
HAL Id: hal-00287967
https://hal.science/hal-00287967

Submitted on 20 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

”Libre” software : turning fads into institutions?
Jean-Michel Dalle, Nicolas Jullien

To cite this version:
Jean-Michel Dalle, Nicolas Jullien. ”Libre” software : turning fads into institutions?. Research Policy,
2003, 32 (1), pp.1-11. �hal-00287967�

https://hal.science/hal-00287967
https://hal.archives-ouvertes.fr

‘LIBRE’ SOFTWARE: TURNING FADS INTO INSTITUTIONS?

Jean-Michel Dalle
Sorbonne Université

jean-michel.dalle@sorbonne-universite.fr

Nicolas Jullien
Telecom Bretagne & ICI

Technopole de Brest Iroise - F-29285 Brest Cedex
Tel: (33) (0)298001245 - Fax: (33) (0)298001173
e-mail: < Nicolas.Jullien@telecom-bretagne.eu>

This version, September 2001: forthcoming, Research Policy.

ACKOWLEDGEMENTS: The authors wish to thank Godefroy Dang Nguyen, Laurent
Kott, Thierry Pénard, Morris Teubal, Jean-Benoît Zimmermann who provided helpful
comments on earlier versions of this article. Michel Callon and an anonymous referee
also significantly helped to shape this version.

2

ABSTRACT: The article presents an economic analysis of Libre software and of
its sustainability as a new economic model for software. We underline the role of
Libre software development communities and analyze incentives of both kernel
and obscure developers. We emphasize the role of the so-called ‘public’ licenses
to provide an appropriate institutional framework. We show that several features
of Libre software also allow it to improve faster than proprietary software, and
therefore to achieve strong market performance when competing against existing
standards, even when proprietary software producers react. We illustrate our
point using a simple local and global interaction model to study the
technological competition between Linux and Windows on the server operating
system market. We finally argue that Libre software could turn from a fad into
an efficient economic institution for instance to correct inefficiencies due to
network externalities, if sufficient initial momentum could be created through
public intervention, then without the help of feelings such as Microsoft-phobia.

KEY WORDS: Libre software, Linux, Community, Incentives, Network Effects,
Network Externalities, Technological Competition.

1. ‘Libre’ software

What should we call software distributed with its sources and with the right to
modify and redistribute it as long as it retains the same characteristics, e.g.
software like Linux, the emerging new star in the operating systems (OS)
market? Such software is often referred to as ‘open-source’ software or as ‘free’
software, the first expression being now somewhat more frequent than the
second. Unfortunately, both expressions are misleading and somewhat
inadequate. First, Linux is not necessarily free, and is certainly not going to be
free for most users, as distributions of Linux are now being sold at classical
retail stores by various companies (Red Hat, Correll, Süse, etc.) while many
other companies are selling costly services to Linux users for them to truly
benefit from their new OS. Second, there are many examples of open-source
software which are indeed proprietary and which certainly does not qualify as
being the kind of software which we are considering, since openness of sources
does not guarantee that it can be modified by anyone, and certainly not that
anyone is allowed to ‘freely’ redistribute it. Linux is neither ‘free’ software nor
‘open-source’ software: following a recent report to the European Commission,
we would like to suggest calling Linux and its fellows ‘Libre’ software (with a
capital L to avoid misunderstanding). in French, ‘Libre’ refers to liberty and to
freedom and not to gratuity1. Libre software is software distributed with its
sources and with the right to modify it and to redistribute it as soon as it
remains Libre.

So Linux is a piece of Libre software, and Libre software is gradually appearing
as one of the most fashionable and possibly one of the most interesting new
economic models in today's software industry. It indeed allows users to co-
operate – essentially through the Internet – by making most of the time marginal
improvements to a given piece of software before it is redistributed once
modified. In this way, each user rapidly benefits from innovations brought by all
others. Libre software is thus a very seductive concept, but all the interest it has
attracted has not only been theoretical since it has also much to do with pure
commercial success. Linux, the most well-known example of Libre software, has
clearly appeared as a major challenge to Microsoft OS’s for servers (NT and now
2000): it is reported to run more than 25% of Internet servers2 and its
commercial shipments are seen by some analysts to be growing faster than any
other operating software (25% vs. 10% per year3). Meanwhile, the web server
“Apache” is leading its market with no less than a 60% market share4 -, and the
mail server “Sendmail” unambiguously dominates its own market, not forgetting
many other examples.

Such success is challenging for economists, and specially so since Libre software
was truly born more as a fad –rooted in anti-proprietary software and more
specifically in anti-Microsoft and anti-Windows attitudes – than as a sustainable

1 It would certainly not be the first time that either English or French borrows words
from each other’s language when they are clearly more appropriate.
2 http://leb.net/hzo/ioscount/
3 http://www.idc.com/Data/software/content/SW033199PR.htm
4 http://www.netcraft.co.uk/Survey/

economic model or as a relevant economic institution. Here comes then the
major economic question this article is attempting to address: will Libre software
be able to turn from a fad into an economic model and an economic institution?
We believe the answer is twofold.

