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Abstract: We prove a change of variable formula for the 2D fractional Brownian motion of
index H bigger or equal to 1/4. For H strictly bigger than 1/4, our formula coincides with that
obtained by using the rough paths theory. For H = 1/4 (the more interesting case), there is
an additional term that is a classical Wiener integral against an independent standard Brownian
motion.
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1 Introduction and main result

In [4], Coutin and Qian have shown that the rough paths theory of Lyons [11] can be applied to the
2D fractional Brownian motion B = (B(1), B(2)) under the condition that its Hurst parameter H
(supposed to be the same for the two components) is strictly bigger than 1/4. Since this seminal
work, several authors have recovered this fact by using different routes (see e.g. Feyel and de La
Pradelle [7], Friz and Victoir [8] or Unterberger [17] to cite but a few). On the other hand, it is
still an open problem to bypass this restriction on H.

Rough paths theory is purely deterministic in essence. Actually, its random aspect comes
only when it is applied to a singular path of a given stochastic process (like a Brownian motion,
a fractional Brownian motion, etc.). In particular, it does not allow to produce a new alea. As
such, the second point of Theorem 1.2 just below shows, in a sense, that it seems difficult to reach
the case H = 1/4 by using exclusively the tools of the rough paths theory.

Before stating our main result, we need the following definition:

Definition 1.1 Let f : R
2 → R be a function belonging in C 1, and fix t > 0. Provided it exists,

we define
∫ t
0 ∇f(Bs) · dBs as the limit in probability, as n → ∞, of

In(t) :=

⌊nt⌋−1∑

k=0

∂f
∂x(B

(1)
k/n, B

(2)
k/n) + ∂f

∂x(B
(1)
(k+1)/n, B

(2)
k/n)

2

(
B

(1)
(k+1)/n − B

(1)
k/n)

+

⌊nt⌋−1∑

k=0

∂f
∂y (B

(1)
k/n

, B
(2)
k/n

) + ∂f
∂y (B

(1)
k/n

, B
(2)
(k+1)/n

)

2

(
B

(2)
(k+1)/n − B

(2)
k/n). (1.1)
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If we only have that the random couple
(
(Bs)s∈[0,t], In(t)

)
converges in law in C ([0, t]) × R, we

denote the limit by (
(Bs)s∈[0,t],

∫ t

0
∇f(Bs) · d⋆Bs

)
.

Our main result is as follows:

Theorem 1.2 Let f : R
2 → R be a function belonging in C 8 and verifying (H8), see (3.14) below.

Let also B = (B(1), B(2)) denote a 2D fractional Brownian motion of Hurst index H ∈ (0, 1), and
let t > 0 be a fixed time.

1. If H > 1/4 then
∫ t
0 ∇f(Bs) · dBs is well-defined, and we have

f(Bt) = f(0) +

∫ t

0
∇f(Bs) · dBs. (1.2)

2. If H = 1/4 then only
∫ t
0 ∇f(Bs) · d⋆Bs is well-defined, and we have

f(Bt)
Law
= f(0) +

∫ t

0
∇f(Bs) · d⋆Bs +

σ1/4√
2

∫ t

0

∂2f

∂x∂y
(Bs)dWs. (1.3)

Here, σ1/4 is the universal constant defined by (1.5)(see below), while
∫ t
0

∂2f/∂x∂y(Bs)dWs

denotes a classical Wiener integral with respect to a (1D) standard Brownian motion W
independent of B.

3. If H < 1/4 then the integral
∫ t
0 Bs · d⋆Bs does not exist. Therefore, it is not possible to

write a change of variable formula for B
(1)
t B

(2)
t using the integral defined in Definition 1.1.

Remark 1.3 1. Due to the definition of
∫ t
0 ∇f(Bs) · d⋆Bs, we see that we can freely move

each component in (1.3) from the right hand side to the left (or from the left hand side to
the right).

2. When β denotes a one-dimensional fractional Brownian motion with Hurst index in (0, 1/2),

it is easily checked, for any fixed t > 0, that
∑⌊nt⌋−1

k=0 βk/n

(
β(k+1)/n−βk/n

)
does not converge

in law.
(
Indeed, on the one hand, we have

β2
⌊nt⌋/t =

⌊nt⌋−1∑

k=0

(
β2

(k+1)/n −β2
k/n

)
= 2

⌊nt⌋−1∑

k=0

βk/n

(
β(k+1)/n −βk/n

)
+

⌊nt⌋−1∑

k=0

(
β(k+1)/n −βk/n

)2

and, on the other hand, it is well-known that

n2H−1

⌊nt⌋−1∑

k=0

(
β(k+1)/n − βk/n

)2 L2

−→
n→∞

t.

These two facts imply immediately that

⌊nt⌋−1∑

k=0

βk/n

(
β(k+1)/n − βk/n

)
=

1

2


β2

⌊nt⌋/t −
⌊nt⌋−1∑

k=0

(
β(k+1)/n − βk/n

)2
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does not converge in law
)
. That is why we need to introduce a “symmetric” part in

our definition of the Riemann sum (1.1). Indeed, if H > 1/6, then
∑⌊nt⌋−1

k=0
1
2

(
f(βk/n) +

f(β(k+1)/n)
) (

β(k+1)/n − βk/n

)
converges in L2 for any regular enough function f : R → R,

see [9] and [3].

3. We stress that it is still an open problem to know if each integral
∫ t
0

∂f
∂x(Bs)d

(⋆)B
(1)
s and∫ t

0
∂f
∂y (Bs)d

(⋆)B
(2)
s could be defined separately. Indeed, in the first two points of Theorem

1.2, we “only” prove that their sum, that is
∫ t
0 ∇f(Bs) · d(⋆)Bs, is well-defined.

