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[1] Recent Galileo and Cassini plasma and magnetic field observations indicate that the
centrifugal/interchange instability plays a critical role in radial plasma transport in the
rapidly rotating magnetospheres of giant planets. These observations have stimulated
considerable interest in understanding the development and the properties of the
instability. A complete description of the interchange instability involves an electric
coupling between the magnetosphere and the planetary ionosphere. Vasyliunas (1994)
pointed out that when the ionosphere is ineffective at constraining interchange motions,
local magnetospheric conditions govern the plasma dynamics. In that case the Coriolis
force leads to a dramatic decrease in the instability growth rate according to Pontius
(1997), whereas it has a neutral influence according to Ferrière et al. (2001). The purpose
of the present paper is to critically reexamine Vasyliunas’ and Pontius’ results and
investigate the origin of their discrepancies with Ferrière et al.’s results. To that end, we
consider the case of a thin plasma disk in an axisymmetric, rapidly rotating magnetosphere
with no field-aligned electric currents at equilibrium.

Citation: André, N., and K. M. Ferrière (2007), Comments on Vasyliunas’ and Pontius’ studies of the effects of the planetary

ionosphere and of the Coriolis force on the interchange instability, J. Geophys. Res., 112, A10203, doi:10.1029/2006JA011732.

1. Introduction

[2] The structure and dynamics of giant planet magneto-
spheres are dominated by the presence within the magne-
tospheric cavity of several plasma sources and by the fast
planetary rotation. The various plasma populations are
trapped by the planetary magnetic field and confined near
the equatorial plane by the centrifugal force, thereby giving
rise to a thin disk of corotating plasma. The redistribution of
the locally created plasma throughout the magnetospheric
system is one of the fundamental dynamical processes
occurring in giant planet magnetospheres. This redistribu-
tion is achieved through plasma transport perpendicular to
magnetic field lines. The exact mechanisms responsible for
this transport are not yet completely understood, with the
transport probably operating through different modes and
on different scales. It is, however, widely believed that the
outward plasma transport is triggered by the centrifugal
instability, a Rayleigh-Taylor type instability in which the
centrifugal force plays the role of the gravitational force and
that it proceeds through the interchange of magnetic flux
tubes [e.g., Melrose, 1967; Ioannidis and Brice, 1971; Hill,

1976]. Physically, under the action of the centrifugal and
magnetic buoyancy forces, mass-loaded flux tubes tend to
exchange positions with nearly empty flux tubes located
farther out.
[3] The recent Galileo and Cassini space missions have

amply documented the Jovian and Saturnian magnetospheric
systems. In particular, these missions have provided us with
new observations and new insights into the mechanisms
responsible for the outward plasma transport. There is now
considerable observational evidence that centrifugally driven
flux tube interchange is at play in the corotation-dominated
regions of the Jovian and Saturnian magnetospheres and
that it takes part in the redistribution of plasma throughout
these systems. Signatures of intermittent, short-lived, mass-
loaded, and empty flux tubes in the Io torus have been
detected by the Galileo spacecraft, in orbit around Jupiter
from December of 1995 to September of 2003 [Kivelson et
al., 1997; Thorne et al., 1997; Bolton et al., 1997]. Similar
signatures have been observed in the E-ring of Saturn by the
Cassini spacecraft, in orbit around Saturn since July 2004
[André et al., 2005; Burch et al., 2005; Hill et al., 2005;
Leisner et al., 2005; Mauk et al., 2005] and have lent further
support to the notion that the centrifugal instability lies at
the root of the outward transport.
[4] The influence of planetary rotation is felt through the

centrifugal force and the Coriolis force. Whereas the cen-
trifugal force is included (through an effective gravity) in
most studies of the interchange instability, the Coriolis force
is generally not taken into account, and its impact on the
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interchange instability has never been completely and
rigorously addressed.
[5] In addition, the adjustment between the magneto-

spheric plasma flow driven by the interchange instability
and the ionospheric electric field is imposed by an electric
coupling between the magnetosphere and the ionosphere.
Therefore a complete description of the interchange insta-
bility and of the resulting plasma motions requires the
inclusion of the system of electric currents closing through
the ionosphere.
[6] Vasyliunas [1994] discussed the efficiency of the

ionosphere in controlling the magnetospheric plasma flow.
He pointed out that when the ionospheric Pedersen conduc-
tivity is very small, the magnetosphere decouples from the
ionosphere and the magnetospheric plasma flow is governed
by local magnetospheric conditions.
[7] Pontius [1997] later extended Vasyliunas’ [1994]

study by tackling the problem of the influence of the
Coriolis force on the interchange instability. He came to
the conclusion that when the ionosphere is ineffective at
constraining interchange motions, the Coriolis force gov-
erns the plasma dynamics and leads to a dramatic decrease
in the instability growth rate. In this paper, we show that
Pontius’ predictions are not consistent with the properties of
interchange motions found by Ferrière et al.’s [2001], who
concluded that the Coriolis force has a neutral influence on
the interchange instability.
[8] Our paper is divided as follows: In section 2, relying

on the results of Ferrière et al. [2001], we write down the
dispersion relation of the short-wavelength interchange
mode in an axisymmetric, rapidly rotating magnetosphere
with no field-aligned electric currents at equilibrium. We
successively consider the general case of a plasma with
nonvanishing temperature (section 2.1) and the particular
case of a cold plasma (section 2.2), both under the thin-disk
approximation. In section 3, we compare our dispersion
relation with those obtained earlier by Vasyliunas [1994]
and by Pontius [1997], and we discuss in detail the origin of
the discrepancies. In section 4, we state the conclusions of
our study.

