies ψ(x) = o(x) if x1 = ∞ and ψ(x) =
o(x1 − x) if x1 < ∞. In the sequel for simplicity, we only consider the case
x1 = ∞.

We will say that two random variables X and Y are asymptotically inde-
pendent if (X,Y ) belongs to the bivariate maximum domain of attraction of
an extreme value distribution with independent marginals.

We can now recall the results for an elliptical random vector, i.e. a bi-
variate random vector (X,Y ) that can be expressed as

(X,Y ) = R(cos Θ, ρ cos Θ + σ sin Θ) (3)

with σ2 = 1 − ρ2, in terms of a positive random variable R called ”radial
component” and an ”angular” random variable Θ uniformly distributed on
[0, 2π[. The following result was originally proved in the case ρ = 0 as a tech-
nical lemma under restrictive conditions in Eddy and Gale (1981), then in
Berman (1992). The general result was proved in Abdous et al. (2005) in the
bivariate case and in Hashorva (2006) in a multivariate setting. Throughout
the paper Φ will denote the cdf of the standard normal distribution.

Theorem 1. Let (X,Y ) be an elliptic random vector as defined in (3). If
R has a rapidly varying upper tail with auxiliary function ψ, then X and Y
have rapidly varying upper tails, are asymptotically independent, and

lim
s→∞

P(X ≤ x+ ψ(x)ξ , Y ≤ ρx+
√

xψ(x)z | X > x) = (1 − e−ξ)Φ(z) .
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If the radial component R has a density h, then the vector (X,Y ) has the
density f defined by

f(x, y) =
h(
√

x2 + (y − ρx)2/σ2)
√

x2 + (y − ρx)2/σ2
.

The level lines of the density are homothetic ellipses x2 +(y−ρx)2/σ2 = c2.
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Figure 1: Level lines of the density of an elliptical distribution. The slope
of the straight line is ρ = .6.

This result can be generalized in two directions: either by weakening the
assumptions on the level lines of the density or by extending the represen-
tation (3). This will be done in the following two subsections.

2.1 Asymptotically elliptical distributions

In this section, we state a bivariate version of (Balkema and Embrechts,
2007, Theorem 11.1). We first need the following definition (see (Balkema and Embrechts,
2007, Section 11.2)).

Definition 1. A function L : R
2 → R+ belongs to the class L if for all

(x, y) ∈ R
2,

lim
(ξ,ζ)→∞

L(x+ ξ, y + ζ)

L(ξ, ζ)
= 1 .
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Assumption 1. The random vector (X,Y ) has a density f such that

f(x, y) = e−I(x,y)L(x, y) , (4)

where L ∈ L, and the function I satisfies:

I(x, y) = p ◦ n(x, y) ,

p(r) =

∫ r

0

ds

ψ(s)
, (5)

ψ is absolutely continuous with limx→∞ ψ
′(x) = 0 and n : R

2 → R
2 is

1-homogeneous, n2 is twice differentiable and the Hessian matrix of n is
positive definite.

Theorem 2 (Balkema and Embrechts (2007)). Under Assumption 1,
X and Y have both rapidly varying tails with auxiliary function ψ, are
asymptotically independent, and there exist real numbers ρ and σ such that

lim
x→∞

P(X ≤ x+ ψ(x)ξ ;Y ≤ ρx+ σ
√

xψ(x)z | X > x)

= (1 − e−ξ)Φ(z) . (6)

Remark 1. This result shows that Assumption 1 is a sufficient condition for
the limit (1) to hold, with m(x) = ρx, a(x) = σ

√

xψ(x) and K(x, y) =
(1− e−x)Φ(y). The constants ρ and σ are characterized by the second order
expansion of the function n

n(1 + x, ρ+ σy) = 1 + x+ y2/2 + o(x2 + y2) .

This condition implies that the tangent at the point (1, ρ) to the curve
n(ξ, ζ) = 1 is vertical. Note that the level lines of the function n are not
those of the density f defined in (4), unless the function L is constant, but,
loosely speaking, the level lines of f converge to those of n. Obviously,
Theorem 1 is a particular case of Theorem 2.

Example 1. Let h and g be density functions defined on [0,∞) and [−π/2, π/2],
respectively. The function f defined by

f(x, y) =
h(x2 + (y − ρx)2/(1 − ρ2))
√

x2 + (y − ρx)2/(1 − ρ2)
g ◦ arctan((y − ρx)/x

√

1 − ρ2) (7)

is then a bivariate density function on R
2. If g is a constant, then f is

the density of an elliptical vector. If h can be expressed as in (5) and if
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Figure 2: Level lines of the density given by (7)
.

g is continuous and bounded above and away from zero, then f satisfies
Assumption 1. Figure 2 shows the level lines of such a density, with ρ = .6,
h(t) = exp(t2/2)/

√
2π and g(t) = c{1 + [arctan(t)2 − (π/4)2]2}. The level

lines seem to be asymptotically homothetic.

Remark 2. It is important to note that under Assumption 1 the normalizing
functions m and a satisfy a(x) = o(m(x)), since in the present context
m(x) = ρx and a(x) = σ

√

xψ(x) with ψ(x) = o(x). This implies that only
the local behaviour of the curve n(ξ, ζ) = 1 around the point (1, ρ) matters.
In other words, the limit (6) still holds if (X,Y ) is conditioned to remain
in the cone {(ρ − ǫ)x ≤ y ≤ (ρ + ǫ)x} for any arbitrarily small ǫ > 0.
This suggests that Assumption 1 must only be checked locally to obtain the
limit (6).

Example 2 (Mixture of two bivariate Gaussian vectors). Let B be a Bernoulli
random variable such that P(B = 1) = p ∈ (0, 1). Let X and Z be two i.i.d
standard gaussian random variables, ρ 6= τ ∈ [−1, 1] and define Y by

Y = B(ρX +
√

1 − ρ2Z) + (1 −B)(τX +
√

1 − τ2Z) . (8)

Then Y is a standard Gaussian variable, and (X,Y ) is a mixture of two
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Gaussian vectors. Figure 3 shows the level curves of the density function of
the pair (X,Y ) with p = .4, ρ = .8 and τ = −.4. The density function of
(X,Y ) does not satisfy Assumption 1, and Theorem 2 cannot be applied.
Indeed, applying Theorem 1 to each component of the mixture yields

P(Y − ρx ≤
√

1 − ρ2z | X > x)

= pP(ρ(X − x) +
√

1 − ρ2Z ≤
√

1 − ρ2z | X > x)

+ (1 − p)P(τ(X − x) + (τ − ρ)x+
√

1 − τ2Z ≤
√

1 − ρ2z | X > x)

∼ pΦ(z) + (1 − p)1{τ<ρ} .
Thus the limiting distribution is degenerate, with a positive mass either
at −∞ or +∞. However, a proper limiting distribution can be obtained
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Figure 3: Level lines of the density function of the pair (X,Y ) defined in
Example 2.

for (X,Y ) conditioned to remain in C = {(x, y) ∈ R
2 | c1x ≤ y ≤ c2x} for

c1 < c2 such that ρ ∈ [c1, c2] and τ /∈ [c1, c2]. Denote P(· | (X,Y ) ∈ C) by
PC(·). Then

lim
x→∞

PC(Y ≤ ρx+
√

1 − ρ2z | X > x) = Φ(z) . (9)

To prove this claim, we assume without loss of generality that ρ = 0. Then

PC(Y ≤ z | X > x) =
P(Y ≤ z ; (X,Y ) ∈ C | X > x)

P((X,Y ) ∈ C | X > x)
.
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For fixed z and x > z/c2, it holds that

P(Y ≤ z ; (X,Y ) ∈ C | X > x)

= pP(c1X ≤ Z ≤ z | X > x)

+ (1 − p)P(c1X ≤ τX +
√

1 − τ2Z ≤ z | X > x) ∼ pΦ(z) .