4. Let us give a quicker proof of (1.3) in the particular simple case where f(x, y) = xy.
Indeed, let β be a one-dimensional fractional Brownian motion of index 1/4. The classical
Breuer-Major’s theorem [1] yields:

1√
n

⌊n·⌋−1∑

k=0

(√
n(β(k+1)/n−βk/n)2−1

) Law
=

1√
n

⌊n·⌋−1∑

k=0

(
(βk+1−βk)

2−1
) D−→

n→∞
σ1/4 W. (1.4)

Here, W denotes a standard Brownian motion independent of β (note that the indepen-
dence† is an immediate consequence of the central limit theorem for multiple integrals
proved in Peccati and Tudor [16]), the constant σ1/4 is defined by

σ1/4 :=

√
1

2

∑

k∈Z

(√
|k + 1| +

√
|k − 1| − 2

√
|k|
)2

< ∞, (1.5)

and the convergence in law holds in the Skorohod space D of càdlàg functions on [0,∞).
Now, let β̃ be another fractional Brownian motion of index 1/4, independent of β. From
(1.4), we get

(
1√
n

n−1∑

k=0

(√
n(β(k+1)/n − βk/n)2 − 1

)
,

1√
n

n−1∑

k=0

(√
n(β̃(k+1)/n − β̃k/n)2 − 1

)
)

D2

−→
n→∞

σ1/4 (W,W̃ )

for (W,W̃ ) a 2D standard Brownian motion, independent of the 2D fractional Brownian
motion (β, β̃). In particular, by difference, we have

1

2

⌊n·⌋−1∑

k=0

(
(β(k+1)/n − βk/n)2 − (β̃(k+1)/n − β̃k/n)2

) D−→
n→∞

σ1/4

2
(W − W̃ )

Law
=

σ1/4√
2

W.

Now, set B(1) = (β + β̃)/
√

2 and B(2) = (β− β̃)/
√

2. It is easily checked that B(1) and B(2)

still are two independent fractional Brownian motions of index 1/4. Moreover, we deduce
from the previous convergence that

⌊n·⌋−1∑

k=0

(B
(1)
(k+1)/n − B

(1)
k/n)(B

(2)
(k+1)/n − B

(2)
k/n)

D−→
n→∞

σ1/4√
2

W, (1.6)

†More precisely, this means that the couple
(
β, 1√

n

∑⌊n·⌋−1
k=0

(√
n(β(k+1)/n − βk/n)2 − 1

))
converges in

law to (β, σ1/4W ) with β and W independent.
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with B(1), B(2) and W independent. On the other hand, we have, for any a, b, c, d ∈ R:

bd − ac = a(d − c) + c(b − a) + (b − a)(d − c).

Choosing a = B
(1)
k/n, b = B

(1)
(k+1)/n, c = B

(2)
k/n and d = B

(2)
(k+1)/n, and suming for k over

0, . . . , ⌊nt⌋ − 1, we obtain

B
(1)
⌊nt⌋/n B

(2)
⌊nt⌋/n =

⌊nt⌋−1∑

k=0

B
(1)
k/n

(
B

(2)
(k+1)/n − B

(2)
k/n

)
+ B

(2)
k/n

(
B

(1)
(k+1)/n − B

(1)
k/n

)

+

⌊nt⌋−1∑

k=0

(
B

(1)
(k+1)/n − B

(1)
k/n

)(
B

(2)
(k+1)/n − B

(2)
k/n

)
. (1.7)

Thus, passing to the limit using (1.6), we get the desired conclusion in (1.3), in the particular
case where f(x, y) = xy. Note that the second term in the right-hand side of (1.7) is the
discrete analogue of the 2-covariation introduced by Errami and Russo in [6].

5. We could prove (1.3) at a functional level (actually, it has be done for f(x, y) = xy in the
proof just below). But, in order to keep the length of this paper within limits, we defer to
future analysis this rather technical investigation.

6. In a very recent work, Nourdin and Réveillac [14] proved the following result (see also
Burdzy and Swanson [2] for similar results in the case where β is replaced by the solution
of the stochastic heat equation driven by a space/time white noise). If β denotes a one-
dimensional fractional Brownian motion of index 1/4 and if g : R → R is regular enough,
then

1√
n

n−1∑

k=0

g(βk/n)
(√

n(β(k+1)/n−βk/n)2−1
) Law−→

n→∞
1

4

∫ 1

0
g′′(βs)ds+σ1/4

∫ 1

0
g(βs)dWs (1.8)

for W a standard Brownian motion independent of β. Compare with Proposition 3.3 below.
In particular, for g choosed identically one in (1.8), note that it agrees with (1.4).

7. The fractional Brownian motion of index 1/4 has a remarkable physical interpretation in
terms of particle systems. Indeed, if one consider an infinite number of particles, initially
placed on the real line according to a Poisson distribution, performing independent Brow-
nian motions and undergoing “elastic” collisions, then the trajectory of a fixed particle
(after rescaling) converges to a fractional Brownian motion of index 1/4. See Harris [10]
for heuristic arguments, and Dürr, Goldstein and Lebowitz [5] for precise results.

Now, the rest of the note is entirely devoted to the proof of Theorem 1.2. The Section 2
contains some preliminaries and fix the notation. Some technical results are postponed in Section
3. Finally, the proof of Theorem 1.2 is done in Section 4.
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2 Preliminaries and notation

We shall now provide a short description of the tools of Malliavin calculus that will be needed in
the following sections. The reader is referred to the monographs [12] and [15] for any unexplained
notion or result.

Let B = (B
(1)
t , B

(2)
t )t∈[0,T ] be a 2D fractional Brownian motion with Hurst parameter be-

longing in (0, 1/2). We denote by H the Hilbert space defined as the closure of the set of step
R

2-valued functions on [0, T ], with respect to the scalar product induced by

〈(
1[0,t1],1[0,t2]

)
,
(
1[0,s1],1[0,s2]

)〉
H = RH(t1, s1) + RH(t2, s2), si, ti ∈ [0, T ], i = 1, 2,

where RH(t, s) = 1
2

(
t2H + s2H − |t − s|2H

)
. Also, H denotes the Hilbert space defined as the

closure of the set of step R-valued functions on [0, T ], with respect to the scalar product induced
by 〈

1[0,t],1[0,s]

〉
H

= RH(t, s), s, t ∈ [0, T ].