First, we have to understand how Libre software ‘works’, which notably refers to
the incentives issue (section 2). It is indeed extremely puzzling for classical
economic theory that developers choose to participate in Libre software
development whereas they seemingly get no reward from doing so. In this
context, we argue here that several incentives structures co-exist and apply
differently to heterogeneous developers, namely, to kernel developers or to
obscure developers. But incentives are only part of the Libre software issue, and
might indeed be the simplest part of the economics of open-source and Libre
software. We argue here that Libre software depends upon a community of
heterogeneous developers with its associated institutions: specially, no
appropriate incentives would exist without a credible commitment framework as
it is provided by “public” licenses, like the General Public License (GPL), that
guarantee that Libre software protected by GPL will always remain Libre while it
is gradually diffused and improved. According to us, Libre software points at a
new economic and institutional model for creative (epistemic) communities, which
should be compared both with patents and with the conventions of Open
Science in the scientific community.

Second, Libre software not only ‘works’, but also works well, and we do not
either have any satisfactory explanation yet for Libre software market
performance (section 3), although such performance is both critical for the
sustainability of the associated economic model and extremely puzzling for an
economist, as Lerner and Tirole (2000) themselves recognize5. We argue here
that Libre software improves faster than proprietary software due to several
characteristic factors of the Libre software development model, namely higher
increasing returns associated with adoptions by users who are also innovators,
and a more efficient redistribution of these returns back to users through faster
and more frequent release strategies. Taking as an example the battle between
Linux and Windows on the market for server operating systems, we show with a
simple stochastic interaction competition model that this ‘faster improvement’
property is a good candidate to explain why Libre software is able to defeat
dominant proprietary standards, even when proprietary software competitors
react quickly and strongly, conditional on sufficient initial momentum provided
for instance by proselytic behaviors.

Both aspects of the Libre software economic model are finally relevant to
question the sustainability of the Libre software development model. To be
sustainable, Libre software clearly needs creative communities with both kernel
and obscure developers. But to be sustainable, Libre software also needs initial
momentum. If Libre software was proved to improve collective welfare, for
instance by counterbalancing monopoly trends in markets dominated by

5 “Aspects of the future of open source development process, however, remain
somewhat difficult to predict with ‘off-the-shelf’ economic models.” (Lerner & Tirole, 2000,
p. 1).

network effects, then some kind of public intervention might be relevant to help
create Libre software communities and to recreate initial momentum by means
other than pure cultural feelings. To sum up, we conclude that Libre software
might very well be turning into an efficient institution, and that further research
is needed, and obviously fairly soon, to determine where and when – for which
kind of software, notably – such an institution would be efficient and should be
encouraged, and when it should not.

2. The economics of Libre software6 communities

2.1 Incentives: simple explanations

Why do Libre software developers disclose proprietary information i.e. why do
they contribute for free to Libre software development? A simple explanation lies
in reputation effects and associated expected gains, or else in signaling effects
and in career concerns (Dalle & Jullien, 2000; Lerner & Tirole, 2000). Both
explanations are indeed similar and essentially build upon the existence of what
we have called ‘ancillary business companies’, i.e. companies providing services
to Libre software users, be they individuals or organizations, which are not
directly supported by the development community (like commercial packaging,
after-sale support or simply maintenance and customization of installed
systems, etc.).

These companies are now very common: at least a few of them exist for almost
all major Libre software, most of which have been created by or in association
with kernel Libre software developers (such as Linus Torvalds and Alan Cox for
the Red Hat company). They very regularly offer job and even equity to kernel
developers and therefore contribute to creating rational expectations about the
ability of kernel developers to transform into profit their reputation acquired
while contributing to Libre software development: lines of code are « signed » by
their authors, and knowledge of who did what is widely accessible in the
development community.

Although such incentives are targeted at kernel developers, they also partly
apply to obscure developers. Contributing to obscure aspects of software

6 We limit our inquiries here to Libre software, although several attempts – largely
unsuccessful for now – have been made to apply a Libre model to other types of goods.
The codified nature of software (Cowan & Foray, 1997) clearly is a key element in this
respect as it allows for actual cumulative work, a key condition of the Libre model.
Another point has to do with the fact that software has extremely low production costs,
contrary to almost all other economic goods which on the contrary imply significant
investments to be produced. These investments would be out of reach of any Libre
community, and would probably be also rejected by business firms since the Libre model
also implies that they would not be protected by intellectual property in doing so,
therefore implying weak barriers to entry. Although further studies are needed here, we
conjecture that the Libre model has only limited potential applications outside of the
software industry.

development can indeed open the way for subsequent kernel developments,
either in the same or in another Libre software community, while contributions,
be they small, directly represent a positive signal for many job applications.
Kernel and obscure developers belong to the same epistemic community: they
share a common language and a common goal, which is not in the first place to
improve their own skills but essentially to contribute to a collective piece of work
(Cohendet & al., 2000). However, associated profit expectations are to be
relatively weak for obscure developers as there is clearly a relatively poor
reputation associated with the programming of hundreds of lines of relatively
uninteresting code.