Since ρ ∈ [c1, c2] and τ /∈ [c1, c2], and since z ≤ c2x, it is easily obtained
that

lim
x→∞

P(c1X ≤ Z ≤ z | X > x) = Φ(z) ,

lim
x→∞

P(c1X ≤ τX +
√

1 − τ2Z ≤ z | X > x) = 0 .

Thus limx→∞ P(Y ≤ z ; (X,Y ) ∈ C | X > x) = pΦ(z), which proves (9).

2.2 Distributions with radial representation

In this section, we show that Theorem 1 can be extended from elliptical
distributions to more general bivariate distributions that admit a radial
representation R(u(T ), v(T )) where R and T are independent and u and v
are more general functions than in the elliptical case. We start by collecting
the assumptions that will be needed.

Assumption 2.

A The function u : [0, 1] → [0, 1] is continuous, has a unique maximum 1 at
a point t0 ∈ (0, 1) and has an expansion

u(t0 + t) = 1 − ℓ(t) (10)

where ℓ is increasing in [−ǫ, 0], decreasing in [0, ǫ] for some ǫ > 0 and
regularly varying at zero with index κ > 0. Its inverse ℓ← is absolutely
continuous and its derivative (ℓ←)′(s) is regularly varying at zero with
index 1/κ − 1.

B The function v is strictly increasing in a neighborhood of t0, v(t0) =
ρ, and the function t 7→ v(t0 + t) − ρ is regularly varying with index
δ ∈ (0, κ). Its inverse v← is absolutely continuous and its derivative is
regularly varying at zero with index 1/δ − 1.
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Assumption 3. The cdf H is rapidly varying at infinity with auxiliary
function ψ, i.e.

lim
x→∞

H̄(x+ ψ(x)t)

H̄(x)
= e−t ,

where H̄ = 1 −H.

Assumption 4. The density function g : [0, 1] → R
+ is regularly varying

at t0 with index τ > −1 and locally bounded on [0, 1] \ {t0}.

Theorem 3. Let R and T be independent random variables such that the
cdf H of R satisfies Assumption 3, T admits a density g that satisfies
Assumption 4, and the functions u and v satisfy Assumption 2. Define
(X,Y ) = R(u(T ), v(T )). Then,

(i) there exists a function k regularly varying at zero with index (1 + τ)/κ
such that

P(X > x) ∼ k(ψ(x)/x)H̄(x) ; (11)

(ii) there exists a function h regularly varying at zero with index δ/κ such
that for all y ∈ R,

lim
x→∞

P(X ≤ x+ ψ(x)ξ , Y ≤ ρx+ xh(ψ(x)/x)y | X > x)

= (1 − e−ξ)Hδ,κ,τ (y) ,

with

Hδ,κ,τ (y) =

∫ y
−∞ e−|s|

κ/δ/(κ/δ)|s|(1+τ)/δ−1 ds
∫∞
−∞ e−|s|

κ/δ/(κ/δ)|s|(1+τ)/δ−1 ds
.

The proof of this result is in Appendix A. One of its main ingredient
is the fact that the tail of R is rapidly varying, which implies that the
normalizing function a(x) = xh(ψ(x)/x) is o(x). As a consequence, only the
local behaviour of u and v around (1, ρ) matters. This is similar to what
was observed under Assumption 1, see Remark 2.

Theorem 3 handles situations where the assumptions of Theorem 2 do
not hold. In some cases, the limiting distribution is nevertheless the Gaus-
sian distribution and the normalization is the same as in Theorem 3; see
Example 3.
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In some other cases, the limiting distribution and the normalisation differ
from those that appear in Theorem 2. This can have two types of reasons:
the density of T can vanish or be unbounded at zero, or the curvature of
the line parameterized by the functions u and v at the point (u(t0), v(t0))
can be infinite or zero. This is illustrated in Example 4.

It is also important to note that even though Theorem 3 states that X
has a rapidly varying upper tail, with the same auxiliary function ψ as R,
nothing can be said on the tails of Y . This is in contrast with the situation
of Theorem 2.

Example 3. If the density g of the variable T has a positive limit at t0, then
τ = 0. If u is twice differentiable with u′(t0) = 0 and u′′(t0) 6= 0, then κ = 2
and if v′(0) > 0, then δ = 1. If these three conditions hold, the limiting
distribution is the standard Gaussian and the normalization is σ

√

xψ(x).
Figure 2 also illustrates this case. As will be shown later, this is actually a
particular case of Theorem 2.

Example 4. Hashorva et al. (2007) have introduced a generalisation of the
elliptical distributions, which they called Lp-Dirichlet distributions for all
p > 0. We consider only the case p > 1. Instead of being ellipses, the level
lines of the density of these distributions have the following equation:

|x|p +
|y − ρx|p
1 − |ρ|p = 1 ,

with ρ ∈ (−1, 1). To simplify the discussion, we consider the case ρ = 0.
An admissible parametrization is given by u(t) = (1 − tp)1/p and v(t) = t,
which yields δ = 1 and κ = p. Thus, Assumption 1 does not hold except if
p = 2, which is the elliptical context. If the density of T has a positive limit
at zero, then τ = 0 and the cdf of the limiting distribution is then

H1,p,0(y) =

∫ y
−∞ e−|s|

p/p ds

2p1/p−1 Γ(1/p)
.

As a last remark in this section, note that the result (11) on the upper
tail of X is actually a particular case of a more general result for which we
have found no reference, and which might be of interest. We state it here,
but omit its proof which is exactly the same as that of (11), and makes use
of Lemma 17.

Lemma 4. Let R be a nonnegative random variable whose cdf H satisfies
Assumption 3. Let U be a nonnegative random variable, independent of R,

11



such that U ≤ b < ∞ a.s. and that admits a density in a neighborhood of
b which is regularly varying with index τ > −1. Then RU has a rapidly
varying upper tail with auxiliary function ψ(x/b) and

P(RU > x) ∼ b2Γ(τ + 1)
ψ(x/b)

x
g({1/b + ψ(x/b)/x}−1)H̄(x/b) . (12)

2.3 Relation between the two representations

Let X,Y be random variables whose joint density f can be expressed as

f(x, y) = g ◦ n(x, y) , (13)

where g is a nonnegative function on R+ such that
∫∞
0 rg(r) dr <∞, n is a

positively homogeneous function with index 1 and the level line n(x, y) = 1
admits the parametrization t→ (u(t), v(t)), t ∈ [0, 1]. The change of variable
x = ru(t), y = rv(t) yields:

E[φ(X,Y )] =

∫ ∞

0

∫ 1

0
φ(ru(t), rv(t)) rg(r) |u(t)v′(t) − u′(t)v(t)|dr dt .

Hence it holds that (X,Y ) = R(u(T ), v(T )), whereR has density c(g)−1rg(r),
with c(g) =

∫∞
0 rg(r) dr and T has density c(u, v)−1|uv′−u′v| with c(u, v) =

∫ 1
0 |u′(t)v(t) − u(t)v′(t)|dt.
Conversely, if (X,Y ) = R(u(T ), v(T )) where R and T are independent, R

has a density h on [0,∞), and if there exists a point t0 such that u′(t0) = 0,
u′′(t0) > 0 and v′(t0) > 0, then the function v/u is invertible on an interval
around t0. Let φ be its inverse, and define n(x, y) = x/{u◦φ(y/x)}. Without
loss of generality, we can assume that u(t0) = 1 and denote v(t0) = ρ. Then
n is a positively homogeneous function with index 1, and if T admits a
density g, then (X,Y ) has a density f in a cone C = {(x, y) | (ρ − ǫ)x ≤
y ≤ (ρ+ ǫ)x} around the line y = ρx, defined by

f(x, y) =
h(n(x, y))

n(x, y)
L(x, y) ,

with

L(x, y) =
g ◦ φ(y/x)

|u′v − uv′| ◦ φ(y/x)
.