2. Dispersion Relation of the Interchange Mode

[9] A detailed derivation of the dispersion relation of the
interchange mode in an axisymmetric, rapidly rotating
magnetosphere can be found in the work of Ferrière et al.
[2001]. Here, we will be content to remind the reader of the
underlying assumptions, describe the physical properties of
the interchange mode, and write down its equation of
motion as well as its dispersion relation.
[10] We use an orthogonal curvilinear coordinate system

(a, b, z), with unit vectors bea, beb, bez and scale factors ha,
hb, hz, defined as follows: a and b are the Euler potentials
[Northrop, 1963] representing the equilibrium magnetic
field, B0, with B0 = ra � rb, and z is the field-aligned
coordinate, such that bez k B0. This choice of coordinates is
motivated by our desire to avoid any mathematical compli-
cations resulting from the use of a nonorthogonal system,
but it is clearly restrictive. First, orthogonal field-based
coordinates do not exist for arbitrary magnetic field config-
urations (see Salat and Tataronis [2000] for a discussion on
the conditions under which they exist). Second, the condi-

tion B0 k rz implies r � B0 ? B0, which means that the
equilibrium state has no field-aligned electric currents. Let
us emphasize that this restriction applies only to the
equilibrium state, not to perturbations. Even so, it is
generally not strictly satisfied in rotating magnetospheres.
[11] We consider the evolution of an ideal magnetohy-

drodynamic (MHD) plasma characterized by a mass density
r and a thermal pressure P, rotating at rigid angular velocity
W, and subject to an effective gravity g including a
centrifugal component. The set of governing equations is
composed of the continuity equation (with no mass loading,
consistent with our assumption of rigid rotation), the mo-
mentum equation, the induction equation in the frozen-in
approximation, and the adiabatic equation of state, all
expressed in the rotating frame.
[12] Here, we only need to discuss the momentum equa-

tion. In the equilibrium state (denoted by a subscript 0), the
plasma is assumed at rest in the rotating frame. All pertur-
bations from the equilibrium state (denoted by a prefixed d)
are supposed to vary in time as exp(�iwt), with the wave
frequency w possibly complex. The perturbed momentum
equation can then be written as

�r0w
2dr ¼ �r?dPT � rkdP þ dT Mc0

þ B0

m0

1

ha

@

@s
hadBað Þêa þ 1

hb

@

@s
hbdBb
� �

êb

� �
� �r?PM0 þ T M0c0ð Þ � dB?

B0

êz

þ drgþ 2iwr0W� dr; ð1Þ

where dr is the displacement vector, ds = hz dz is the field-
aligned increment, PM = B2/(2m0) is the magnetic pressure,
PT = P + PM is the total (thermal + magnetic) pressure,
T M = 2PM is the magnetic tension, and c0 is the magnetic
curvature vector. As usual, the symbols ? and k indicate the
directions perpendicular and parallel, respectively, to the
magnetic field.
[13] The different terms on the right-hand side of

equation (1) successively represent the perpendicular gradi-
ent in total pressure, the parallel gradient in thermal pres-
sure, the magnetic buoyancy force, the magnetic tension
force resulting from field line bending, the projection of the
perturbed magnetic force onto the direction of the back-
ground magnetic field, the gravitational buoyancy force,
and the Coriolis force. Equation (1) shows that the
Lagrangian displacement vector dr depends on the pertur-
bations in mass density dr, in magnetic field dB, and in
thermal pressure dP. These perturbations, in turn, are given
as functions of dr by the perturbed continuity equation,
induction equation, and equation of state, respectively.
[14] We now restrict our attention to the case of a rapidly

rotating magnetosphere whose equilibrium state is axisym-
metric about the spin axis and symmetric with respect to the
equatorial plane (in the sense that all scalar quantities as
well as the latitudinal component of the magnetic field are
symmetric, whereas the radial and azimuthal field compo-
nents are antisymmetric, with respect to the equatorial
plane). In this special case, the curvilinear coordinate b
may be identified with azimuthal angle f and the associated
scale factor hb with distance to the spin axis. The coordinate
a may then be taken independent of b, such that the
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orthogonality of our chosen coordinate system is satisfied.
In addition, all the equilibrium parameters are independent
of b, and the rotation vector, effective gravity, and magnetic
curvature vector are orthogonal to beb: W, g, c0 ? beb.
[15] An analytical dispersion relation can be obtained for

the interchange mode in the framework of the WKB
approximation, which supposes that perturbations have a
wavelength short compared to the typical scale height of the
equilibrium, H. In fact, the requirement of short wavelength
applies only to the perpendicular direction. At this point, no
restriction needs to be imposed in the parallel direction,
insofar as field-aligned variations in the perturbations will
be integrated out in the final dispersion relation. Accordingly,
perturbations are taken to vary in space as exp[i(k?�r)] times
an unspecified function of the field-aligned coordinate s,
with k? � (1/H?).
[16] The physical properties of the interchange mode can

be inferred from the perturbed momentum equation (1).
Without going through the rigorous mathematical derivation
(given in the work of Ferrière et al. [2001] and summarized
in appendix A), we can easily recover these properties with
a simple physical argument. By definition, the interchange
mode is a mode driven by buoyancy (of both gravitational/
centrifugal and magnetic origins), and its frequency is on
the order of the magnetic Rayleigh-Taylor frequency: w2 
wRT
2  (Cs