But for obscure developers, a weak expected reward associated with disclosure
is counterbalanced by low creation costs, since we are considering innovative
users (Von Hippel, 1988) who develop obscure pieces of code for their own
interest, and also by a very low reward associated with appropriation (non-
disclosure) as obscure work has indeed almost no ‘tradable’ value. Furthermore,
similar solutions are also certainly to be proposed by other members of the
community, generally making them, or at least some of them, better off if they
disclose first7. Think for instance of a developer who happens to use a rather
rare printer: considering that he is able to develop the associated Linux driver,
or to adapt an existing driver whose source code is in fact open and available,
why should he not disclose his work? Considering further that they are
numerous such developers, he or she is nearly sure that at least one of them will
contribute to that particular piece of Libre software development. And there are,
indeed, many different such contributions in major Libre software communities
among which the best is selected (hence improving efficiency further).

2.2 Incentives: less simple explanations

These two explanations, simple as they are, also rely on the existence of credible
commitment mechanisms, provided by a key feature of Libre software i.e. the so-
called public licenses or GPL (general public licenses), the best known of which
is the GNU license8, generally referred to as the « CopyLeft » protection scheme.
Incentives to disclose knowledge would indeed obviously be much weaker if
someone was able to appropriate the associated reward, be it through profit or
through reputation. All Libre software developers are reasonably sure that their
CopyLeft protected work is to remain non-proprietary, as CopyLeft means that it
is to be freely read, modified and redistributed but it certainly does not allow
anyone to use it in any proprietary closed form. GPL licenses guarantee that
Libre software is actually not only open-source, but precisely Libre.

In fact, economic creativity, being highly subject to positive externalities,
generally implies some kind of an associated institutional and/or conventional
enforcement mechanism: since knowledge disclosure is a key condition of
further knowledge improvement – knowledge is essentially built upon previous

7 See also Harhoff, Henkel & Von Hippel (2000) and Lakhani & Von Hippel (2000) for
other related inquiries.
8 http://www.fsf.org/copyleft/. GNU is a « recursive » acronym for GNU’s Not Unix.

knowledge –, the social value of creating and disclosing knowledge is
significantly higher than its individually appropriable value and there is a need
for well-adapted institutional and/or conventional devices, which of course often
rely on customized property regimes (Romer, 1993; David & Foray, 1995; Dalle,
2000). This is both the case for patents and for the scientific community, to
name but two major examples. Patents as an institutional device correct this by
granting patentees – who have to publish their discovery – with temporary
monopoly power, with possible enforcement by law courts. In the scientific
community, a similar mechanism is provided by conventional means: reputation
is granted to scientists who happen to be the first to publish results (Dasgupta &
David, 1994). Historically closer to the scientific community (Jullien, 1999), Libre
software fundamentally appears as a kind of an anti-patent device, as property is
not granted but denied. Denying appropriation paradoxically creates incentives
towards disclosure as induced spillovers will neither be appropriated by the
inventor nor by others.

Patents Open-Science Libre software

Creation and
Disclosure

Incentives Monopoly power Reputation by
peer recognition

Reputation,
signaling,
career concerns
and profit

Enforcement Law courts via
infringement
trials

Conventional,
self regulation
of the research
community

CopyLeft and
GPL licenses as
anti-patent

devices9

Distribution Devices for
information
exchange and
pooling

Patent databases
maintained by
public agencies

Scientific
journals,
Conferences,
email

Internet (email,
mailing lists,
web sites,
newsgroups)

Table 1: Different institutional devices dealing with creativity.

Public licenses have proved to be an appropriate tool for transforming
communities of practices – of users – into epistemic – creative – communities
(Cohendet, Créplet & Dupouët, 2000). As an immediate corollary – and as an
indirect proof of what we are stating here –, we are also provided with a
straightforward explanation for the difficulties encountered by business firms,
such as Netscape, when they try to implement open-source and/or Libre
features in their previously proprietary development model. They have mainly
been unsuccessful in motivating large and creative enough Libre software
communities: even when they hire kernel developers, or manage to be publicly
supported by a few of them, they are unable to attract sufficient numbers of
other developers, notably obscure ones, as long as they try to cling to not-

9 Although there has been no trial yet, and although some aspects of public licenses
remain questionable: see the work of Mélanie Clément-Fontaine at http://crao.net/gpl.
One of the major questions has to do with the necessity of public involvement, for
instance to secure public licenses by making sure that existing laws properly allow for the
existence and sustainability of such licenses. As for now, the CopyLeft scheme has
emerged as an alternative institution without any public intervention.

completely-public, and therefore somewhat-still-proprietary, licenses. Many such
attempts have aborted due to inappropriate licensing schemes, most of the time
due to rational doubts of potential developers about the credibility of the
commitment by the applicant firm to a Libre software development model. This
is indeed an important lesson for all proprietary software producers interested in
fostering Libre software processes associated with some of their products10.