If the density g and the Jacobian |u′v−uv′| are both positive and continuous
at t0, then the function L is flat. See Lemma 20 for a proof. Thus Assump-
tion 1 locally holds, and Theorem 2 implies Theorem 3 in this context.
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3 Estimation

In this section we address the issue of estimating the functions a, m, ψ and
the limiting distribution K when (1) holds.

Firstly, we must study the consequences of this convergence. In Subsec-
tion 3.1, we recall the results of Heffernan and Resnick (2007) and deduce
some results that will be needed to prove the consistency of the estima-
tors defined in Subsection 3.2. These estimators can be applied in a wider
framework than that of the examples of Section 2. In Subsection 3.3, we
define and study estimators more precisely suited to these examples. In
Subsection 3.4, we consider the semi-parametric estimation of the functions
a and ψ.

3.1 Assumptions on the distribution of (X, Y )

Assumption 5. There exists monotone functions a, b, m and ψ such that
the measure νn defined by

νn(·) = nP

({

X − b(n)

ψ ◦ b(n)
,
Y −m ◦ b(n)

a ◦ b(n)

}

∈ ·
)

(14)

converges vaguely to a measure ν on (−∞,∞]×[−∞,∞] such that ν([0,∞]×
[−∞,∞]) = 1.

Remark 3. Assumption 5 implies that the marginal distribution ofX belongs
to a max-domain of attraction. Thus the functions ψ and b are determined
by the marginal distribution of X only. The function b can and will be
chosen as the left continuous inverse of the survival function of X. The
function ψ satisfies

lim
x→x1

ψ(x+ ψ(x)u)

ψ(x)
= 1 + γu , (15)

where x1 is the right endpoint of the support of the distribution of X and γ
is the extreme value index of X. The first marginal of ν is the generalized
Pareto distribution Gγ , defined by Gγ(x) = 1 − (1 + γx)−1/γ if γ 6= 0 and
G0(t) = e−t.

Remark 4. Assumption 5 has little implications on the functions a and m
and the second marginal of the measure ν. Let Ψ denote this distribution,
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defined by

Ψ(z) =

∫ ∞

0

∫ z

−∞
ν(dx,dy) .

If Y is independent of X then Ψ is the distribution of Y , a ≡ 1 and m ≡
0. Thus Ψ can be any probability distribution. In particular, it is not
necessarily an extreme-value distribution.

Remark 5. If the pair (X,Y ) satisfies Assumption 5, then so does any affine
transformation of (X,Y ). For instance, if X and Y have finite mean and
variance, then ((X − E[X])/var1/2(X), (Y − E[Y ])/var1/2(Y )) also satisfies
Assumption 5. But non linear transformations of (X,Y ) do not neces-
sarily satisfy the assumption. In particular, the usual (in extreme value
theory) transformation of X and Y to random variables with prescribed
marginal distributions, is not always possible, as investigated thoroughly in
(Heffernan and Resnick, 2007, Section 7). It is never possible in the cases
studied in Section 2 where the joint limiting distribution is a product mea-
sure. Consequently, we do not make any specific assumption on the marginal
distributions of X and Y .

Obviously, the functions a and m are defined up to asymptotic equiva-
lence, i.e. if m′ and a′ satisfy

lim
x→∞

a′(x)

a(x)
= 1 , lim

x→∞

m(x) −m′(x)

a(x)
= 0 ,

then the measure ν ′n defined as νn but with a′ and m′ instead of a and m
converges vaguely to the same limit measure ν. Beyond this trivial remark,
the following result summarizes (Heffernan and Resnick, 2007, Proposition
1 and 2) and contains most of what can be infered from Assumption 5.

Proposition 5. Under Assumption 5, there exists ζ ∈ R such that the
function a ◦ b is regularly varying at infinity with index ζ and the function
m satisfies

lim
t→∞

m ◦ b(tx) −m ◦ b(t)
a ◦ b(t) = Jζ(x) ,

with Jζ(x) = (xζ − 1)/ζ if ζ 6= 0 and J0(x) = c log(x) for some c ∈ R, and
the convergence is locally uniform on (0,∞).

Assumption 5 alone is not sufficient for statistical purposes (which typi-
cally require bounded convergence arguments), since it has no implication
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on the joint moments of X of Y . Therefore the following assumption is
introduced.

Assumption 6. There exists ζ∗ > 0, κ∗ > 0 such that

lim
n→∞

∫ ∞

0

∫ ∞

−∞
xζ

∗|y|κ∗νn(dx,dy) =

∫ ∞

0

∫ ∞

−∞
xζ

∗ |y|κ∗ν(dx,dy) . (16)

Remark 6. Assumption 6 is satisfied for most of the models studied in sec-
tion 2. It is shown in Lemma 21 in the Appendix that Assumption 6 holds
under the Assumptions of Theorem 3, in the particular case where the den-
sity of the angular variable T is bounded, which is the case considered in
the examples of Section 3.

Remark 7. Assumption 5 actually implies the convergence (16) with κ∗ = 0
and ζ∗ < 1/γ, since in that case it is simply a one-dimensional result. See
Lemma 16 for a proof.

Remark 8. In applications, it will be assumed that κ∗ ≥ 2. The function a
and the limiting measure ν are defined up to a change of scale, thus, without
loss of generality, we assume henceforth that

∫ ∞

0

∫ ∞

−∞
y2 ν(dx,dy) =

∫ ∞

−∞
y2Ψ(dy) = 1 .

Remark 9. Condition (16) can be equivalently written as the convergence
of conditional moments. For all ζ ≤ ζ∗ and κ ≤ κ∗, it holds that

lim
t→∞

E[(X − t)ζ |Y −m(t)|κ | X > t]

ψζ(t)aκ(t)
=

∫ ∞

0

∫ ∞

−∞
xζ |y|κν(dx,dy) . (17)

More generally, for any function g such that |g(x, y)| ≤ Cxζ
∗|y|κ∗ , it holds

that

lim
t→∞

E[g{(X − t)/ψ(t), (Y −m(t))/a(t)} | X > t]

=

∫ ∞

0

∫ ∞

−∞
g(x, y)ν(dx,dy) . (18)

The following result will be needed for statistical purposes, and illustrates
the use of the moment Assumption 6. For a sequence (Xi, Yi), 1 ≤ i ≤ n,
let X(n:i) denote the i-th order statistics and Y[n:i] denote its concomitant.
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Proposition 6. If Assumption 5 holds, then for any intermediate sequence
k, the random measure ν̂n defined by

ν̂n =
1

k

k
∑

k=1

δ(X(n;n−i+1)−X(n:n−k)
ψ(X(n:n−k))

,
Y[n:n−i+1]−m(X(n:n−k))

a(X(n:n−k))

) (19)

converges weakly to ν. For any measurable function g such that |g(x)| ≤ Cxζ

with ζ < 1/γ,

1

k

k
∑

i=1

g

(

X(n:n−i+1) −X(n:n−k)

ψ(X(n:n−k))

)

→P

∫ ∞

0
g(x)Gγ(dx) . (20)

If moreover Assumption 6 holds, then for any intermediate sequence k and
any measurable function g such that |g(x, y)| ≤ Cxζ

∗|y|κ∗,

1

k

k
∑

i=1

g

(

X(n:n−i+1) −X(n:n−k)

ψ(X(n:n−k))
,
Y[n:n−i+1] −m(X(n:n−k))

a(X(n:n−k))

)

→P

∫ ∞

0

∫ ∞

−∞
g(x, y)ν(dx,dy) . (21)

Remark 10. The convergence (20) is a particular case of (21), but it holds
under Assumption 5 only, for the reason already mentioned in Remark 7.

For historical interest, we can also mention the following consequence
of Assumption 5, first stated in (Eddy and Gale, 1981, Theorem 6.1) in a
restricted case of spherical distributions.