2 + VA
2)/H?

2 , where Cs is the adiabatic sound speed
and VA the Alfvén speed. This implies that thermal and
magnetic forces, which are the drivers of the standard MHD
modes in a uniform medium, must remain comparatively
weak. More specifically, the magnetic tension force, which
drives the Alfvén wave (w2 = VA

2 kk
2), the parallel gradient in

thermal pressure, which drives the sound wave (w2 = Cs
2 kk

2),
and the perpendicular gradient in total pressure, which
drives the fast magnetosonic wave (w2 = (Cs

2 + VA
2) k?

2 ), must
all be comparatively weak, i.e., much weaker than for the
standard MHD modes. This, in turn, implies that field-line
bending, plasma compression in the parallel direction, and
total (plasma + field-line) compression in the perpendicular
direction must all be nearly ‘‘turned off.’’ In other words,
the interchange mode must have weak gradients along field
lines (@/@s � k?), be quasi-incompressible, both parallel
and perpendicular to the magnetic field (@ds/@s ’ 0 and
k? � dr? ’ 0), and remain very close to total pressure
balance (dPT ’ 0). For the following, we note that to
leading order in the small parameter e � 1/(k? H?), the last
two approximate identities may be considered exact, i.e.,’ 0
may be replaced by = 0.
[17] We can now use the perpendicular quasi-incompres-

sibility condition, kadra + kbdrb = 0, to eliminate drb from
the perturbed momentum equation (1) and write its compo-
nent along g? in the form

w2r0k
2
?dra ¼ � k2b gadrþ cadT Mð Þ

� iB2
0kb

@

@s

djz
B0

� �
� 2iwr0Waka kbds; ð2Þ

where djz = i
m0

(kadBb � kbdBa) is the perturbation in
parallel electric current density, given by the parallel
component of Ampère’s equation.

2.1. Plasma With Nonvanishing Temperature

[18] To obtain the dispersion relation of the interchange
mode, we integrate equation (2) over a displaced flux tube,
between its ionospheric footpoints assumed to be located at
s = ±Li (ionospheric quantities are denoted by a subscript i).
Since in a rapidly rotating magnetosphere, most of the
plasma is confined near the equator, we may approximate
the slowly varying quantities appearing in mass-weighted
integrals of the type

R
. . .r0 ds

B0
by their equatorial value

(denoted by a subscript e) and take them out of the integral
sign (thin-disk approximation). For the Coriolis force (last
term on the right-hand side of equation (2)), Wa,e = 0 by
symmetry, so that we may not simply replace Wa by Wa,e.
However, it can be shown that the Coriolis term is negligi-
ble with respect to the inertial term (see Appendix B). In the
end, the dispersion relation of the interchange mode in an
axisymmetric, rapidly rotating magnetosphere can be cast in
the simple form

w2 ¼
k2b;e

k2?;e

w2
g þ w2

m

	 

� i

1

x

k2a;e

k2?;e

þ x
k2b;e

k2?;e

 !
wS w; ð3Þ

where x is a geometrical factor defined by

x ¼ � re

sin qi

dqi
dre

sin I ; ð4Þ

with re the radial distance of the equatorial crossing point, qi
the colatitude of the ionospheric footpoint, and I the
inclination of the ionospheric field lines to the local
horizontal. In the particular case of a dipolar magnetic
field, one has x = (1 + 3 cos2qi)

�1/2, which reduces to x = 1/
2 in the high-latitude limit (qi ! 0).
[19] The first term on the right-hand side of equation (3)

represents the total (gravitational/centrifugal plus magnetic)
buoyancy force. The natural frequencies of gravitational/
centrifugal and magnetic buoyancy waves are defined by

w2
g ¼ � 1

dra;e
ga;eh

dr
r0
i ð5Þ

and

w2
m ¼ � 1

dra;e
h ha
ha;e

ca
dTM
r0

i; ð6Þ

where the angle brackets denote a mass-weighted flux tube
average,

h. . .i ¼ 1

h0

Z
. . . r0

ds

B0

; ð7Þ

and

h ¼
Z

r
ds

B
ð8Þ

is the mass per unit magnetic flux (flux tube content). The
physical interpretation of equations (5)– (6) is rather
straightforward if one remembers that the gravitational/
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centrifugal buoyancy force results from a density perturba-
tion in an effective gravitational field, while the magnetic
buoyancy force results from a magnetic tension perturbation
in a curved magnetic field. These buoyancy forces act in the
a direction, but because the motion is required to occur
perpendicular to k? (by virtue of the perpendicular quasi-
incompressibility condition, k? � dr? = 0), their efficiency is
reduced by a factor (kb,e