This last issue is all the more important as hybrid organizations between Libre
software communities and business firms is a candidate as an explanation for
the ever-increasing efficiency of Libre software. Firms essentially deal with what
Libre software communities cannot do – they sort of ‘supplement’ Libre software
communities – while earning money from selling associated services. They
notably contribute to the development of more numerous obscure parts of Libre
software and therefore considerably improve the user-friendliness of Libre
software products. They also support a better coordination of Libre software
projects: as a matter of fact, although many Libre software communities have
been able to implement quite amazing organizational schemes – this is notably
the case for the Linux community –, there is still some doubt about their general
ability in this respect.

In any case, it should be noted as a conclusion to this section that no reference
has been made here to anti-Microsoft feelings or even to purely cultural issues
regarding the involvement of developers into Libre software communities. In fact,
Linux is just one particular example of Libre software, and recent and older
Libre software seems to fit even better into the framework we have outlined here.
The Libre software model therefore appears as perfectly sustainable as far as
incentives are concerned, and we have now to tackle the other issue, about Libre
software market performances against proprietary software, not only because
the future economic role of Libre software will also depend on its ability to win
competitive situations against proprietary products, but also very simply
because incentives to be part of a Libre software community considerably
depend on positive expectations about Libre software market performance.

3. An assessment of Libre software efficiency and market performance

3.1 Libre software improves faster

10 As a matter of fact, the ability of would-be ancillary companies to deal with Libre
software communities is to be a key condition of their success: they have to deal with a
community of « geeks », to quote a word now fashionable even among geeks themselves.
This topic was indeed listed among main risk factors in a recent Red Hat IPO prospectus:
« Negative reaction within the open source community to our business strategy could
harm our reputation and business []. [Some] have suggested that [...] we are trying to
dominate the market for Linux-based operating systems and the open source community
[...]. This type of reaction, if widely [...], could harm our reputation, diminish the Red Hat
brand and result in decreased revenue. » Attracting both kernel and obscure developers,
with associated dynamic club effects, is indeed a key issue here, and several firms now
propose consultancy and technology services to businesses willing to do so.

As Eric S. Raymond11, a major Libre software advocate, once put it: « From
nearly the beginning, [Linux] was rather casually hacked on by huge numbers of
volunteers coordinating only through the Internet. Quality was maintained [... by
the] strategy of releasing every week and getting feedback from hundreds of
users within days. » As we have already outlined, the efficiency of Libre software
indeed comes from the fact that it is supported by a community which benefits
from extremely low development costs and from powerful communication
technologies thanks the Internet, from emails to mailing lists and to Web
servers. Innovation is thus easily decentralized (Cohen, 1983) and numerous
developers are able to push and publish their ideas while only the best are
selected, a feature which proprietary software producers have difficulties in
coping with. Moreover, Libre software innovators also being users (Von Hippel,
1988), Libre software programs are developed to cope with problems which users
really face, thus improving considerably their efficiency through much quicker
and better development feed-back. As a comparison, proprietary software
producers are instead far removed from their clients, and typically have to
organize huge marketing studies to try to decipher their needs.

Still following Eric S. Raymond, the Libre model is not only critical for Libre
software improvement, i.e. for bug fixing, it has also other considerable
consequences on the way newer versions are released: another major difference
between Libre and proprietary software. Proprietary software users usually have
to pay for newer, although sometimes only slightly improved, versions, and often
have to wait for a long time before appropriate patches are released to fix even
important bugs. On the contrary, Libre software improvements are regularly and
rapidly accessible through the Internet. To summarize, lower development costs
and better and quicker feed-back from a community of developers also result in
very different release strategies. Therefore the pace of improvement of both
proprietary and Libre software will be critically different not only because
improvements cost less and are more efficient, but also because they are made
accessible to users in more efficient ways.

To put it differently, Libre software generally appears as a more efficient way
than proprietary software of dealing with positive external economies associated
with technological development and diffusion. The result is faster improvement
of Libre software as compared to proprietary software. The Libre model allows a
more extensive redistribution to consumers of increasing returns associated with
technological adoption not only because its diffusion generates higher increasing
returns per se, but also because they are not appropriated by producer through
opportunistic release strategies. This should remind us of a black box within
Arthur’s (1989) classical model of technological competition, according to which
increasing returns of adoption are sort of assumed to be re-invested in
technological improvement by producers, i.e. in a way redistributed to
consumers. In fact, proprietary software producers choose between profits and
investments in further improvements of their products. They select release
strategies according to their market power such that they help them secure
higher margins and recurrent income, even when this is not satisfactory for

11 http ://www.tuxedo.org/~esr/

consumers12. In other words, the rate of improvement of the utility of a
technology depends on the extent of its diffusion but is also influenced by
choices of producers between alternative release strategies: as for Libre software,
it will be structurally higher than for proprietary software.