Proposition 7. Under Assumption 5, {Y[n:n] −m(X(n:n))}/a(X(n:n)) con-
verges weakly to Ψ. If moreover ν is a product measure, then {Y[n:n] −
m(X(n:n))}/a(X(n:n)) is asymptotically independent of X(n:n).

Let us finally mention that Davydov and Egorov (2000) obtained func-
tional limit theorems for sums of concomitants corresponding to a number
k of order statistics such that k/n 9 0. Their problem differs widely from
ours. Their assumptions on the joint distribution of the random pairs are
much weaker than Assumption 5, but their results are of a very different
nature and it does not seem possible to use them to derive Proposition 6 for
instance.
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3.2 Nonparametric estimation of a, ψ, m and K

In order to estimate nonparametrically the limiting distribution K, we first
need nonparametric estimators of the quantities ψ(X(n:n−k)), m(X(n:n−k))
and a(X(n:n−k)), based on i.i.d. observations (X1, Y1), . . . , (Xn, Yn) with k
an intermediate sequence, i.e. such that k → ∞ and k/n→ 0.

The estimation of ψ(X(n:n−k)) is a well known estimation issue, see e.g.
Beirlant et al. (2004) or De Haan and Ferreira (2006) If the extreme value
index γ of X is less than 1, then ψ can be estimated as the mean residual
life. Let γ̂ be a consistent estimator of γ (see e.g. Beirlant et al. (2004))
and define

ψ̂(X(n:n−k)) =
1 − γ̂

k

k
∑

i=1

{X(n:n−i+1) −X(n:n−k)} . (22)

It follows straightforwardly from Proposition 6 that ψ̂(X(n:n−k))/ψ(X(n:n−k))
converges weakly to (1 − γ)

∫∞
0 xGγ(dx) = 1.

If it is assumed (as in Section 3.3 below) that γ = 0, then the estimator
above can be suitably modified:

ψ̂(X(n:n−k)) =
1

k

k
∑

i=1

{X(n:n−i+1) −X(n:n−k)} . (23)

In order to estimate m, define

m̂(X(n:n−k)) =

∑k
i=1 Y[n:n−i+1]{X(n:n−i+1) −X(n:n−k)}
∑k

i=1{X(n:n−i+1) −X(n:n−k)}
. (24)

Proposition 8. If Assumption 5 holds and Assumption 6 holds with ζ∗ ≥ 1
and κ∗ ≥ 1, then, for any intermediate sequence k, it holds that

m̂(X(n:n−k)) −m(X(n:n−k))

a(X(n:n−k))
→P µ ,

where µ =
∫∞
0

∫∞
−∞ xyν(dx,dy).

If moreover m(x) = ρx and if µ = 0 or a(x) = o(x) then m̂(X(n:n−k))/X(n:n−k)

is a consistent estimator of ρ.
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Proof. Write

m̂(X(n:n−k)) −m(X(n:n−k))

a(X(n:n−k))
=
Sn
Tn

,

with

Sn =
1

k

k
∑

i=1

Y[n:n−i+1] −m(X(n:n−k))

a(X(n:n−k))

X(n:n−i+1) −X(n:n−k)

ψ(X(n:n−k))

Tn =
1

k

k
∑

i=1

X(n:n−i+1) −X(n:n−k)

ψ(X(n:n−k))
.

Proposition 6 implies that Sn converges weakly to µ and that Tn converges
weakly to 1.

Remark 11. A sufficient condition for µ = 0 is the symmetry of the measure
ν with respect to the second variable. This happens in particular if ν is a
product measure, and the distribution Ψ is symmetric.

We now estimate a(X(n:n−k)). Many estimators can be defined, each
needing an ad hoc moment assumption. The one we have chosen needs
κ∗ ≥ 2 in Assumption 6. Another estimator could be defined under a weaker
assumption, but the present choice is convenient for the estimation of the
limiting distribution Ψ. Denote

â(X(n:n−k)) =

{

1

k

k
∑

i=1

{Y[n:n−i+1] − m̂(X(n:n−k))}2

}1/2

.

Proposition 9. If Assumption 5 holds and Assumption 6 holds with ζ∗ ≥ 1
and κ∗ ≥ 2, and if µ = 0, then, for any intermediate sequence k, it holds
that

â(X(n:n−k))/a(X(n:n−k)) →P

{
∫ ∞

0

∫ ∞

−∞
y2 ν(dx,dy)

}1/2

= 1 .

Proof. The proof straightforwardly follows from Proposition 6.

Remark 12. If µ 6= 0, then â(X(n:n−k))/a(X(n:n−k)) →P τ , with

τ2 = 1 + 2µ

∫ ∞

−∞
yΨ(dy) + µ2 . (25)
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We can define the nonparametric estimator of the limiting joint distribu-
tion K. Define

K̂n(x, y) =
1

k

k
∑

i=1

1{X(n:n−i+1)≤X(n:n−k)+ψ̂(X(n:n−k))x}

× 1{Y[n:n−i+1]≤m̂(X(n:n−k))+â(X(n:n−k))y} . (26)

We can of course define an estimator of the second marginal Ψ of K. Denote

Ψ̂n(z) =
1

k

k
∑

i=1

1{Y[n:n−i+1]≤m̂(X(n:n−k))+â(X(n:n−k))z} . (27)

Theorem 10. Under Assumptions 5 and 6 with γ < 1, ζ∗ ≥ 1 and κ∗ ≥ 2,
if µ = 0, and if K is continuous, then, for any intermediate sequence k,
K̂n(x, y) converges weakly to K(x, y).

Remark 13. Obviously, Ψ̂n converges to Ψ. If µ 6= 0, then Ψ̂n(z) converges
weakly to Ψ(µ+ τz), where τ is defined in (25).

Proof. Denote

Kn(x, y) = ν̂n([0, x] × (∞, y]) .

By Proposition 6, Kn converges weakly to K, locally uniformly. Moreover,
K̂n(z) = Kn(x̂n, ŷn), with

x̂n =
ψ̂(X(n:n−k))

ψ(X(n:n−k))
x , ŷn =

â(X(n:n−k))

a(X(n:n−k))
y +

m̂(X(n:n−k)) −m(X(n:n−k))

a(X(n:n−k))
.

Propositions 8 and 9 imply that x̂n and ŷn converge weakly to x and y,
respectively. Thus K̂n(x, y) converges to K(x, y), by uniform convergence.

3.3 Case of a product measure

In this section, we restrict Assumption 5 to the context corresponding to the
examples of Section 2, namely, we make the following additional assumption.

Assumption 7.
The function ψ is an auxiliary function satisfying limx→∞ ψ(x)/x = 0, there
exists ρ ∈ R such that m(x) = ρx and the measure ν is of the form

ν((x,∞) × [−∞, y]) = e−xΨ(y) , (28)

where Ψ is a distribution function on R.
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The condition limx→∞ ψ(x)/x = 0 implies that the extreme value index of
X is 0. (Heffernan and Resnick, 2007, Proposition 2) provides a necessary
and sufficient condition for ν to be a product measure.

Proposition 11. The measure ν is a product measure if and only if a ◦ b is
slowly varying at infinity and

lim
t→∞

b(tx) − b(t)

a ◦ b(t) = 0 . (29)

This result and the same techniques as in the proof of Proposition 6 yield
the following corollary.

Corollary 12. Under Assumptions 5 and 7, ψ(x) = o(a(x)), and for all
τ > 0,

lim
x→∞

E[(X − x)τ/a(x)τ | X > x] = 0 .

If moreover Assumption 6 holds, then for ζ ∈ [0, ζ∗] and κ ∈ [0, κ∗],

lim
x→∞

E

[

(X − x)ζ

ψ(x)ζ
|Y − ρX|κ
a(x)κ

| X > x

]

= Γ(ζ + 1)

∫ ∞

−∞
|y|κΨ(dy) ,

and
∑k

i=1{X(n:n−i+1) −X(n:n−k)}ζ |Y[n:n−i+1] − ρX(n:n−i+1)|κ
kψζ(X(n:n−k))aκ(X(n:n−k))

converges weakly to Γ(ζ + 1)
∫∞
−∞ |y|κΨ(dy).