Consider the set of all smooth cylindrical random variables, i.e. of the form

F = f
(
B(ϕ1), . . . , B(ϕk)

)
, ϕi ∈ H, i = 1, . . . , k, (2.9)

where f ∈ C∞(Rk; R) is bounded with bounded derivatives. The derivative operator D of a
smooth cylindrical random variable of the above form is defined as the H-valued random variable

DF =
k∑

i=1

∂f

∂xi

(
B(ϕ1), . . . , B(ϕk)

)
ϕi.

By iteration, one can define the mth derivative DmF (which is an element of L2(Ω,H⊗m)) for
m > 2. As usual, for any m > 1, the space D

m,2 denotes the closure of the set of smooth random
variables with respect to the norm ‖ · ‖m,2 defined by the relation

‖F‖2
m,2 = E|F |2 +

m∑

i=1

E‖DiF‖2
H⊗i .

In particular, if DB(i)F designates the Malliavin derivative with respect to B(i), we have

DB(i)B
(j)
t = δij1[0,t] for i, j ∈ {1, 2}, and δij the Kronecker symbol.

The derivative D verifies the chain rule. Precisely, if ϕ : R
n → R is in C 1

b and if Fi, i = 1, . . . , n,
are in D

1,2, then ϕ(F1, . . . , Fn) ∈ D
1,2 and

Dϕ(F1, . . . , Fn) =
n∑

i=1

∂ϕ

∂xi
(F1, . . . , Fn)DFi.

The mth derivative Dm verifies the Leibnitz rule. That is, for any F,G ∈ D
m,2 such that

FG ∈ D
m,2, we have

Dm
t1,...,tm(FG) =

∑
D

|I|
I (F )D

m−|I|
Ic (G), ti ∈ [0, T ], i = 1, . . . ,m, (2.10)

5



where the sum runs over any subset I of {t1, . . . , tm}, |I| denoting the cardinality of I.
The divergence operator δ is the adjoint of the derivative operator. If a random variable

u ∈ L2(Ω,H) belongs to domδ, the domain of the divergence operator, then δ(u) is defined by
the duality relationship

E
(
Fδ(u)

)
= E〈DF, u〉H

for every F ∈ D
1,2.

For every q > 1, let Hq be the qth Wiener chaos of B, that is, the closed linear subspace of
L2 (Ω,A, P ) generated by the random variables {Hq (B (h)) , h ∈ H, ‖h‖H = 1}, where Hq is the

qth Hermite polynomial given by Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2

)
. The mapping

Iq(h
⊗q) = Hq (B (h)) (2.11)

provides a linear isometry between the symmetric tensor product H⊙q and Hq. The following
duality formula holds

E (FIq(f)) = E (〈DqF, f〉H⊗q) ,

for any f ∈ H⊙q and F ∈ D
q,2. In particular, we have

E
(
FI(i)

q (f)
)

= E
(〈

Dq

B(i)F, f
〉

H⊗q

)
, i = 1, 2, (2.12)

for any f ∈ H⊙q and F ∈ D
q,2, where, for simplicity, we write I

(1)
q (f) – resp. I

(2)
q (f) – for

Iq

(
(f, 0)

)
– resp. Iq

(
(0, f)

)
.

Finally, we mention the following particular case (actually, the only one we will need in the
sequel) of the classical multiplication formula: if f, g ∈ H, q > 1 and i ∈ {1, 2}, then

I(i)
q (f⊗q)I(i)

q (g⊗q) =

q∑

r=0

r!

(
q

r

)2

I
(i)
2q−2r(f

⊗q−r ⊗ g⊗q−r)〈f, g〉rH. (2.13)

3 Some technical results

In this section, we collect some crucial results for the proof of (1.3), the only case which is difficult.
Here and in the rest of the paper, we set

∆B
(i)
k/n := B

(i)
(k+1)/n − B

(i)
k/n, δk/n := 1[k/n,(k+1)/n] and εu := 1[0,u],

for any i ∈ {1, 2}, k ∈ {0, . . . , n − 1} and u ∈ [0, 1].
In the sequel, for g : R

2 → R belonging to C q, we will need assumption of the type:

(Hq) sup
s∈[0,1]

E

(∣∣∣∣
∂a+bg

∂xa∂yb
(B(1)

s , B(2)
s )

∣∣∣∣
p)

< ∞ for any p > 1 and integers a, b > 0 s.t. a + b 6 q.

(3.14)

We begin by the following technical lemma:

Lemma 3.1 Let β be a 1D fractional Brownian motion of Hurst index 1/4. We have

6



(i)
∣∣E
(
βr(βt − βs)

)∣∣ 6
√

|t − s| for any 0 6 r, s, t 6 1,

(ii)
n−1∑

k,l=0

∣∣∣
〈
εl/n, δk/n

〉
H

∣∣∣ =
n→∞

O(n),

(iii)

n−1∑

k,l=0

∣∣∣
〈
δl/n, δk/n

〉r
H

∣∣∣ =
n→∞

O(n1−r/2) for any r > 1,

(iv)

n−1∑

k=0

∣∣∣∣
〈
εk/n, δk/n

〉
H

+
1

2
√

n

∣∣∣∣ =
n→∞

O(1),

(v)

n−1∑

k=0

∣∣∣∣
〈
εk/n, δk/n

〉2
H
− 1

4n

∣∣∣∣ =
n→∞

O(1/
√

n).

Proof of Lemma 3.1.