3.2. Linux vs. Windows
This last aspect is of course of considerable importance for the assessment of
Libre software market performance in competitive situations. To further
illustrate this point, we now turn to the competition between Linux and
Windows in the server operating systems market. Apart from being fashionable,
this situation is interesting for at least three main reasons: first of all, it
concerns operating systems which are both at the core of any computer and
highly subject to network effects associated with compatibility issues; secondly,
it is a situation where a new entrant – Linux – is trying to invade a market
already dominated by an existing standard – Windows –; and thirdly, Linux is
also subject to strong positive local externalities due to the proselytism of Linux
adopters: there are for instance numerous associations such as Lugs (Linux
Users Groups) who organize regular events to promote its use, while Linux users
generally tend to actively promote its use and to publicize its quality and interest
to other potential users in their “neighborhoods” i.e. among their acquaintances.
As a matter of fact, the ongoing success of Linux – which is continuously and
consistently gaining market shares, as we have mentioned above – would be very
difficult to assess if we were only to consider global positive externalities, even
under the hypothesis that Libre software improves faster than proprietary
software, as Arthur and followers13 have shown.

We therefore turn to a local and global interaction model. We consider a
population of heterogeneous potential adopters with different decision rules.
Depending on the adopters, quality, performance (frequency of errors),
availability and variety of dedicated software, easiness of installation and
comfort of use, direct and indirect costs (buying, training, maintenance,
upgrades, dedicated software), will indeed be more or less relevant parameters to
evaluate the utility of alternative software solutions. To give but one example,
such valuations will indeed most certainly be very different from a computer
hacker to an unskilled computer user in a major company. This is why we turn
to statistical analysis, accounting for the statistical propensity of a randomly
chosen given adopter to adopt either one of the two competing technologies.

Yet, individual valuations are also highly sensitive to both local and global
externalities. As is now well-known, global characteristics of products, like
quality, performance, availability and variety of dedicated software, price,
depend more or less directly on their diffusion level. As a consequence, the

12 Not to speak of monopolists’ strategies.
13 To put it briefly, Arthur’s model neglects local interactions whereas technological
adoption generally depends also on the previous choices of a subset of local ‘relevant’
neighbors (David, 1988). See e.g. Durlauf (1993), David, Dalle & Foray (1998), Dalle
(1995, 1997), Kirman (1993) for various modeling exercises using local interactions.

statistical propensity of a random adopter to choose a given technology will also
be a function of the market share of this technology and even more so in the
case of network technologies for which compatibility issues play a major role.
These compatibility and externality issues are also specially prominent within
the limited set of other adopters with whom a given adopter often interacts, i.e.
locally, a specially important feature for operating systems due to regular file
exchange among users.

What we therefore have to study is the statistical propensity of potential
adopters a given population to adopt each technology conditional on “previous”
global and local adoption patterns. We consider here the following statistical
demand function14:

 
     

Prob Agent A adopts Linux
th a x x b X X 1

2
l W l W


    

where:

• the hyperbolic tangent function (and also adding 1 and dividing by 2) here is
just to normalize probabilities of adtoption between –1 and +1;

• xl (resp. xw) is the proportion of agent A's neighbors who have adopted Linux

(resp. Windows);

• Xl (resp. Xw) is the proportion of Linux (resp. Windows) adopters in the entire

population;

• a estimates preference for standardization: the greater a, the more potential
adopters are driven towards standardization, for instance because of
compatibility issues;

• b estimates the statistical preference for global vs. local standardization.

Clearly, both a and b characterize technologies and their associated network
effects. Typically, both a and b will be high for operating systems such as Linux
and Windows. In the limit case, a technology with no associated externalities
would correspond to a = 0, which would result in a uniform probability of ½ to
adopt either technology, not depending any more on local and global
externalities.

•  estimates the relative influence of previous local Windows adoptions as
compared to previous local Linux adoptions;

•  estimates the relative influence of previous global Windows adoptions as
compared to previous global Linux adoptions.