2 /k?,e
2 ) (prefactor of (wg

2 + wm
2 ) in

equation (3)).
[20] The second term on the right-hand side of equation (3)

arises from the electric coupling between the magnetosphere
and the ionosphere and represents the friction force exerted
by the ionospheric Pedersen conductivity on the ionospheric
footpoints of magnetospheric flux tubes. The associated
frequency depends on the ratio of ionospheric to equatorial
displacements and is given by

wS ¼ 1

ta

dai

dae

; ð9Þ

where

ta ¼
h0

2SP B0;e
ð10Þ

is the ionospheric acceleration time (as defined by
Vasyliunas [1994]) and 2SP is the ionospheric Pedersen
conductivity integrated across the thickness of both iono-
spheres. The second term on the right-hand side of
equation (3) contains two contributions: the first contribution
is inversely proportional to x ta, which corresponds to the
ionospheric acceleration time for flow in the b (azimuthal)
direction, while the second contribution is inversely
proportional to ta/x, which corresponds to the ionospheric
acceleration time for flow in the a (radial) direction. The
ionospheric acceleration time for radial flow always exceeds
the acceleration time for azimuthal flow by a factor x�2,
with x�2 = 4 in the high-latitude limit of a dipolar magnetic
field. Again, because of the perpendicular quasi-incompres-
sibility condition, the efficiency of the friction force is
reduced, by a factor (ka,e

2 /k?,e
2 ) in the b direction and by a

factor (kb,e
2 /k?,e

2 ) in the a direction.
[21] Vasyliunas [1994] pointed out the role played by the

ionospheric acceleration time in the radial transport of
plasma and in the inertial limit to corotation [Hill, 1979].
The outward transport of plasma in giant planet magneto-
spheres tends to decrease its azimuthal velocity, and the
outward moving plasma needs to be continually accelerated
back to corotation by ionospheric drag. When the iono-
spheric acceleration time for azimuthal flow (x ta) is longer
than the time for outward radial transport, corotation can no
longer be maintained. Therefore as noted by Vasyliunas
[1994], the ionospheric acceleration time measures the
ability of the planetary ionosphere to enforce corotation.
[22] In principle, solving the dispersion relation (3)

requires relating (dr/r0) (s) and dT M (s) to dra,e, and dai

to dae. In general, this cannot be done analytically, because
of the s-dependence of the equilibrium parameters. It is only
in the particular case when the plasma is cold and thermal
pressure forces can be neglected that the dispersion relation

of the interchange mode can be solved analytically. This
particular case is the subject of the next subsection.

2.2. Particular Case of a Cold Plasma

[23] In the absence of thermal pressure (P = 0), the
requirement of total pressure balance (dPT = 0) to leading
order in e implies that magnetic pressure must remain
unperturbed (dPM = 0) to leading order in e, which in turn
implies dB = 0 and dT M = 0. It then follows from equation (6)
that

w2
m ¼ 0 � ð11Þ

For wg
2, equation (5) successively leads to

w2
g ¼ � 1

dra;e
ga;e

1

h0

Z
dr

ds

B0

¼ � 1

dra;e
ga;e

dh
h0

¼ ge �
reh0
h0

; ð12Þ

when use is made of equation (7), the perturbed form of
equation (8) with dB = 0, and the conservation of flux tube
content (dh + reh0 � dr?,e = 0).
[24] For wS, we must relate the ionospheric displacement,

dai, to the conjugate equatorial displacement, dae, in
equation (9). Once again, we will skip the details of the
derivation (which can be found in the work of Ferrière et al.
[2001]) and only explain how the final result can be
obtained.
[25] We first note that for a cold plasma, the magneto-

spheric disk becomes extremely thin and the transverse
displacement da remains virtually constant across its thick-
ness. Outside the magnetospheric disk, da necessarily
varies along field lines because field lines are deformed
by the perturbed parallel electric currents flowing between
the magnetospheric disk and the ionosphere. Mathematically,
the parallel component of Ampère’s equation combined with
the perpendicular components of the induction equation and
with the perpendicular quasi-incompressibility condition
implies that the perturbation in parallel electric current per
unit magnetic flux is related to the parallel gradient in da
through

djz
B0

¼ � i

m0

k2?
kb

ha
@da
@s

� ð13Þ

[26] The next point to realize is that the perturbation in
parallel electric current per unit magnetic flux is constant
along any field line between the magnetospheric disk and
the ionosphere because this region is devoid of plasma (r0,
dr = 0) and experiences no magnetic buoyancy (dT M = 0),
so that the magnetic tension force must vanish (second term
on the right-hand side of equation (2)). As a result, djz/B0 all
along a field line equals its value at the ionospheric foot-
points. The latter is given by the divergence in ionospheric
perpendicular currents, which for their part are proportional
to the ionospheric Pedersen conductivity, SP, times the
ionospheric perpendicular electric field (Ohm’s law), itself
proportional to the velocity of the ionospheric footpoints,
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�i w ha,i dai (frozen-in approximation). The exact expres-
sion works out to be

djz
B0

� �
�Li

¼ �SP

k2?;i

kb;i
ha;i w dai � ð14Þ

[27] By substituting equation (14) for the left-hand side of
equation (13) and integrating equation (13) over s from the
magnetospheric disk (identified with the equatorial plane) to
the northern ionosphere, we obtain

dai � dae ¼ im0 SP Li w dai ; ð15Þ

where

Li ¼
Z Li

0

kb

kb;i

k2?;i

k2?