Under Assumption 7, the previous results allow to define new estimators
of ρ, a and the marginal distribution Ψ. Define

ρ̂ =

∑k
i=1 Y[n:n−i+1]{X(n:n−i+1) −X(n:n−k)}

∑k
i=1X(n:n−i+1){X(n:n−i+1) −X(n:n−k)}

, (30)

ǎ(X(n:n−k)) =

[

1

k

k
∑

i=1

{Y[n:n−i+1] − ρ̂X(n:n−i+1)}2

]1/2

, (31)

Ψ̌n(z) =
1

k

k
∑

i=1

1{Y[n:n−i+1]≤ρ̂X(n:n−i+1)+ǎ(X(n:n−k))z} . (32)

Proposition 13. Under Assumptions 5, 6 and 7, for any intermediate se-
quence k, the two ratios ρ̂/ρ and ǎ(X(n:n−k))/a(X(n:n−k)) converge weakly

to 1 and Ψ̌n is a consistent estimator of Ψ.
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Remark 14. The proof of this proposition is a straightforward adadaptation
of the proof of the previous results and is omitted. Under a second order
condition, and with an appropriate choice of the sequence k, following the
proof of (Einmahl et al., 1993, Theorem 2), it is possible to prove a func-
tional central limit theorem for

√
k(Ψ̂n−Ψ). Such a result allows to apply a

Kolmogorov-Smirnov type goodness-of-fit test for a given Ψ. We omit this
for brevity.

3.4 Semi-parametric estimation of a and ψ

Nonparametric estimators introduced in Subsection 3.2 yield estimates for
a,m and ψ evaluated at some observations X(n:n−k). They lead consequently
to approximated values for a(x), m(x) and ψ(x) for such x that are in the
range of the observations. Note however that in this case, making use of an
empirical estimation is natural, since θ(x, y) = P(Y ≤ y | X > x) can then
be estimated by

θ̂emp(x, y) =
1

k

n
∑

i=1

1{Yi≤y}1{Xi>x} ,
for x = X(n:n−k), with k suitably large. Recall that the most interesting
situation for using the limit distributions of Theorems 1, 2 or 3 is precisely
when x is outside the range of the observations, so that an empirical estimate
is no more available. In such a situation, a semi-parametric approach will be
needed to extrapolate the functions a(x), m(x) and ψ(x) for values x beyond
X(n:n). This requires some modeling restrictions. Driven by an analysis of
various examples, we make in this Section the following assumptions:

(i) the distribution function of X has a rapidly varying tail, with auxiliary
function ψ of Weibull type, i.e. ψ(x) = x1−β/(cβ), for c, β > 0;

(ii) the pair (X,Y ) satisfies (1), and the limiting distribution is a product
cdf K(x, y) = (1 − e−x)Φ(y), where Φ is the gaussian cdf;

(iii) a(x) = σ
√

xψ(x), for some positive σ;

(iv) m(x) = ρx, for some real ρ.

A consequence of the previous hypotheses is that

lim
x→∞

θ(x, ρx+ σ
√

xψ(x)z) = Φ(z) ,
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so that θ(x, y) can be approximated for x large enough by Φ

(

y − ρx

σ
√

xψ(x)

)

.

Following Abdous et al. (2008), a semi-parametric estimation of ψ(x) is de-

fined by ψ̂n(x) = x1−β̂n/(ĉnβ̂n), where β̂n and ĉn are respectively given by

β̂n =
k−1

∑k
i=1 log log(n/i) − log log(n/k)

k−1
∑k

i=1 log(X(n:n−i+1)) − log(X(n:n−k))
, (33)

and

ĉn =
1

k

k
∑

i=1

log(n/i)

X β̂n
(n:n−i+1)

, (34)

where k is a user chosen threshold. See Beirlant et al. (1996) for details.
Then, the parameter σ is estimated via the nonparametric quantities defined
in Section 3.2, namely:

σ̂ =
ǎ(X(n:n−k))

{X(n:n−k)ψ̂n(X(n:n−k))}1/2
, (35)

in terms of ǎ(X(n:n−k)) and ψ̂(X(n:n−k)) respectively defined in (31) and
(22). Finally, define

θ̂(x, y) = Φ







y − ρ̂x

σ̂

√

xψ̂n(x)







. (36)

Under the hypotheses listed above (which imply Assumptions 5 and 7) and
under the technical Assumption 6, Proposition 13 implies that, for any in-

termediate sequence k, θ̂(x, y) is a consistent estimator of Φ

(

y − ρx

σ
√

xψ(x)

)

.

The estimation of the conditional quantile function θ(x, ·)← for large fixed
x can also be done, as in the elliptical case by Abdous et al. (2008)). We
skip it here to avoid a lengthening of the paper.

4 Numerical illustration

In this section, we perform a small sample simulation study in order to
illustrate in different situations the behavior of the estimators proposed in
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the previous section. We assume that the hypotheses of Section 3.4 hold, so
that the semi-parametric estimation procedure described there can be used.
We consider 3 types of distributions, each of them restricted to the positive
quadrant for convenience. These laws are: (a) an elliptical distribution (the
bivariate normal distribution); (b) a distribution with radial representation
R(cos(T ), sin(T )), where the r.v. T has a non uniform concave density
function, and the radial r.v. R has survival function H̄(t) = e−t

2/2; (c)
a mixture of two gaussian distributions, as considered in Example 2, see
equation (8), with ρ = 0.7, τ = −0.4 and p = 0.4. The first situation
is an example of the standard elliptical case, for which estimation results
already exist (see Abdous et al. (2008)), whereas the other two cases give
two different kinds of extensions: in situation (b) the density level lines are
“asymptotically elliptic” (cf. Figure 2), and in situation (c) the level lines
are “locally elliptic” (cf. Figure 3).

In each case, 100 samples of size 1000 are simulated. A proportion of 5%
of the observations is used, which are the 50 observations with biggest first
component. In the case of the mixture of bivariate Gaussian distributions,
we only use observations in a cone (determined graphically) where the es-
timated density level curves can be reasonably assumed to be elliptic. For
each sample, the semi-parametric estimate of θ(x, y) given in (36) is calcu-
lated for three values of x corresponding to the theoretical X-quantiles of
order 1 − p, where p = 10−3, 10−5, 10−7, and different values of y chosen
to form a grid of possible values of the probability θ(x, y) from 0 to 1. For
each fixed x, this leads to an estimated plot of p 7→ θ(x, yp) where yp is the
theoretical conditional quantile of order p of (X,Y ), given that X > x. Fig-
ure 4 summarizes the quality of these estimations by showing the median,
and the 2.5%- and 97.5%-quantiles of the absolute error θ̂(x, yp) − θ(x, yp)
in terms of p ∈ [0, 1], for the three fixed values of x specified above.

The estimation results are similarly good for cases (a) and (b), see the
first two rows of Figure 4. A slight positive bias can be seen for the locally
elliptic case (c), which becomes smaller as the conditioning event becomes
more extreme (see Row 3, from column 1 to column 3). A common pattern
that can also be observed is that the variability of the estimator θ̂ does
somewhat increase as x increases, from column 1 to column 3.
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Figure 4: Median, 2.5%- and 97.5%-quantiles of a sample of size 100 of
absolute errors θ̂(x, yp) − θ(x, yp) in terms of p ∈ [0, 1], where yp is the
theoretical conditional quantile of (X,Y ) given that X > x. In column 1
(resp. 2, 3) the value x is the theoretical X-quantile of order 1−10−3 (resp.
1 − 10−5, 1 − 10−7). The distribution of (X,Y ) is (a) the bivariate normal
distribution on Row 1; (b) an asymptotically elliptic distribution on Row
2; (c) a locally elliptic distribution on Row 3.
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A Proof of the main results

Proof of Theorem 3. Since u has its maximum at t0, there exists ǫ > 0 and
η > 0 such that for all t /∈ [t0 − ǫ, t0 + ǫ], it holds that u(t) ≤ 1 − η. Then,

P(X > x ; Y > y) =

∫ 1

0
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

=

∫

|t−t0|≤ǫ
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

+

∫

|t−t0|>ǫ
H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt .

Let r(x) denote the last term. Lemma 18 yields that for all p > 0,

r(x) ≤ H̄(x/(1 − η) = o
(

{ψ(x)/x}pH̄(x)
)

.

Hence r(x) is neglibible with respect to the expected order of magnitude of
the integral. It suffices to give an equivalent of the integral on the interval
[t0 − ǫ, t0 + ǫ].

By assumption, we can moreover choose ǫ such that the function v/u is
continuous and increasing on [t0 − ǫ, t0 + ǫ], because δ < κ, so that v/u ∼ v
in a neighborhood of t0.

If y can be expressed as y = ρx + o(x), then for large x, it holds that
y/x ∈ [(v/u)(t0 − ǫ), (v/u)(t0 + ǫ)]. If y/x > ρ = (v/u)(t0), then there exists
t1 ∈ [t0, t0 + ǫ] such that (v/u)(t1) = y/x. Thus,

∫ t0+ǫ

t0

H̄

(

x

u(t)
∨ y

v(t)

)

g(t) dt

=

∫ t1

t0

H̄

(

y

v(t)

)

g(t) dt+

∫ t0+ǫ

t1

H̄

(

x

u(t)

)

g(t) dt .

Let I and J denote the last two integrals, respectively. The successive
changes of variables s = 1/u(t) et s = 1 + zψ(x)/x yield

J =

∫ 1/u(t0+ǫ)

1/u(t1)
H̄(xs)

−(u←)′(1/s)

s2
g(u←(1/s)) ds

=
ψ(x)

x

∫ x{1/u(t0+ǫ)−1}/ψ(x)

x{1/u(t1)−1}/ψ(x)
H̄(x+ ψ(x)z)

× −(u←)′(1/{1 + zψ(x)/x})
1/{1 + zψ(x)/x}2

g(u←(1/{1 + zψ(x)/x})) .
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Let k1 denote the function defined by

k1(z) = −z(u←)′(1/{1 + zψ(x)/x})g(u←(1/{1 + zψ(x)/x})) .

Assumptions 2 and 4 imply that k1 is regularly varying at zero with index
(1 + τ)/κ. Denote β = (1 + τ)/κ. Lemma 17 implies that

J ∼ k1(ψ(x)/x)

∫ ∞

z0

e−ttβ−1 dt ,

where z0 = x{1/u(t1) − 1}/ψ(x) and if y can be chosen in such a way that
z0 has a finite limit when x→ ∞. We now prove this claim.

Recall that t1 = (v/u)←(y/x). Assumption 2 implies that if y/x = ρ+ ξ,
then 1 − u(t1) is a regularly varying function of ξ at zero with index κ/δ.

Thus there exists an increasing function h which is regularly varying at
zero with index δ/κ such that if y/x = ρ+h(ψ(x)/x)z, z ≥ 0, then z0 ∼ zκ/δ.
Hence

J ∼ k1(ψ(x)/x)

∫ ∞

zκ/δ
e−ttβ−1 dt , .

We now deal with the integral I, still in the case y/x > ρ. Noting that
{y/v(t1) − x}/ψ(x) = z0, the changes of variables s = 1/v(t) et s = {x +
ψ(x)z)}/y yield

I =

∫ 1/ρ

1/v(t1)
H̄(ys)

(v←)′(1/s)

s2
g(v←(1/s)) ds

=
ψ(x)

y

∫ {y/ρ−x}/ψ(x)

z0

H̄(x+ ψ(x)z)

× −(v←)′((y/x)/{1 + zψ(x)/x})
1/{1 + zψ(x)/x}2

g(v←((y/x)/{1 + zψ(x)/x})) .

Let the function k2 be defined

k2(z) = −z(v←)′(ρ/{1 + z})f(v←(ρ/{1 + z})) .

Assumptions 2 and 4 imply that k2 is regularly varying at zero with index
(1 + τ)/δ. Choosing y as before and applying again Lemma 17 yields

I ∼ k2(ψ(x)/x)

∫ ∞

zκ/δ
e−tt(1+τ)/δ−1 dt .

Since δ < κ by assumption, it holds that I = o(J). The case y/x < ρ can
be dealt with similarly and is omitted.
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Lemma 14. Let Assumption 5 hold. Let k be an intermediate sequence, i.e.
such that k → ∞ and k/n→ ∞. Then

X(n:n−k) − b(n/k)

ψ ◦ b(n/k) −→P 1 , (37)

ψ(X(n:n−k))

ψ ◦ b(n/k) −→P 1 , (38)

a(X(n:n−k))

a ◦ b(n/k) −→P 1 , (39)

m(X(n:n−k)) −m ◦ b(n/k)
a ◦ b(n/k) = oP (1) . (40)

Proof. Denote Zi = 1/F̄ (Xi). As shown in (Resnick, 2007, Proof of Theorem
4.2), Z(n:n−k)/(n/k) converges weakly to 1. By (Resnick, 2007, Theorem
4.1), Assumption 5 implies that the random measure

1

k

n
∑

i=1

δ{Xi−b(n/k)}/ψ◦b(n/k)

converges weakly to a radon measure on (−∞,∞]. This implies that {X(n:n−k)−
b(n/k)}/ψ◦b(n/k) →P 0. By (De Haan and Ferreira, 2006, Theorem B.2.21),
the function ψ ◦ b is regularly varying. This property and Lemma 19 im-
ply (38). Denote α = a ◦ b. Then

a(X(n:n−k))

a ◦ b(n/k) =
α(Z(n:n−k))

α(n/k)
.

By Proposition 5, α is regularly varying, so (39) holds by Lemma 19. Define
now β = m ◦ b. By Proposition 5 and uniform convergence on compact sets,
it holds that

m(X(n:n−k))) −m ◦ b(n/k)
a ◦ b(n/k)

=
β(Z(n:n−k)) − β(n/k)

α(n/k)

=
β((n/k)(Z(n:n−k)/(n/k))) − β(n/k)

α(n/k)
−→P Kζ(1) = 0 ,

which proves (40).
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Proof of Proposition 6. Recall the definition of ν̂n and define the random
measure νn by

νn =
1

k

n
∑

i=1

δ({Xi−b(n/k)}/ψ◦b(n/k),{Yi−m◦b(n/k)}/a◦b(n/k)) ,

ν̂n =
1

k

k
∑

k=1

δ(X(n;n−i+1)−X(n:n−k)
ψ(X(n:n−k))

,
Y[n:n−i+1]−m(X(n:n−k))

a(X(n:n−k))

) .

By (Resnick, 2007, Theorem 4.1), Assumption (14) implies that νn converges
weakly to ν. By continuous mapping, and Lemma 14, ν̂n also converges
weakly to ν. We now prove (21), and (20) will be proved as a particular
case, cf. Remark 10. The convergence of ν̂n implies that for all compact set
K of [0,∞) × (−∞,∞) and any bounded function h, it holds that

lim
n→∞

∫∫

K
h(x, y)ν̂n([x,∞) × [y,∞)) dxdy

=

∫∫

K
h(x, y)ν([x,∞) × [y,∞)) dxdy .

For M > 0, define K = [0,M ] × [0,M ] and Kc = [0,∞) × (−∞,∞) \ K.
Let h be a function on [0,∞) × (−∞,∞) such that h(x, y) ≤ Cxζ

∗−1yκ
∗−1.