(i) We have

E
(
βr(βt − βs)

)
=

1

2

(√
t −

√
s
)

+
1

2

(√
|s − r| −

√
|t − r|

)
.

Using the classical inequality
∣∣√|b| −

√
|a|
∣∣ ≤

√
|b − a|, the desired result follows.

(ii) Observe that

〈
εl/n, δk/n

〉
H

=
1

2
√

n

(√
k + 1 −

√
k −

√
|k + 1 − l| +

√
|k − l|

)
.

Consequently, for any fixed l ∈ {0, . . . , n − 1}, we have

n−1∑

k=0

∣∣∣
〈
εl/n, δk/n

〉
H

∣∣∣ ≤ 1

2
+

1

2
√

n

(
l−1∑

k=0

√
l − k −

√
l − k − 1

+1 +
n−1∑

k=l+1

√
k − l + 1 −

√
k − l

)

=
1

2
+

1

2
√

n

(√
l +

√
n − l

)

from which we deduce that sup
06l6n−1

n−1∑

k=0

∣∣∣
〈
εl/n, δk/n

〉
H

∣∣∣ =
n→∞

O(1). It follows that

n−1∑

k,l=0

∣∣∣
〈
εl/n, δk/n

〉
H

∣∣∣ 6 n sup
06l6n−1

n−1∑

k=0

∣∣∣
〈
εl/n, δk/n

〉
H

∣∣∣ =
n→∞

O(n).
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(iii) We have, by noting ρ(x) = 1
2

(√
|x + 1| +

√
|x − 1| − 2

√
|x|
)
:

n−1∑

k,l=0

∣∣∣
〈
δl/n, δk/n

〉r
H

∣∣∣ = n−r/2
n−1∑

k,l=0

|ρr(l − k)| 6 n1−r/2
∑

k∈Z

|ρr(k)| .

Since
∑

k∈Z
|ρr(k)| < ∞ if r > 1, the desired conclusion follows.

(iv) is a consequence of the following identity combined with a telescopic sum argument:

∣∣∣∣
〈
εk/n, δk/n

〉
H

+
1

2
√

n

∣∣∣∣ =
1

2
√

n

(√
k + 1 −

√
k
)
.

(v) We have ∣∣∣∣
〈
εk/n, δk/n

〉2
H
− 1

4n

∣∣∣∣ =
1

4n

(√
k + 1 −

√
k
) ∣∣∣

√
k + 1 −

√
k − 2

∣∣∣ .

Thus, the desired bound is immediately checked by combining a telescoping sum argument
with the fact that

∣∣∣
√

k + 1 −
√

k − 2
∣∣∣ =

∣∣∣∣
1√

k + 1 +
√

k
− 2

∣∣∣∣ 6 2.

2

Also the following lemma will be useful in the sequel:

Lemma 3.2 Let α > 0 and q > 2 be two positive integers, let g : R
2 → R be any function

belonging to C 2q and verifying (H2q) defined by (3.14), and let B = (B(1), B(2)) be a 2D fractional
Brownian motion of Hurst index 1/4. Set

Vn = n−q/4
n−1∑

k=0

g(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)α
Hq

(
n1/4∆B

(2)
k/n

)
,

where Hq denotes the qth Hermite polynomial defined by Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2

)
. Then,

we have the following bound:

E
(
|Vn|2

)
= O(n1−q/2−α/2) as n → ∞. (3.15)

8



Proof of Lemma 3.2. We can write

E
(
|Vn|2

)
= n−q/2

n−1∑

k,l=0

E
[
g(B

(1)
k/n, B

(2)
k/n)g(B

(1)
l/n, B

(2)
l/n)
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α

×Hq

(
n1/4∆B

(2)
k/n

)
Hq

(
n1/4∆B

(2)
l/n

)]

=
(2.11)

n−1∑

k,l=0

E
[
g(B

(1)
k/n, B

(2)
k/n)g(B

(1)
l/n, B

(2)
l/n)
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α
I(2)
q (δ⊗q

k/n)I(2)
q (δ⊗q

l/n)
]

=
(2.13)

q∑

r=0

r!

(
q

r

)2 n−1∑

k,l=0

E
[
g(B

(1)
k/n, B

(2)
k/n)g(B

(1)
l/n, B

(2)
l/n)

×
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α
I
(2)
2q−2r(δ

⊗q−r
k/n ⊗ δ⊗q−r

l/n )
]
〈δk/n, δl/n〉rH

=
(2.12)

q∑

r=0

r!

(
q

r

)2 n−1∑

k,l=0

E
〈
D2q−2r

B(2)

(
g(B

(1)
k/n, B

(2)
k/n)g(B

(1)
l/n, B

(2)
l/n)

×
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α)
, δ⊗q−r

k/n ⊗ δ⊗q−r
l/n

〉
H⊗2q−2r

〈δk/n, δl/n〉rH

=
(2.10)

q∑

r=0

r!

(
q

r

)2 ∑

a+b=2q−2r

n−1∑

k,l=0

E

(
dag

dya
(B

(1)
k/n, B

(2)
k/n)

dbg

dyb
(B

(1)
l/n, B

(2)
l/n)

×
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α)
(2q − 2r)!

〈
ε⊗a
k/n⊗̃ε⊗b

l/n, δ⊗q−r
k/n ⊗ δ⊗q−r

l/n

〉
H⊗2q−2r

〈δk/n, δl/n〉rH.

(3.16)

Now, observe that, uniformly in k, l ∈ {0, . . . , n − 1}:
〈
ε⊗a
k/n⊗̃ε⊗b

l/n, δ⊗q−r
k/n ⊗ δ⊗q−r

l/n

〉
H⊗2q−2r

=
n→∞

O(n−(q−r)), see Lemma 3.1 (i),

∣∣∣∣E
(

dag

dya
(B

(1)
k/n, B

(2)
k/n)

dbg

dyb
(B

(1)
l/n, B

(2)
l/n)
(
∆B

(1)
k/n

)α (
∆B

(1)
l/n

)α
)∣∣∣∣ =

n→∞
O(n−α/2), use (H2q),

and, also:

n−1∑

k,l=0

〈δk/n, δl/n〉rH = O(n1−r/2) for any fixed r > 1, see Lemma 3.1 (iii).