ha;i

ha
ds � ð16Þ

Finally, with the ratio dai/dae taken from equation (15),
equation (9) leads to

wS ¼ 1

ta

1

1� im0SPLiw
; ð17Þ

where ta is the ionospheric acceleration time defined by
equation (10).
[28] Altogether, in the particular case of a cold plasma, the

dispersion relation of the interchange mode (equation (3))
reduces to

w2 ¼
k2b;e

k2?;e

ge �
reh0
h0

� �

� i
1

x

k2a;e

k2?;e

þ x
k2b;e

k2?;e

 !
1

1� im0SPLi w
w
ta

� ð18Þ

[29] We now rewrite equation (18) in the form of a third-
degree equation for w and use Routh-Hurwitz’ theorem in
matrix algebra to derive the stability criterion of the inter-
change mode. We find that the interchange mode is stable
for all values of k? if and only if

ge �reh0 � 0 � ð19Þ

Thus we recover Hill’s [1976] stability criterion, according
to which a cold plasma is stable against interchange motions
if and only if its mass per unit magnetic flux, h0, increases in
the direction of the effective gravity. If ge � reh0 < 0, one of
the three roots of equation (18) is purely imaginary with
=(w) > 0, and the interchange mode is unstable. In the
axisymmetric magnetospheric configuration considered
here, neither the ionospheric drag nor the Coriolis force
affects the stability of the interchange mode.

3. Comparison With Previous Work

[30] In order to compare our results with the previous
cold plasma approaches to the problem by Vasyliunas
[1994] and Pontius [1997], we neglect the contribution
from pure gravity in our effective gravity, which then

reduces to the centrifugal acceleration (directed outward),
and we assume that the background flux tube content, h0,
varies locally with radial distance from the planet as R�n. In
that case, the stability condition (19) is not fulfilled and the
interchange mode is unstable. If we further replace �iw by
the growth rate g, our dispersion relation (18) becomes

g2 �
k2b;e

k2?;e

nW2 þ 1

x2
k2a;e

k2?;e

þ
k2b;e

k2?;e

 !
1

1þ m0SPLi g
x
g
ta

¼ 0 ;

ð20Þ

where the second and third terms represent the centrifugal
buoyancy and the ionospheric drag, respectively.
[31] For comparison, the dispersion relation obtained by

Vasyliunas [1994] (his equation (24)) reads

g2 � nW2 þ x
g
ta

¼ 0 ; ð21Þ

while that derived by Pontius [1997] (his equation (12))
reads

g2 � nW2 þ x
g
ta

þ 4W2 g
g þ 1= taxð Þ ¼ 0 � ð22Þ

We can see that our dispersion relation differs from both
Vasyliunas’ and Pontius’ on three counts.
[32] First, the terms representing the centrifugal buoyancy

and ionospheric drag forces in our dispersion relation (20)
contain additional geometrical factors which depend on the
angle between k?,e and beb. As we mentioned in section 2.1,
these geometrical factors arise from the perpendicular quasi-
incompressibility condition (k? � dr? = 0), and they reduce
to unity when k?,e k beb, i.e., when the motion takes place in
the direction bea of the driving buoyancy force. These factors
do not appear in equation (21) because Vasyliunas [1994]
considered only motion in the radial direction, nor do they
appear in equation (22) because Pontius [1997] ignored the
perpendicular quasi-incompressibility condition.
[33] Second, the ionospheric drag term in our dispersion

relation (20) includes the corrective factor 1/(1 + m0SPLig).
This factor comes from equation (17) and hence from
the ratio dai/dae in equation (9). It is absent from
equations (21)–(22) since Vasyliunas [1994] and Pontius
[1997] both implicitly assumed that the transverse displace-
ment da is constant along field lines, with the implication
that dai/dae = 1. However, as we explained earlier in
connection with equation (13), the presence of perturbed
parallel electric currents between the magnetospheric disk
and the ionosphere entails a deformation of field lines, and
accordingly a variation of da along field lines. Taking this
variation correctly into account automatically leads to our
expression for the ionospheric drag term.
[34] Of course, one should bear in mind that the precise

expression we found for djz is contingent upon our choice of
an orthogonal coordinate system. Nevertheless, even if this
choice is invalidated by the presence of field-aligned
currents at equilibrium, it remains true that perturbed
parallel currents arise in the course of an interchange and
that these currents deform field lines in the a direction. In
simple physical terms, the reason why field lines must be
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deformed is because the driving buoyancy force acts at the
equator, while a friction force acts at the ionospheric foot-
points and causes them to lag behind.
[35] Third, Pontius’ dispersion relation contains an addi-