We must prove

lim sup
M→∞

lim
n→∞

∫∫

Kc

h(x, y)ν̂n([x,∞) × [y,∞)) dxdy = 0 ,

in probability. For η > 0, define

Aη =

{ |X(n:n−k) − b(n/k)|
ψ ◦ b(n/k) +

∣

∣

∣

∣

ψ(X(n:n−k))

ψ(b(n/k))
− 1

∣

∣

∣

∣

+

∣

∣

∣

∣

a(X(n:n−k))

a ◦ b(n/k) − 1

∣

∣

∣

∣

+
|m(X(n:n−k)) −m ◦ b(n/k)|

a ◦ b(n/k)) ≤ η

}

.

Denote Rn =
∫∫

Kc ν̂n([x,∞) × [y,∞)) dxdy. Then,

P(Rn > δ) ≤ P(Rn > δ;Aη) + P(Acη) .
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The last term tends to 0 by Lemma 14. Consider now ν̂n1Aη .
ν̂n((x,∞) × (y,∞))1Aη

=
1

k

n
∑

k=1

1{X(n:n−i+1)>X(n:n−k)+ψ(X(n:n−k))x}

× 1{Y[n:n−i+1]>m(X(n:n−k))+a(X(n:n−k))y}1Aη
≤ 1

k

n
∑

k=1

1{X(n:n−i+1)>b(n/k)−ηψ(b(n/k))+ψ(b(n/k))(1−η)x}

× 1{Y[n:n−i+1]>m◦b(n/k)−ηa◦b(n/k)+a(b(n/k))(1−η)y}1Aη
= νn((x(1 − η) − η,∞) × (y(1 − η) − η,∞)) .

Denote Gt(x, y) = P(X > t + ψ(t)x ; Y > m(t) + a(t)y) et tn = b(n/k).
Then

E[ν̂n((x,∞) × (y,∞))1Aη ] ≤ Gtn((x(1 − η) − η, y(1 − η) − η) .

Assumption 5 imply that Gt converges weakly to the function G dfined by
G(x, y) = ν((x,∞) × (y,∞)). Assumption 6 (or simply Assumption 5 if
κ∗ = 0) and integration by parts imply that for any nonnegative function h
such h(x, y) ≤ Cxζ

∗−1yκ
∗−1, it holds that

∫ ∞

0

∫ ∞

−∞
h(x, y)G(x(1 − η) − η, y(1 − η) − η) dxdy <∞ .

This implies

lim
M→∞

lim sup
n→∞

∫∫

Kc

h(x, y)E[ν̂n((x,∞) × (y,∞))1Aη ] dxdy

≤ lim
M→∞

lim sup
n→∞

∫∫

Kc

h(x, y)Gtn((x(1 − η) − η, y(1 − η) − η) dxdy

= lim
M→∞

∫∫

Kc

h(x, y)G(x(1 − η) − η, y(1 − η) − η) dxdy = 0 .

Altogether, we obtain

lim
M→∞

lim sup
n→∞

P(Rn > δ) = 0 ,

wich concludes the proof of Proposition 6.

31



B Lemmas

This following Lemma is a straightforward consequence of Karamata’s rep-
resentation Theorem in the case γ > 0 and in the case γ = 0, it can be found
in the proof of (Abdous et al., 2005, Theorem 1). We recall the main lines
of the proof for the sake of completeness.

Lemma 15. Let H be a cdf in the domain of attraction of an extreme value
distribution with index γ ≥ 0 and with infinite right endpoint. For any
p ∈ (0, 1/γ), there exists a constant C such that for all x large enough, and
all t ≥ 0,

H̄(x+ ψ(x)t)

H̄(x)
≤ C(1 + t)−p . (41)

Proof. If γ = 0, the function H̄ can be expressed as

H̄(x) = c(x) exp

{

−
∫ x

x0

ds

ψ(x)

}

where limx→∞ c(x) = c ∈ (0,∞) and limx→∞ ψ
′(x) = 0. Thus, for any ǫ > 0

and x large enough, there exists a constant C such that

c(x+ ψ(x)t)

c(x)
≤ C ,

ψ(x+ ψ(x)t)

ψ(x)
≤ 1 + ǫt .

Hence

H̄(x+ ψ(x)t)

H̄(x)
≤ C exp

{

−
∫ t

0

ds

1 + ǫs

}

= C(1 + ǫt)−1/ǫ .

In the case γ > 0, the auxiliary function is ψ(x) = γx and there exists a
slowly varying function L such that H̄(x) = x−1/γL(x), thus

H̄(x+ ψ(x)t)

H̄(x)
= (1 + γt)−1/γ L(x+ γxt)

L(x)
.

Karamata’s representation theorem for slowly varying functions yields a
bound for the ratio L(x+ γxt)/L(x) and the proof is easily concluded.

Lemma 16. Let H be a cdf on [0,∞) such that there exist γ ≥ 0 and an
auxiliary function ψ such that

lim
x→∞

H̄(x+ ψ(x)t)

H̄(x)
= 1 −Gγ(t) , (42)
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with Gγ(x) = 1 − (1 + γx)−1/γ . Let b = (1/H̄)← and denote Hn(x) =
nH(b(n) + ψ ◦ b(n)x). Then

lim
n→∞

∫ ∞

0
g(x)Hn(dx) =

∫ ∞

0
g(x)Gγ(dx) , (43)

for any measurable function g, locally bounded on [0,∞) and such that
|g(x)| ≤ Cxβ with β < 1/γ.

Proof. For η > 0 and A > η, write

∫ ∞

0
g(x)Hn(dx) =

∫ η

0
g(x)Hn(dx) +

∫ A

η
g(x)Hn(dx) +

∫ ∞

A
g(x)Hn(dx)

= I1 + I2 + I3 .

By uniform convergence on compact sets of (0,∞), the integral I2 converges

to
∫ A
η g(x)Gγ(dx). Since g is bounded on compact sets, it holds that

sup
η→0

lim sup
n→∞

I1 ≤ C lim
η→0

lim sup
n→∞

Hn(η) = C lim
η→0

Gγ(η) = 0 .

By the assumption on g, we get, for some constant c

I3 ≤ c

∫ ∞

A
xβH̄n(dx) = cAβH̄n(A) + c

∫ ∞

A
xβ−1H̄n(x) dx .

We now use Lemma 15. Thus, for p ∈ (β, 1/γ), there exists a constant C
such that

lim sup
n→∞

I3 ≤ CAβ−p + C

∫ ∞

A
xβ−p−1 dx = O(Aβ−p) .

Hence limA→∞ lim supn→∞ I3 = 0.

Lemma 17. Let H be a cdf on [0,∞) that satisfies (42). Let g be a function
regularly varying at zero with index τ ∈ (−1, 1/γ − 1), and locally bounded
on (0,∞]. Then

lim
x→∞

∫ ∞

z

H̄(x+ ψ(x)t)

H̄(x)

g(tψ(x)/x)

g(ψ(x)/x)
dt =

∫ ∞

z
tτ Ḡγ(t) dt ,

locally uniformly with respect to z ≥ 0, with Ḡγ = 1 −Gγ .
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Proof of Lemma 17. Denote χ(x) = ψ(x)/x; then limx→∞ χ(x) = 0. By
assumption, H̄(x + ψ(x)t)/H̄(x) converges to Ḡ(t) and g(χ(x)t)/g(x) con-
verges to tτ , and both convergences are uniform on compact sets of (0,∞).
It is thus sufficient to prove that

lim
A→∞

lim sup
x→∞

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt = 0 , (44)

lim
η→0

lim sup
x→∞

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t

g(χ(x)
dt = 0 . (45)

Let ǫ ∈ (0, 1/γ be such that 1/ǫ − 1 > τ . Applying Lemma 15 yields, for
large enough x,

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)
g(χ(x)t) dt ≤ C

∫ ∞

A
t−1/ǫg(χ(x)t) dt

= Cχ(x)1/ǫ−1

∫ ∞

Aχ(x)
t−1/ǫg(t) dt .