Therefore, the desired conclusion is obtained by combining these three observations with (3.16).

2

The independent Brownian motion appearing in (1.3) will come from the following proposition.

Proposition 3.3 Let (β, β̃) be a 2D fractional Brownian motion of Hurst index 1/4. Assume
that g, g̃ : R

2 → R are two functions belonging in C 4 and verifying (H4) defined by (3.14). Then

(Gn, G̃n) :=

(
1√
n

n−1∑

k=0

g(βk/n, β̃k/n)
(√

n(∆βk/n)2 − 1
)
,

1√
n

n−1∑

k=0

g̃(βk/n, β̃k/n)
(√

n(∆β̃k/n)2 − 1
)
)

stably−→
n→∞

(
σ1/4

∫ 1

0
g(βs, β̃s)dWs +

1

4

∫ 1

0

∂2g

∂x2
(βs, β̃s)ds, σ1/4

∫ 1

0
g̃(βs, β̃s)dW̃s +

1

4

∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds

)
,

9



where (W,W̃ ) is a 2D standard Brownian motion independent of (β, β̃), and σ1/4 is defined by
(1.5).

Remark. In the particular case where g(x, y) = g(x) and g̃(x, y) = g̃(y), the conclusion of the
lemma follows directly from (1.8).

Proof. Our proof uses the tools developed in Nourdin and Nualart [13], and is actually a literal
extension of the proof of (1.8) contained in [14].

First, following step by step the computations made in [14], see more precisely (3.1) and (3.2)
therein, and taking into account that β and β̃ are independent, we get

lim
n→∞

E
(
G2

n

)
= σ2

1/4

∫ 1

0
E
(
g2(βs, β̃s)

)
ds +

1

16
E

(∫ 1

0

∂2g

∂x2
(βs, β̃s)ds

)2

lim
n→∞

E
(
G̃2

n

)
= σ2

1/4

∫ 1

0
E
(
g̃2(βs, β̃s)

)
ds +

1

16
E

(∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds

)2

. (3.17)

Since the sequences (Gn) and (G̃n) are bounded in L2(Ω), the sequence
(
Gn, G̃n, (βt, β̃t)t∈[0,1]

)

is tight in R
2 × C ([0, 1]2). Assume that

(
G∞, G̃∞, (βt, β̃t)t∈[0,1]

)
denotes the limit in law of a

certain subsequence of
(
Gn, G̃n, (βt, β̃t)t∈[0,1]

)
, denoted again by

(
Gn, G̃n, (βt, β̃t)t∈[0,1]

)
.

We have to prove that

(
G∞, G̃∞

) Law
=

(
σ1/4

∫ 1

0
g(βs, β̃s)dWs +

1

4

∫ 1

0

∂2g

∂x2
(βs, β̃s)ds ,

σ1/4

∫ 1

0
g̃(βs, β̃s)dW̃s +

1

4

∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds

)
,

or more precisely that

E
(
eiλG∞+iλ̃G̃∞ | (βt, β̃t)t∈[0,1]

)

= exp

{
i
λ

4

∫ 1

0

∂2g

∂x2
(βs, β̃s)ds + i

λ

4

∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds −

λ2 σ2
1/4

2

∫ 1

0
g2(βs, β̃s)ds

−
λ̃2 σ2

1/4

2

∫ 1

0
g̃2(βs, β̃s)ds

}
(3.18)

for any λ, λ̃ ∈ R. This will be done by showing that, for any r.v. ξ of the form (2.9) and λ, λ̃ ∈ R,
we have

lim
n→∞

∂

∂λ
φn(λ, λ̃) = E

{
eiλG∞+iλ̃G̃∞ξ

(
i

4

∫ 1

0

∂2g

∂x2
(βs, β̃s)ds − λσ2

1/4

∫ 1

0
g2(βs, β̃s)ds

)}

lim
n→∞

∂

∂λ̃
φn(λ, λ̃) = E

{
eiλG∞+iλ̃G̃∞ξ

(
i

4

∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds − λσ2

1/4

∫ 1

0
g̃2(βs, β̃s)ds

)}

(3.19)
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where
φn(λ, λ̃) := E

(
eiλGn+iλ̃G̃nξ

)
, n > 1.

Let us make precise this argument. Since (Gn), (G̃n) are bounded in L2 and
(
G∞, G̃∞, (βt, β̃t)t∈[0,1]

)

is the limit in law of
(
Gn, G̃n, (βt, β̃t)t∈[0,1]

)
, we have that

E
(
G∞ ξ eiλG∞+iλ̃G̃∞

)
= lim

n→∞
E
(
Gn ξ eiλGn+iλ̃G̃n

)
= lim

n→∞
∂

∂λ
φn(λ, λ̃),

E
(
G̃∞ ξ eiλG∞+iλ̃G̃∞

)
= lim

n→∞
E
(
G̃n ξ eiλGn+iλ̃G̃n

)
= lim

n→∞
∂

∂λ̃
φn(λ, λ̃),

for all λ, λ̃ ∈ R, and for every ξ of the form (2.9). Furthermore, because we will prove that
the convergence (3.19) holds for every ξ of the form (2.9), the conditional characteristic function

(λ, λ̃) 7→ E
(
eiλG∞+iλ̃G̃∞ |(βt, β̃t)t∈[0,1]

)
satisfies the following linear system of ordinary differential

equations:

∂

∂λ
E
(
eiλG∞+iλ̃G̃∞ |(βt, β̃t)t∈[0,1]

)

= E
(
eiλG∞+iλ̃G̃∞ |(βt, β̃t)t∈[0,1]

)
×
[

i

4

∫ 1

0

∂2g

∂x2
(βs, β̃s)ds − λσ2

1/4

∫ 1

0
g2(βs, β̃s)ds

]

and
∂

∂λ̃
E
(
eiλG∞+iλ̃G̃∞ |(βt, β̃t)t∈[0,1]

)

= E
(
eiλ̃G̃∞+iλ̃G̃∞ |(βt, β̃t)t∈[0,1]

)
×
[

i

4

∫ 1

0

∂2g̃

∂y2
(βs, β̃s)ds − λσ2

1/4

∫ 1

0
g̃2(βs, β̃s)ds

]
.