tional term associated with the Coriolis force (last term in
equation (22)). Vasyliunas, who did not include the Coriolis
force in his analysis, evidently did not obtain this term. In
contrast, we did include the Coriolis force, but we found
that the associated term in the dispersion relation vanishes
in the case of an axisymmetric, rapidly rotating magneto-
sphere. So why did Pontius reach another conclusion?
[36] Pontius took up Vasyliunas’ approximation regarding

the electric currents, namely, based on the argument that a
perpendicular divergence in magnetospheric currents gives
rise (via parallel currents flowing between the magneto-
spheric disk and the ionosphere) to an equal and opposite
perpendicular divergence in ionospheric currents on the
same field line, he assumed that magnetospheric currents
are equal and opposite to the ionospheric currents on the
same field line. By doing so, Pontius accounted only for
magnetospheric currents that have nonzero perpendicular
divergence.
[37] Since the equilibrium state has no parallel currents, a

divergence in perpendicular currents arises only in the
perturbed state, and its expression is given by

r? � j? ¼ B0

hz

@

@a
hb hz dja
� �

þ @

@b
ha hz djb
� �� �

� B0

@

@s

j0
B0

� dB?

B0

� �
� ð23Þ

It is easily shown that the second term on the right-hand
side is of higher order in the small parameter e and can
therefore be neglected. Hence to leading order in e, a
divergence in perpendicular currents involves only the a
and b components of the perturbed current density, whose
expressions are given by the perturbed Ampère’s equation:

dja ¼ 1

m0

� 1

hb

@

@s
hb dBb
� �

þ 1

hz

@

@rb
hz dB
� �� �

ð24Þ

djb ¼ 1

m0

1

ha

@

@s
ha dBað Þ � 1

hz

@

@ra
hz dB
� �� �

� ð25Þ

The force associated with the first contribution to both
components is the magnetic tension force resulting from field
line bending (fourth term on the right-hand side of
equation (1)), while the force associated with the second
contribution is the magnetic pressure gradient force�r?dPM

(first term on the right-hand side of equation (1) with P = 0)
plus two forces that are of higher order in e and can be
neglected in the case of a cold plasma. Clearly, the second
contribution has zero perpendicular divergence. Therefore,
by using Vasyliunas’ approximation for the electric currents,
Pontius automatically omitted the magnetic pressure
gradient force in the magnetospheric disk.
[38] However, when the magnetic pressure gradient force

is neglected, motions cannot satisfy the perpendicular quasi-
incompressibility condition. Indeed, in the absence of mag-
netic pressure gradient, no force balance can be reached in
the direction of k?, as the Coriolis and buoyancy forces,

which act independently, have no reason to exactly
counteract each other. The plasma is then accelerated in
the direction of k?, and it becomes compressed together
with the attached field lines, in contradiction with the
perpendicular quasi-incompressibility condition (k? � dr? = 0).
What happens next is that the compression of field lines
gives rise to a magnetic pressure gradient restoring force,
which, on an Alfvénic timescale (much shorter than the
timescale of the interchange mode; see section 2), restores
force balance along k?.
[39] The careful reader may have noticed an apparent

conflict between the perpendicular quasi-incompressibility
condition (which implies dPM = 0 to leading order in the
small parameter e; see beginning of section 2.2) and the
presence of a nonnegligible magnetic pressure gradient
force. To resolve this apparent conflict, it suffices to realize
that the magnetic pressure gradient force is second order in
e (just like dPM) but that so too are the driving buoyancy
force (since both ga and dr are first order) and the Coriolis
force (since both W and w are also first order). In other
words, the magnetic pressure gradient force is very small
(compared to what it would be in a standard MHD wave),
yet nonnegligible (compared to the other forces at play in
the interchange mode).
[40] Returning to our main reasoning, we conclude that

by ignoring the magnetic pressure gradient force, Pontius
violated the perpendicular quasi-incompressibility condi-
tion. This is the reason why the Coriolis term did not drop
out from his dispersion relation. It is indeed straightforward
to verify that motions satisfying the perpendicular quasi-
incompressibility condition in the simplified magnetospher-
ic configuration considered by Pontius are unaffected by the
Coriolis force. Such motions, by essence, take place in
planes normal to k?, and the component of the Coriolis
force in these planes is / k? � (2W � dr) = (k? � dr?)
2W� (k? � 2W?) dr, which vanishes for quasi-incompressible
motions (k? � dr? = 0) in the thin magnetospheric disk
(where, by symmetry, W? = 0).
[41] As already noted, our corrective factor in the iono-

spheric drag term (third term in equation (20)) has no
impact on the stability of the interchange mode, in accor-
dance with the usual effect of a friction force. Likewise, the
Coriolis term appearing in Pontius’ dispersion relation
(fourth term in equation (22)) does not modify the stability
condition of the interchange mode, although it can substan-
tially reduce the instability growth rate.
[42] If the ionosphere is absent or ineffective at control-

ling the magnetospheric plasma flow (weak ionospheric/
magnetospheric coupling, with SP ! 0 and ta ! 1), our
dispersion relation (20) indicates that one mode grows at the
rate