Since g is locally bounded on (0,∞] and −1/ǫ + τ < −1, Karamata’s The-
orem implies that there exists a constant C ′ such that for all A and x, it
holds that

∫ ∞

Aχ(x)
t−1/ǫg(t) dt ≤ C ′(χ(x)A)1−1/ǫg(χ(x)A) .

Hence

lim sup
x→∞

∫ ∞

A

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt ≤ CC ′A1−1/ǫ lim sup

x→∞

g(χ(x)A)

g(χ(x))

= CC ′A1−1/ǫ+τ .

Since 1 − 1/ǫ + τ < 0, this last quantity converges to 0 when A tends to
infinity, and this proves (44).

Noting that H̄(x + ψ(x)t)/H̄(x) ≤ 1 and applying Karamata Theorem,
we get that there exists a constant C such that

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)
g(χ(x)t) dt ≤

∫ η

0
g(χ(x)t) dt

= χ(x)−1

∫ χ(x)η

0
g(t) dt ≤ Cηg(χ(x)η) .
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Hence

lim sup
x→∞

∫ η

0

H̄(x+ ψ(x)t)

H̄(x)

g(χ(x)t)

g(χ(x))
dt ≤ Cη1+τ

Since 1 + τ > 0, this last quantity converges to zero as η tends to zero, and
this proves (45).

Lemma 18. Let H be a cdf satisfying Assumption 3. For any α > 1 and
p > 0, there exists a constant C such that for all x, it holds that

H̄(αx)

H̄(x)
≤ C(ψ(x)/x)p .

Proof. This follows trivially from (41) by choosing ǫ < 1/p and by setting
t = (α− 1)x/ψ(x).

Lemma 19. Let {an} and {bn} be two random sequences such that an →
∞ and an/bn → 1. Let h be regularly varying with index ζ ∈ R. Then
h(an)/h(bn) → 1.

Proof. The result is straightforward is h(x) = xα for some α 6= 0, so it only
has to be proved for a slowly varying function h. By Karamata’s represen-
tation Theorem, a function h slowly varying at infinity can be expressed
as

h(x) = c(x) exp

{
∫ x

x0

η(s)

s
ds

}

where limx→∞ c(x) = c ∈ (0,∞) and lims→∞ η(s) = 0. Clearly, for the
result we want to prove we can assume without loss of generality that the
function c is constant. Denote ǫn = (an − bn)/bn. Then limn→∞ ǫn = 0 and

h(an)

h(bn)
= exp

{
∫ an

bn

η(s)

s
ds

}

= exp

{
∫ ǫn

0

η(bn + bnt)

1 + t
dt

}

.

Since limn→∞ bn = ∞ and lims→∞ η(s) = 0, for large enough n, we have
|η(bn + bnt)| ≤ 1 and

1

1 + ǫn
= exp

{

−
∫ ǫn

0

dt

1 + t

}

≤ h(an)

h(bn)
≤ exp

{
∫ ǫn

0

dt

1 + t

}

= 1 + ǫn .

Since limn→∞ ǫn = 0, this concludes the proof.
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Lemma 20. Let ℓ be a continuous function defined on [0,∞), bounded above
and away from zero and with a finite limit at infinity. Define L on R+×R+

by L(x, y) = ℓ(y/x). Then L belongs to the class L.

Proof. Since ℓ is bounded, it suffices to prove that if the limit lim(ξ,ζ)→∞ ℓ((x+
ξ)/(y+ζ))/ℓ(ξ/ζ) exists, then it is equal to 1. Since moreover ℓ is continuous
and bounded away from zero, it is enough to consider subsequences and to
show that if ‖(ξn, ζn)‖ → ∞ and if limn→∞ ξn and limn→∞ ζn both exist,
then limn→∞(x+ ξn)/(y + ζn) = limn→∞ ξn/ζn. Three cases arise.

(i) If limn→∞ ξn = limn→∞ ζn = ∞, then

x+ ξn
y + ζn

=
ξn
ζn

1 + x/ξn
1 + y/ζn

∼ ξn/ζn .

(ii) If limn→∞ ξn <∞ et limn→∞ ζn = ∞, then

lim
n→∞

(x+ ξn)/(y + ζn) = 0 = lim
n→∞

ξn/ζn .

(iii) If limn→∞ ξn = ∞ et limn→∞ ζn <∞, then

lim
n→∞

(x+ ξn)/(y + ζn) = ∞ = lim
n→∞

ξn/ζn .

Lemma 21. Assume that (X,Y ) = R(u(T ), v(T )) where R and T are in-
dependent, the cdf H of R satisfies Assumption 3, T has a positive bounded
density g on [0, 1] and u and v satisfy Assumption 2 with moreover u in-
creasing on [0, t0], decreasing on [t0, 1] and (v/u) strictly increasing on [0, 1].
Then Assumption 6 holds for any κ∗ and ζ∗.

Proof. Under these assumptions, X has a rapidly varying upper tail and so
has finite moments of all order. By Hölder inequality, we need only to prove
that for any q > 0,

lim sup
x→∞

E[{|Y − ρx|/a(x)}q | X > x] <∞ ,

where a(x) is the normalizing function obtained in Theorem 3. By integra-
tion by parts, we have

E

[

(Y − ρx)q+
a(x)q

| X > x

]

= q

∫ ∞

0

P(Y > ρx+ a(x)t ,X > x)

P(X > x)
tq−1 dt .
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Since we have assumed that v/u is increasing, let φ denote its left-continuous
inverse. Let z = φ(ρ+ (a(x)/x)t). Then

P(Y > ρx+ a(x)t ,X > x) =

∫ 1

0
P

(

R >
x

u(s)
∨ ρx+ a(x)t

v(s)

)

g(s) ds

=

∫ z

0
P

(

R >
ρx+ a(x)t

v(s)

)

g(s) ds+

∫ 1

z
P

(

R >
x

u(s)

)

g(s) ds

= I1(x, t) + I2(x, t) .

Since we are only looking for a bound and since we assume that g is bounded,
without loss of generality, we can assume that it is constant and equal to 1.
We first give a bound for I2. If t > 0, then z > t0. In that case, we have

I2(x, t) ≤
ψ(x)

x

∫ ∞

x{1/u(z)−1}/ψ(x)
H̄(x+ ψ(x)r)(−1/u←)′(1 + ψ(x)r/x) dr .

By Assumption 2, the function s → (1/u←)′(1 + s) is regularly varying at
zero with index 1/κ− 1. By (Resnick, 1987, Proposition 0.8), for any ǫ > 0,
there exists a constant C such that for large enough x and all t ≥ 1,

(−1/u←)′(1 + ψ(x)r/x)

(−1/u←)′(1 + ψ(x)/x)
≤ Cr1/κ+ǫ−1 .

Besides, we know from the proof of Theorem 3 that

P(X > x) ∼ ψ(x)

x
(−1/u←)′(ψ(x)/x)H̄(x) .

Denote bx(t) = x{1/u(z) − 1}/ψ(x). Applying Lemma 15, we obtain, for
any p > 0 that

I2(x, t)

P(X > x)
≤ C

∫ ∞

bx(t)
(1 + r)−pr1/κ+ǫ−1 dr .

We now need a lower bound for bx(t). Let k(t) = 1/u◦φ(ρ+t)−1. Then k is
regularly varying at zero with index κ/δ and by definition of the normalizing
function a(x), we have bx(t) = k(ta(x)/x)/k(a(x)/x). Thus, for all ǫ > 0,
there exists a constant c such that bx(t) ≥ ctκ/δ+ǫ. Altogether, we obtain,
for any p > 0 and large enough x,

I2(x, t)

P(X > x)
≤ C

∫ ∞

ctκ/δ+ǫ
(1 + r)−pr1/κ+ǫ−1 dr .

Thus
∫∞
0 I2(x, t)/P(X > x) dt is finite an bounded with respect to x.
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