By solving it, we obtain (3.18), which yields the desired conclusion.
Thus, it remains to show (3.19). We will only prove the first limit, the second being obviously

completely similar. Exactly as in [14] (and by taking into account of the independence between
β and β̃), see more precisely the proof of (3.12) therein, here we can write:

∂

∂λ
φn(λ, λ̃) = −2λ

n−1∑

k,l=0

E
(
g(βk/n, β̃k/n)g(βl/n, β̃l/n)eiλGn+iλ̃G̃nξ

)
〈δk/n, δl/n〉2H

+i

n−1∑

k=0

E

(
∂2g

∂x2
(βk/n, β̃k/n)eiλGn+iλ̃G̃nξ

)
〈εk/n, δk/n〉2H + i

n−1∑

k=0

rk,n, (3.20)

with limn→∞
∑n−1

k=0 rk,n = 0.
Moreover, using once again the same argument allowing to prove (3.14)-(3.15) in [14], we

have, on the one hand

lim
n→∞

−2λ
n−1∑

k,l=0

E
(
g(βk/n, β̃k/n)g(βl/n, β̃l/n)eiλGn+iλ̃G̃nξ

)
〈δk/n, δl/n〉2H

= −σ2
1/4 λ

∫ 1

0
E
(
g2(βs, β̃s)e

iλG∞+iλ̃G̃∞ξ
)
ds,

11



and, on the other hand:

lim
n→∞

i

n−1∑

k=0

E

(
∂2g

∂x2
(βk/n, β̃k/n)eiλGn+iλ̃G̃nξ

)
〈εk/n, δk/n〉2H

=
i

4

∫ 1

0
E

(
∂2g

∂x2
(βs, β̃s)e

iλG∞+iλ̃G̃∞ξ

)
ds.

Combined with (3.20), this shows the first limit in (3.19), so that the proof of Proposition 3.3 is
done.

2

4 Proof of Theorem 1.2

We are now in position to prove Theorem 1.2.

Proof of the third point (case H < 1/4). Using exactly the same proof as that contained
in the fourth point of Remark 1.3, we have that, for any H ∈ (0, 3/4):

n2H−1/2
n−1∑

k=0

∆B
(1)
k/n∆B

(2)
k/n

Law−→
n→∞

N (0, σ2
H ), (4.21)

with σH 6= 0. But, see (1.7), the existence of
∫ t
0 Bs · dB⋆Bs would imply in particular that

∑n−1
k=0 ∆B

(1)
k/n∆B

(2)
k/n converges in law as n → ∞, which is in contradiction with (4.21) for H < 1/4.

Therefore, the proof of the third point is done.

Proof of the second point (case H = 1/4). For the simplicity of the exposition, we as-
sume that t = 1, the general case being of course similar up to cumbersome notations. For any
a, b, c, d ∈ R, by the classical Taylor formula, we can expand f(b, d) as (compare with (1.7)):

f(a, c) + ∂1f(a, c)(b − a) + ∂2f(a, c)(d − c) +
1

2
∂11f(a, c)(b − a)2 +

1

2
∂22f(a, c)(d − c)2

+
1

6
∂111f(a, c)(b − a)3 +

1

6
∂222f(a, c)(d − c)3 +

1

24
∂1111f(a, c)(b − a)4 +

1

24
∂2222f(a, c)(d − c)4

+ ∂12f(a, c)(b − a)(d − c) +
1

2
∂112f(a, c)(b − a)2(d − c) +

1

2
∂122f(a, c)(b − a)(d − c)2

+
1

6
∂1112f(a, c)(b − a)3(d − c) +

1

4
∂1122f(a, c)(b − a)2(d − c)2 +

1

6
∂1222f(a, c)(b − a)(d − c)3

(4.22)

plus a remainder term. Here, as usual, the notation ∂1...12...2f (where the index 1 is repeated
k times and the index 2 is repeated l times) means that f is differentiated k times w.r.t. the
first component and l times w.r.t. the second one. Combining (4.22) with the following identity,
available for any h : R → R belonging in C 4:

h′(a)(b − a) +
1

2
h′′(a)(b − a)2 +

1

6
h′′′(a)(b − a)3 +

1

24
h′′′′(a)(b − a)4

=
h′(a) + h′(b)

2
(b − a) − 1

12
h′′′(a)(b − a)3 − 1

24
h′′′′(a)(b − a)4 + some remainder
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we get that f(b, d) can also be expanded as

f(a, c) +
1

2

(
∂1f(a, c) + ∂1f(b, c)

)
(b − a) − 1

12
∂111f(a, c)(b − a)3 − 1

24
∂1111f(a, c)(b − a)4

+
1

2

(
∂2f(a, c) + ∂2f(a, d)

)
(d − c) − 1

12
∂222f(a, c)(d − c)3 − 1

24
∂2222f(a, c)(d − c)4

+ ∂12f(a, c)(b − a)(d − c) +
1

2
∂112f(a, c)(b − a)2(d − c) +

1

2
∂122f(a, c)(b − a)(d − c)2

+
1

6
∂1112f(a, c)(b − a)3(d − c) +

1

4
∂1122f(a, c)(b − a)2(d − c)2 +

1

6
∂1222f(a, c)(b − a)(d − c)3

(4.23)

plus a remainder term.