g ¼ j kb;e
k?;e

j
ffiffiffi
n

p
W ; ð26Þ

while the other two modes decay at rates g = � jkb,e/k?,ejffiffiffi
n

p
W and g ! �1, respectively. Hence the instability

growth rate approaches a constant value, proportional to the
planetary rotation rate. In this limit, our growth rate
corresponds exactly to the growth rate derived by
Vasyliunas [1994]. This result was physically expected, as
(1) the Coriolis force, omitted by Vasyliunas, was shown to
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have no effect on the interchange mode, and (2) when the
ionospheric conductivity vanishes, no electric current can
flow along field lines between the magnetospheric disk and
the ionosphere, with the result that the transverse displace-
ment da is constant along field lines, as implicitly assumed
by Vasyliunas.
[43] If the ionosphere is very efficient at controlling the

magnetospheric plasma flow (strong ionospheric/magneto-
spheric coupling, with SP ! 1 and ta ! 0), one mode
grows at the vanishingly small rate

g ¼
k2b;e

1

x2
k2a;e þ k2b;e 1� nW2

x
ta m0 SP Lið Þ

� � nW2

x
ta ; ð27Þ

while the other two modes are oscillatory. By using
equation (10) and the perpendicular equilibrium condition,
one can show that the second term inside the parentheses in
the denominator of equation (27) is ] (Hk/H?) (Li/R) � 1
for a cold plasma, so that

g ’
k2b;e

1

x2
k2a;e þ k2b;e

nW2

x
ta � ð28Þ

Here, the instability growth rate is proportional to the iono-
spheric acceleration time, ta ! 0. Physically, the interchange
mode may not grow faster than allowed by the large
ionospheric conductivity. When k?,e kbeb, equation (28)
reduces to g ’ (nW2/x) ta, and we recover the growth rate
(more exactly, the inverse time scale for the overturning of
centrifugally driven turbulent eddies) obtained by Siscoe
and Summers [1981] as well as the growth rate obtained by
Huang and Hill [1991], both in the case of a dipolar
magnetic field with no Coriolis force. Once again this was
expected, insofar as the effect of the Coriolis force on the
interchange mode was shown to vanish.

4. Conclusion

[44] The present paper was motivated by the renewed
interest in the interchange instability and by the problems
posed by the effects of the planetary ionosphere and of the
Coriolis force on the interchange mode. Our objective was
by no means to solve the whole problem of the interchange
instability in a completely realistic manner but only to point
out and correct a number of erroneous conclusions pub-
lished in the literature. We used a simplified geometry and
assumed an axisymmetric, rapidly rotating magnetosphere,
with no field-aligned electric currents at equilibrium. More-
over, we worked under the thin-disk approximation and
restricted our attention to short-wavelength perturbations.
[45] Clearly, our restrictive prescription for the perturba-

tions misses some important aspects of the interchange
instability in realistic rotating magnetospheres, such as the
inner and outer boundary conditions, the radial dependence
of the perturbations, the nonlinear development of the
instability. . . Alternative linear studies exist [e.g., Huang
and Hill, 1991], which start from perturbations with large
azimuthal wave number and solve a boundary value prob-
lem in order to obtain the radial eigenfunctions of the

perturbations. In the nonlinear regime, numerical simula-
tions have shown that the dominant spatial scale of the
interchange instability in the Io torus is determined by the
radial density gradient in the initial torus [Yang et al., 1994].
Although our analysis does not include all realistic magne-
tospheric conditions, it contains enough physics to fulfill
our stated objective.
[46] From section 2.2 onward, we focused on the partic-

ular case of a cold plasma, and in section 3, we compared in
a critical way our results with those obtained earlier by
Vasyliunas [1994] and Pontius [1997]. Their studies had the
merit of pointing out for the first time the role of the
ionospheric acceleration time in the dynamics of rapidly
rotating magnetospheres, but they constituted only partial
(or even partly incorrect) approaches to the problem. First,
they were based on a simplified system of electric currents
coupling the magnetosphere to the ionosphere. Second,
Pontius [1997], who specifically inquired into the influence
of the Coriolis force on the interchange instability, mistak-
enly ignored the divergence-free perpendicular electric
currents responsible for the magnetic pressure gradient force
in the magnetospheric disk. This led him to violate the
perpendicular quasi-incompressibility condition that applies
to interchange motions and to retain in his final dispersion
relation a Coriolis term which should in fact be cancelled
out by the other forces at play (magnetic pressure and
centrifugal buoyancy).
[47] We reiterated Ferrière et al.’s [2001] conclusion that

the Coriolis force does not affect the short-wavelength
interchange mode in an axisymmetric, rapidly rotating
magnetosphere. We also confirmed that the planetary ion-
osphere has no influence on the interchange instability
criterion, but that it controls the instability growth rate,
especially when the ionospheric Pedersen conductivity is
large (strong ionosphere/magnetosphere coupling). In the
opposite limit, the magnetospheric dynamics remain local,
and we recover Vasyliunas’ [1994] result.
[48] Finally, Pontius [1997] noticed that giant planet

magnetospheres exhibit persistent departures from corota-
tion, which vary in magnitude with radial distance from the
planet. Our efforts to understand the exact conditions for the
development of the centrifugal instability and the properties
of the ensuing interchange motions rely on the assumption
that the magnetospheric plasma is in rigid corotation. This
restrictive assumption calls for future careful treatments that
will allow for differential rotation in the equilibrium state.
Anticipating this future direction, let us point out that the
upcoming treatments will presumably bear some resem-
blance to studies of the magnetorotational instability (MRI)
in the astrophysical context.