As we have outlined above, both local and global effects are different for Libre
and proprietary software: they will both be stronger for Libre software. Global
externalities are stronger for Linux since Linux (Libre software) improves more
quickly than Windows (proprietary software), as evolutions of Linux are
constantly accessible on-line and for free while Windows users have, except for

14 See also Dalle (1998ab).

important bugs, to wait for years until a new, not completely compatible version
is available, which they have also to buy15. We consider here that there are no
differences in access conditions for Windows and Linux, thanks to the Internet
and to ancillary business which distribute Linux packages to classical retailers.
And local externalities are also stronger since Linux users are more prone to
proselytism than Windows users, as Linux users advertise the quality of their
technology, while also stressing all the problems experienced by Windows.
Therefore:

 < 1 ;  < 1

A random potential adopter will adopt Linux more frequently than Windows
when the number of previous adopters of Linux and Windows is the same in its
neighborhood (or globally). To put it differently, the propensity to adopt Linux
will be higher than the propensity to adopt Windows with a similar level of either
local or global positive externalities.

3.3. Results

Each potential adopter is associated with a local neighborhood (a subset of other
potential adopters): we assume here for tractability reasons that neighborhoods
are organized as in a 2-dimensional torus - the « interaction structure » -, i.e.
that all adopters have 4 local relevant neighbors16. We simulate technological
trajectories by choosing a random adopter at discrete times, i.e. a position on the
interaction structure and an adoption behavior given local and global
environment, according to the statistical demand function outlined above: we
repeat the algorithm up to 100 000 times and we measure the (possibly infinite)
time needed for Linux to reach a 70% market share. Initial conditions are a
uniform adoption of Windows17. We repeat the entire process for each  and 
between 0 and 1 with step 0.1. Figure 1 below gives simulation results for a = 2
and b = 1, which seem appropriate values for a technology highly sensitive to
standardization phenomena such as operating systems.

15 Microsoft, being a monopolist, has specially low incentives to re-invest increasing
returns of adoption: an explanation perhaps for a somewhat slower improvement rate and
for more opportunistic release strategies than for other software producers.
16 Here for simulation simplicity a 30x30 2-dimensional torus (900 potential adopters).
17 A further improvement if compared with Arthur’s (1989) model which limits itself to
considering competition between two new born technologies.

0

0
,
2

0
,
4

0
,
6

0
,
8 10

0
,
3

0
,
6

0
,
90

100

200

300

400

500

600

700

800

900

1000

L
i
n
u
x

d
i
f
f
u
s
i
o
n

t
i
m
e





Figure 1: Linux diffusion time (static  and  parameters)

Results exhibit a phase transition, i.e.  and  behave as state parameters
associated with a sharp discontinuity in diffusion regimes. Above critical values
of  and diffusion is infinitely long – it will almost never occur in economic
time – whereas below them diffusion is almost sure and even fairly rapid. As a
consequence, Linux wins when it benefits from significantly stronger global and
local externalities than for Windows18.

Similar results obtain when Microsoft answers the Linux threat by lowering its
prices or for instance by shifting its strategy towards renting instead of selling
software19. To simulate this, we consider that  is significantly increased during
the diffusion process as soon as the number of Linux users reaches a given
threshold defined as a percentage of the entire potential adopter populations20.
Figure 2 presents results with such a protocol: as the percentage of Linux
adopters reaches 5%,  is increased by 0.2, therefore a strong reaction at a very
low threshold (a = 2 and b = 1 here again, plotted variables  and  correspond

18 It is interesting here to note that a minor technological innovation might
sometimes prove powerful enough to replace a dominant standard as long as it is
associated with a superior economic model. Taken as a technology, Linux is indeed not
really superior to Windows. Here superiority does not come from pure technological
arguments, but from a superior economic model i.e. from non-technological aspects. In
any case, technological trajectories are thus characterized by persistence (Foray, 1997)
phenomena rather than by perfectly irreversible path-dependence (David, 1985). A way to
analyze this is to suggest that diffusion creates endogenous thresholds: new technological
candidates have to be « sufficiently better », be it technologically or economically, to get
rid of existing standards, i.e. above a given threshold and to become major innovations,
whereas minor innovations fail to pass this threshold. As a consequence, minor
innovations will most often to be rendered compatible with existing standards as they
would otherwise have almost no chance of diffusion: the existence of endogenous
diffusion thresholds creates incentives for minor innovations not to challenge an existing
standard but to improve it (Dalle, 1998b).
19 Microsoft strategy is indeed from time to time said to evolve towards software rental
with continuous bug correction i.e. with no more “versioning”: the so-called “.NET”
strategy might be a step in that direction.
20 Another simulation methodology would have been to consider a continuous evolution
of . We prefer this one as major shifts will most probably be rare, if only because
Microsoft also has organizational routines which render such changes very difficult and
painful to manage.

to their initial values). Still, Linux diffuses in a very similar way to what happens
without any such reaction or evolution. Compared with previous results, we find
that diffusion is roughly similar to what would happen with an initial value of 
such as with 

0

0
,
2

0
,
4

0
,
6

0
,
8 10

0
,
2

0
,
4

0
,
6

0
,
8 10

100

200

300

400

500

600

700

800

900

1000

L
i
n
u
x

d
i
f
f
u
s
i
o
n

t
i
m
e





Figure 2: Linux diffusion time when varies during diffusion

Yet similar results obtain when  is increased during the diffusion process i.e.
would Linux users partly cease to be zealots after a while. In both cases, we
indeed find a strong path-dependence effect (David, 1985): results appear as
weakly sensitive to possible variations of state parameters during diffusion
processes. Once diffusion has started, it is difficult to stop it. To put it
differently, (small) historical events do matter a lot, and proselytism induced by
some sort of Microsoft-phobia may have played a similar role for Linux as early
technological constraints once played for the QWERTY keyboard. Proselytism
might disappear soon, but it might also have permanently oriented the diffusion
path, whatever Microsoft reactions might be. Idiosyncratic historical conditions
might have given sufficient initial momentum for Linux to diffuse.