By setting a = B
(1)
k/n, b = B

(1)
(k+1)/n, c = B

(2)
k/n and d = B

(2)
(k+1)/n in (4.23), and by suming the

obtained expression for k over 0, . . . , n − 1, we deduce that the conclusion in Theorem 1.2 is a
consequence of the following convergences:

S(1)
n :=

n−1∑

k=0

∂111f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)3 L2

−→
n→∞

−3

2

∫ 1

0
∂1111f(B(1)

s , B(2)
s )ds (4.24)

S(2)
n :=

n−1∑

k=0

∂1111f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)4 L2

−→
n→∞

3

∫ 1

0
∂1111f(B(1)

s , B(2)
s )ds (4.25)

S(3)
n :=

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(2)
k/n

)3 L2

−→
n→∞

−3

2

∫ 1

0
∂2222f(B(1)

s , B(2)
s )ds (4.26)

S(4)
n :=

n−1∑

k=0

∂2222f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(2)
k/n

)4 L2

−→
n→∞

3

∫ 1

0
∂2222f(B(1)

s , B(2)
s )ds (4.27)

S(5)
n :=

n−1∑

k=0

∂12f(B
(1)
k/n, B

(2)
k/n)∆B

(1)
k/n ∆B

(2)
k/n

stably−→
n→∞

σ1/4√
2

∫ 1

0
∂12f(B(1)

s , B(2)
s )dWs

+
1

4

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds (4.28)

S(6)
n :=

n−1∑

k=0

∂112f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)2
∆B

(2)
k/n

L2

−→
n→∞

−1

2

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds (4.29)

S(7)
n :=

n−1∑

k=0

∂122f(B
(1)
k/n, B

(2)
k/n)∆B

(1)
k/n

(
∆B

(2)
k/n

)2 L2

−→
n→∞

−1

2

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds (4.30)

S(8)
n :=

n−1∑

k=0

∂1122f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)2 (
∆B

(2)
k/n

)2 L2

−→
n→∞

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds (4.31)

S(9)
n :=

n−1∑

k=0

∂1112f(B
(1)
k/n, B

(2)
k/n)

(
∆B

(1)
k/n

)3
∆B

(2)
k/n

Prob−→
n→∞

0 (4.32)

S(10)
n :=

n−1∑

k=0

∂1222f(B
(1)
k/n, B

(2)
k/n)∆B

(1)
k/n

(
∆B

(2)
k/n

)3 Prob−→
n→∞

0. (4.33)
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Note that the term corresponding to the remainder term in (4.23) converges in probability to
zero due to the fact that B has a finite quartic variation.

Proof of (4.24), (4.26), (4.29) and (4.30). By Lemma 3.2 with q = 3 and α = 0, and by using
the basic fact that

(
∆B

(2)
k/n

)3
= n−3/4 H3(n

1/4∆B
(2)
k/n) +

3√
n

∆B
(2)
k/n, (4.34)

we immediately see that (4.26) is a consequence of the following convergence:

1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n

L2

−→
n→∞

−1

2

∫ 1

0
∂2222f(B(1)

s , B(2)
s )ds. (4.35)

So, let us prove (4.35). We have, on one hand:

E

∣∣∣∣∣
1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n

∣∣∣∣∣

2

=
1

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n) ∂222f(B

(1)
l/n, B

(2)
l/n)∆B

(2)
k/n ∆B

(2)
l/n

)

=
1

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n) ∂222f(B

(1)
l/n, B

(2)
l/n) I

(2)
2 (δk/n ⊗ δl/n)

)

+
1

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n) ∂222f(B

(1)
l/n, B

(2)
l/n)
)
〈δk/n, δl/n〉H

=
1

n

n−1∑

k,l=0

E
(
∂22222f(B

(1)
k/n, B

(2)
k/n) ∂222f(B

(1)
l/n, B

(2)
l/n)
)
〈εk/n, δk/n〉H〈εk/n, δl/n〉H

+
1

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n) ∂2222f(B

(1)
l/n, B

(2)
l/n)
)
〈εk/n, δk/n〉H〈εl/n, δl/n〉H

+
1

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n) ∂2222f(B

(1)
l/n, B

(2)
l/n)
)
〈εl/n, δk/n〉H〈εk/n, δl/n〉H

+
1

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n) ∂22222f(B

(1)
l/n, B

(2)
l/n)
)
〈εl/n, δk/n〉H〈εl/n, δl/n〉H

+
1

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n) ∂222f(B

(1)
l/n, B

(2)
l/n)
)
〈δk/n, δl/n〉H

= a(n) + b(n) + c(n) + d(n) + e(n).
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Using Lemma 3.1 (i) and (ii), we have that a(n), c(n) and d(n) tends to zero as n → ∞. Using
Lemma 3.1 (iii), we have that e(n) tends to zero as n → ∞. Finally, observe that

b(n) =
1

4n2

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n) ∂2222f(B

(1)
l/n, B

(2)
l/n)
)

− 1

2n
√

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n) ∂2222f(B

(1)
l/n, B

(2)
l/n)
)(

〈εl/n, δl/n〉H +
1

2
√

n

)

+
1

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n) ∂2222f(B

(1)
l/n, B

(2)
l/n)
)(

〈εk/n, δk/n〉H +
1

2
√

n

)
〈εl/n, δl/n〉H.