Appendix A: Important Properties of the
Interchange Mode

[49] To study the interchange mode in the framework of
the WKB approximation, we require that the perpendicular
wave number of the perturbation, k?, be much greater than
the inverse scale height of the perpendicular equilibrium,
1/H?, and we introduce the small expansion parameter

e � 1

k? H?
� 1 � ðA1Þ
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[50] The fact that the interchange mode is driven by
buoyancy implies that in the perturbed momentum
equation (1) the buoyancy forces must be at least compa-
rable to the standard MHD forces. In particular, in the
perpendicular direction, the total pressure gradient force
(first term on the right-hand side of equation (1)) must be
smaller than or of the same order as the gravitational
buoyancy force (sixth term on the right-hand side):

k? dPT ] dr g? ; ðA2Þ

since these two forces are comparable in the equilibrium
state (PT0/H?  r0 g?), equation (A2) can be rewritten as

dPT

PT0

] e
dr
r0

� ðA3Þ

Likewise for the magnetic tension force (fourth term on the
right-hand side of equation (1), with dB?  B0 (@dr?/@s), as
implied by the perturbed induction equation):

TM0

@2

@s2
dr?] dr g? ðA4Þ

or, equivalently (assuming T M0 6� PT0),

e H2
?

@2

@s2
k? dr?ð Þ ] dr

r0
� ðA5Þ

In the perturbed continuity equation,

dr ¼ �rr0 � dr� r0 r� dr ; ðA6Þ

the contribution from perpendicular advection to the density
perturbation (included in the first term of the right-hand
side) must be at least comparable to the contribution from
pure compression (second term on the right-hand side):

r� dr ] e k? dr?ð Þ ðA7Þ

and hence

dr
r0

 e k? dr?ð Þ � ðA8Þ

Inserting equation (A8) into equations (A3) and (A5)
immediately leads to

dPT

PT0

] e2 k? dr?ð Þ ðA9Þ

and

@

@s
]

1

H?
� k? ; ðA10Þ

respectively.
[51] Finally, in the perturbed equation for the total pres-

sure,

dPT ¼ �rPT0 � dr� gP0 r� dr� 2PM0 r� drð Þ? ; ðA11Þ

the contribution from perpendicular advection to the total
pressure perturbation (included in the first term of the right-
hand side) must be at least comparable to the two
contributions from pure compression (last two terms).
Consequently, in addition to equation (A7), one must also
have

r� drð Þ? ] e k? dr?ð Þ ðA12Þ

and hence

r� drð Þk ] e k? dr?ð Þ � ðA13Þ

[52] By comparison with the classical compressible MHD
waves (for which (dr/r0), (dPT/PT0), (r � dr)?, (r � dr)k
are all  (k? dr?)), equations (A12) and (A13) indicate
that the interchange mode is compressible perpendicular
and parallel to field lines only to first order in e, and
equation (A9) indicates that the total pressure is perturbed
only to second order in e. Thus to zeroth order in e, the
interchange mode is incompressible both perpendicular and
parallel to the magnetic field:

r� drð Þ?¼ r� drð Þk¼ 0 ; ðA14Þ

and it leaves the total pressure unperturbed:

dPT ¼ 0 � ðA15Þ

Appendix B: Neglect of the Coriolis Term

[53] For a thin magnetospheric disk, where the equilibri-
um scale height is much shorter along field lines than across
them (Hk � H?), the perturbed momentum equation (2) is
such that the Coriolis force (last term on the right-hand side)
is negligible compared to the inertial force (term on the left-
hand side). To see this, we first note that the ratio of both
forces is on the order of

FCoriolis

Finertial

 Wa

w
ka kb

k2?

ds
dra

’ Wa

w
ka

k?

ds
dr?

; ðB1Þ

where the perpendicular quasi-incompressibility condition,
k? � dr? ’ 0, was used to write the second relation. The
first factor on the right-hand side is  (Wa/W) (W/w), with
(W/w) ] 1 and (Wa/W) ’ ca s ] (Hk/H?) � 1 (as a
reminder, ca is the magnetic curvature and s the field-
aligned coordinate). The second factor is always <1. The
third factor is  (@ds/@s)(s/d r?), with (@ds/@s) ] (dr?/H?)
(from equation (A13) together with equation (A1)),
i.e., ] (s/H?) ] (Hk/H?) � 1. Altogether

FCoriolis

Finertial

]
Hk

H?

� �2

� 1 � ðB2Þ
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14 avenue EdouardBelin, F-31400 Toulouse, France. (ferriere@ast.obs-mip.fr)
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