3.4. Consequences

A major consequence of these results if that two major conditions have to be
verified, at least at the beginning of the diffusion process, for Linux to defeat
Windows. First, communities and associated ancillary businesses have to be
effective enough to allow for a sufficiently quick improvement rate; and second,
local network effects have also to support Linux strongly enough.

The first condition (high ) itself relies on two complementary aspects: the
capacity of developer communities to attract a sufficient number of good kernel
developers and numerous obscure developers, and their ability to organize
efficient development processes, an issue which can be significantly addressed
by the existence ancillary business firms. Indeed, these companies not only help
create incentives for kernel developers and provide a considerable amount of
man-year worth of obscure development, but they also contribute to organize
efficient development processes, for instance by helping developer communities
to select the best issues to solve first and generally by providing extra
organization to Libre software communities. The victory of Linux, and generally

of Libre software, therefore depends on its ability to merge independent
developer communities and business-oriented companies in an efficient
organizational way.

As for the structure of these communities, the existence of a limited core of
kernel developers, generally associated with cooptation rules, indeed appears as
a necessary condition for Libre software to develop. More than a proportion of
kernel and obscure developers, the relevant question here is mainly about the
existence of such a core of kernel developers. Then the existence of numerous
obscure developers is a sufficient condition, not only for work to be done, but
also to allow for further recruitments. There would be no Linux without Linus
Torvalds, Alan Cox, and a limited subset of other kernel developers, but there
would be no Linux either if they would be alone21.

But the eventual victory of Linux depends also on the proselytism of its (early)
adopters (high ): a condition easily verified for Linux, more easily perhaps than
the previous one, but a condition which might conversely be quite difficult to
account for other pieces of Libre software. Although more studies are needed
here before we could generalize these last results to other examples of Libre
software22, Linux might still be more sustainable than many other pieces of Libre
software because they might lack sufficient support from their early adopters.

Since both conditions are specially critical at the beginning of diffusion
processes, we finally conclude that the development and the sustainability of
Libre software, measured by its ability to become competitive against proprietary
products, critically depend on an initial momentum issue which deals both with
the organization of development processes within communities and business
firms, and with support by early adopters.

4. Conclusion

If we were some day to consider that Libre alternatives to proprietary products
could needed to improve social welfare, for instance in the case of operating
systems, middleware, and generally for software which is widely used and
strongly subject to strong compatibility issues and network effects, then our
conclusions imply that there might be some need for a public intervention to
help foster the initial momentum of Libre solutions.

A major question for public agencies, and an agenda for future research, would
then be to determine more precisely which software would be suitable for such
issues, and notably to avoid opportunistic strategy by some software producers
which would certainly try to adopt Libre models just to benefit from public
subsidies and therefore to lower their R&D costs. In this respect, the existence of
a dominant proprietary standard would certainly be a first-order condition.

21 See e.g. http://www.wired.com/wired/archive/9.10/.
22 It would is necessary to analyze how these results vary for types of Libre software
other than operating systems, for instance considering different values of a and b.

A second, related question would be to determine what kind of actions could be
undertaken to help launch Libre software development projects, i.e. both to
create new or to develop existing Libre software communities, and to replicate
local network effects in Libre software diffusion without relying on cultural
feelings. Once these issues have been solved, Libre software might become a
excellent cure for network externalities.

Then, Libre software, born as a fad, would actually turn into an economic
institution. In this respect, let us simply recall that both the scientific institution
with the associated convention of « Open Science », and the intellectual property
institution have also been born in somewhat similar and yet surprising
circumstances: as a matter of fact, « lettres de patentes » were once used in
Renaissance France to attract foreign inventors so that they would import
technologies which already existed elsewhere (David, 1993), whereas scientists
were originally “devoted” to raising princes’ reputation, which implied that they
render their discoveries public (David, 1995)… In a way, we might perhaps better
start considering Libre software positively, against today’s still prevailing
skepticism, since it might be giving birth not only to an original incentive
structure within Libre software communities but also to a new and general
economic model for the software industry, a model whose consequences have yet
largely to be understood.

Bibliography

Arthur W.B. (1989), Competing technologies, increasing returns and lock-in by
historical events, Economic Journal 99: 116-131.