Therefore, using Lemma 3.1 (i) and (iv), we have

E

∣∣∣∣∣
1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n

∣∣∣∣∣

2

= E

∣∣∣∣∣
1

2n

n−1∑

k=0

∂2222f(B
(1)
k/n, B

(2)
k/n)

∣∣∣∣∣

2

+ o(1). (4.36)

On the other hand, we have

E

(
1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n × −1

2n

n−1∑

l=0

∂2222f(B
(1)
l/n, B

(2)
l/n)

)

= − 1

2n
√

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n

, B
(2)
k/n

)∂2222f(B
(1)
l/n

, B
(2)
l/n

)∆B
(2)
k/n

)

= − 1

2n
√

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n

, B
(2)
k/n

)∂2222f(B
(1)
l/n

, B
(2)
l/n

)
)
〈εk/n, δk/n〉H

− 1

2n
√

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n)∂22222f(B

(1)
l/n, B

(2)
l/n)
)
〈εl/n, δk/n〉H

=
1

4n2

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n)∂2222f(B

(1)
l/n, B

(2)
l/n)
)

− 1

2n
√

n

n−1∑

k,l=0

E
(
∂2222f(B

(1)
k/n, B

(2)
k/n)∂2222f(B

(1)
l/n, B

(2)
l/n)
) (

〈εk/n, δk/n〉H +
1

2
√

n

)

− 1

2n
√

n

n−1∑

k,l=0

E
(
∂222f(B

(1)
k/n, B

(2)
k/n)∂22222f(B

(1)
l/n, B

(2)
l/n)
)
〈εl/n, δk/n〉H

We immediately have that the second (see Lemma 3.1 (iv)) and the third (see Lemma 3.1 (ii))
terms in the previous expression tends to zero as n → ∞. That is

E

(
1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n × −1

2n

n−1∑

l=0

∂2222f(B
(1)
l/n, B

(2)
l/n)

)

= E

∣∣∣∣∣
1

2n

n−1∑

k=0

∂2222f(B
(1)
k/n, B

(2)
k/n)

∣∣∣∣∣

2

+ o(1). (4.37)
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We have proved, see (4.36) and (4.37), that

E

∣∣∣∣∣
1√
n

n−1∑

k=0

∂222f(B
(1)
k/n, B

(2)
k/n)∆B

(2)
k/n +

1

2n

n−1∑

k=0

∂2222f(B
(1)
k/n, B

(2)
k/n)

∣∣∣∣∣

2

−→
n→∞

0.

This implies (4.35).
The proof of (4.24) follows directly from (4.26) by interverting the roles played by B(1) and

B(2). On the other hand, by combining Lemma 3.2 with the following basic identity:

(
∆B

(2)
k/n

)2
=

1√
n

H2(n
1/4∆B

(2)
k/n) +

1√
n

,

we see that (4.30) is also a direct consequence of (4.35). Finally, (4.29) is obtained from (4.30)
by interverting the roles played by B(1) and B(2).

Proof of (4.25), (4.27) and (4.31). By combining Lemma 3.2 with the identity

(
∆B

(1)
k/n

)4
=

1

n
H4(n

1/4∆B
(1)
k/n) +

6

n
H2(n

1/4∆B
(1)
k/n) +

3

n
,

we see that (4.27) is easily obtained through a Riemann sum argument. We can use the same
arguments in order to prove (4.25). Finally, to obtain (4.31), it suffices to combine Lemma 3.2
with the identity

(
∆B

(1)
k/n

)2(
∆B

(2)
k/n

)2
=

1

n
+

1√
n

(
∆B

(1)
k/n

)2
H2(n

1/4∆B
(2)
k/n

) +
1

n
H2(n

1/4∆B
(1)
k/n

).

Proof of (4.32) and (4.33). We only prove (4.33), the proof of (4.32) being obtained from
(4.33) by interverting the roles played by B(1) and B(2). By combining (4.34) with Lemma 3.2,
it suffices to prove that

1√
n

n−1∑

k=0

∂1222f(B
(1)
k/n

, B
(2)
k/n

)∆B
(1)
k/n

∆B
(2)
k/n

Prob−→
n→∞

0.

But this last convergence follows directly from Lemma 3.3. Therefore, the proof of (4.33) is done.

Proof of (4.28). We combine Proposition 3.3 with the idea developed in the third comment
that we have addressed just after the statement of Theorem 1.2. Indeed, we have

n−1∑

k=0

∂12f
(
B

(1)
k/n, B

(2)
k/n

)
∆B

(1)
k/n∆B

(2)
k/n

=
1

2
√

n

n−1∑

k=0

∂12f
(βk/n + β̃k/n√

2
,
βk/n − β̃k/n√

2

) (√
n
(
∆βk/n

)2 − 1
)

− 1

2
√

n

n−1∑

k=0

∂12f
(βk/n + β̃k/n√

2
,
βk/n − β̃k/n√

2

)(√
n
(
∆β̃k/n

)2 − 1
)
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for β = (B(1) + B(2))/
√

2 and β̃ = (B(1) − B(2))/
√

2. Note that (β, β̃) is also a 2D fractional
Brownian motion of Hurst index 1/4. Thus, using Proposition 3.3 with g(x, y) = g̃(x, y) =

f
(

x+y√
2

, x−y√
2

)
, we obtain that

n−1∑

k=0

∂12f
(
B

(1)
k/n, B

(2)
k/n

)
∆B

(1)
k/n∆B

(2)
k/n

stably−→
n→∞

σ1/4

2

∫ 1

0
∂12f(B(1)

s , B(2)
s )d(W − W̃ )s +

1

4

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds

Law
=

σ1/4√
2

∫ 1

0
∂12f(B(1)

s , B(2)
s )dWs +

1

4

∫ 1

0
∂1122f(B(1)

s , B(2)
s )ds,

for (W,W̃ ) a 2D standard Brownian motion independent of (β, β̃). The proof of (4.28) is done.

Proof of the first point (case H > 1/4). This proof can be done by following exactly the
same strategy than in the step above. The only difference is that, using a version of Lemma 3.2
together with computations similar to that allowing to obtain (4.35), the limits in (4.24)–(4.31)
are, here, all equal to zero (for the sake of simplicity, the technical details are left to the reader).
Therefore, we deduce (1.2) by using (4.23).

2
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