Cohen M. D. (1983), Conflict and Complexity: Goal Diversity and Organization
Search Effectiveness, American Political Science Review, 78 : 435-451.

Cohendet P., Créplet F., Dupouët O. (2000), Communities of practice and
epistemic communities : a renewed approach of organizational learning within
the firm, paper presented to WEHIA 2000 Conference, Marseille, June.

Cowan R., Foray D. (1997), The economics of codification and the diffusion of
knowledge, Industrial and Corporate Change 6: 595-622.

Dalle J.-M. (1995), Dynamiques d’adoption, coordination et diversité, Revue
Economique, 46: 1081-1098.

Dalle J.-M. (1997), Heterogeneity vs. externalities: a tale of possible technological
landscapes, Journal of Evolutionary Economics 7: 395-413.

Dalle J.-M. (1998a), Heterogeneity and rationality in stochastic interaction
models, in Cohendet P., Stahn H. (eds), The economics of networks: behaviors
and interactions, Springer Verlag: Berlin, pp. 123-145.

Dalle J.-M. (1998b), Local interaction structures, heterogeneity, and the
diffusion of technological innovations, in Orléan A. & Lesourne J. (ed), Self-
organization and evolutionary approaches: new developments, Economica:
Paris, pp. 240-261.

Dalle J.-M. (2000), Patents and anti-patents: institutional means to enhance
creativity, paper presented to IFREDE-E3i Conference held in Bordeaux,
October.

Dalle J.-M., Jullien N. (2000), NT vs. Linux, or some explorations into the

economics of Free Software, in Ballot G., Weisbuch G. (eds), Application of

simulation to social sciences, Hermès, Paris, pp
. 399-416.

Dasgupta P., David P.A. (1994), Towards a new economics of science, Research
Policy 23: 487-521.

David P.A. (1985), Clio and the economics of QWERTY, American Economic
Review (Papers and Proceedings) 75: 332-337.

David P.A. (1988), Putting the past into the future of economics, Technical
Report 533, Institute for Mathematical Studies in the Social Sciences:
Stanford University.

David P.A. (1993), Intellectual property institutions and the Panda’s thumb,
CEPR publication n°287, Stanford University.

David P.A. (1995), Reputation and agency in the historical emergence of the
institutions of ‘Open Science’, paper presented to the National Academy of
Sciences Colloquium on the Economics of Science and Technology, held at
the Beckman Center, UC Irvine, 20-21 October 1995.

David P.A., Foray D. (1995), Accessing and expanding the science and
technology knowledge base, STI Review 16 : 13-68.

David P.A., Foray D., Dalle J.-M. (1998), Marshallian externalities and the
emergence and spatial stability of technological enclaves, Economics of
Innovation and New Technology 6: 147-182.

Durlauf S.N. (1993), Non-ergodic economic growth, Review of Economic Studies
60 : 349-366.

Foray D. (1997), The dynamic implications of increasing returns: technological
change and path-dependent inefficiency, International Journal of Industrial
Organization 15: 733-752.

Harhoff D., Henkel J., Von Hippel E. (2000), profiting for voluntary information
spillovers: how users benefit by freely revealing their innovations, mimeo,
26p.

Jullien N. (1999), Linux, la convergence du monde Unix et du monde PC?,
Terminal 80-81: 41-70.

Kirman A.P. (1993), Ants, rationality and recruitment, Quarterly Journal of
Economics 111: 137-156.

Lakhani K., Von Hippel E. (2000), How Open Source software works : ‘free’ user-
to-user assistance, MIT Sloan School of Management WP #4117.

Lerner J., Tirole J. (2000), The simple economics of Open Source, mimeo, 38p.
Romer P. (1993), The economics of new ideas and new goods, Proceedings of the

World Bank Annual Conference on Development Economics 1992, World
Bank, Washington DC.

Von Hippel E. (1988), The sources of innovations, MIT Press.

	‘Libre’ software: TURNING FADS INTO INSTITUTIONS?
	ABSTRACT: The article presents an economic analysis of Libre software and of its sustainability as a new economic model for software. We underline the role of Libre software development communities and analyze incentives of both kernel and obscure developers. We emphasize the role of the so-called ‘public’ licenses to provide an appropriate institutional framework. We show that several features of Libre software also allow it to improve faster than proprietary software, and therefore to achieve strong market performance when competing against existing standards, even when proprietary software producers react. We illustrate our point using a simple local and global interaction model to study the technological competition between Linux and Windows on the server operating system market. We finally argue that Libre software could turn from a fad into an efficient economic institution for instance to correct inefficiencies due to network externalities, if sufficient initial momentum could be created through public intervention, then without the help of feelings such as Microsoft-phobia.
	KEY WORDS: Libre software, Linux, Community, Incentives, Network Effects, Network Externalities, Technological Competition.
	Bibliography

