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Our goal is to identify sheet steel magnetization with near field measurements. Indeed, direct calculation of the whole magnetization
is impossible because the remanent part of the magnetization is nondeterminist. Consequently, our strategy is to obtain a magnetostatic
formulation able to compute magnetic field as close as possible to the sheet and which is adapted to solve an inverse problem. In this
paper, a scalar potential integral formulation is introduced and compared to a magnetization formulation. We are especially interested

in the magnetic anomaly created by ferromagnetic ships.

Index Terms—Inverse problem, magnetization identification, scalar magnetic potential, thin magnetic sheet.

1. INTRODUCTION

FERROMAGNETIC hull ship, placed in the earth’s mag-

netic field and under mechanical constraints, gets a magne-
tization which creates a local anomaly of the field. It makes the
ship vulnerable to detection and mines. Therefore, for decades,
marines worldwide are looking for reducing magnetic anomaly.
Before achieving this, it is necessary for the ship to evaluate
its own magnetic anomaly. The key point of such system is the
identification of the magnetization of the ship’s ferromagnetic
sheets steel.

The magnetization can be divided in two parts: an induced
one, due to the reversible reaction of the material in the inductor
field, and a remanent one due to the magnetic history of the ma-
terial (which depends on hysteresis, mechanical, and thermal
constraints). The computation of the induced magnetization is
now well known [1], [2]. However, the remanent part is impos-
sible to evaluate with a deterministic calculation because we
have no access to the magnetic past of the material. Moreover,
even if we had such knowledge, existing models would be too
complex to be applied to 3-D geometries. It is then necessary
to use magnetic measurements to determine the total magneti-
zation of the hull. Thus, the main goal is to solve an inverse
problem (i.e., determination of the sources by knowing the ef-
fects) with magnetic sensors placed in the air region inside the
hull.

Among the different magnetostatic formulations, few fit with
our problem. The first major need is a correct computation of
the magnetic field close to the hull. Indeed, measurements are
done near the hull for two reasons: the first one is that techni-
cally sensors cannot be placed outside the ship and the second
one is because the magnetic information quickly decreases with
distance. It means that it is impossible to identify local anomaly
with distant measurements. The second constraint consists in an
explicit mathematical link between field sources and the field
itself.

Each formulation has advantages and drawbacks which
must be clearly examined. For example, since the computation
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problem of thin magnetic sheets has been overcome [1], the
finite element method could be a solution: indeed magnetic
field calculation near the hull is easy in this case; whereas it is
critical in the case of integral methods. But it is important to
notice that solving the inverse problem by the finite element
method is really difficult and usually impossible. This is due to
the lack of an explicit mathematical link between causes and
effects. From a general point of view, this link exists in the
integral method.

Magnetization identification based on near field measure-
ments has already been achieved [3]. The main results of this
problem are recalled in this paper. Now, we expect to find
another formulation more accurate near the sheet steel.

II. INDUCED MAGNETIZATION COMPUTATION

In this section, we are interested in the calculation of the in-
duced magnetization M4 of a thin magnetic sheet in the ex-
ternal low field Hg. The geometry and the physics are perfectly
known (relative permeability p, especially).

A. Magnetic Sheet’s Behavior
The induced magnetization creates a local perturbation Hy.eq
of the external field, so the total field H is
H = HO + Hred (1)

The sheet’s behavior, with no remanent magnetization, is
given by

M=M=y H 2)

where x, is the magnetic susceptibility.
Finally, the field created by the ferromagnetic material can be
calculated thanks to (see also Fig. 1) [3]

grad///M

The magnetic field sources can be represented by different
models. Two are described below: the magnetization formu-
lation (M-formulation) and the scalar potential formulation
(U-formulation).

Hyea = — 1 T 00 )

I‘—I"|3
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Fig. 1. Symbols definition.

B. Magnetization Formulation

This is the most common way to describe magnetic sources.
It is possible to compute the magnetization in the ferromag-
netic material thanks to (1), (2), and (3)

M + —grad///M ,|3dQ x+Ho. (4

The sheet is thin enough to be considered as a surface and is
now meshed in ne surface elements and nn nodes. Moreover, the
magnetization is approximately tangential to the sheet [1].

The integral in the previous equation is obviously convergent
[4] but its computation is complex when r = r’. To overcome
this problem, a collocation method at the barycentre of each el-
ement has been applied [3]. Finally, discretization and simplifi-
cation of (4) give at barycentre j

_eXr r; —
X Z Mk-nk-h—PdL x-Hoj  (5)

where Ly is the edge of the kth element, ny is the external
normal of Ly, and e is the thickness of the sheet.

Written at each barycentre, this equation leads to a linear
system whose solution gives the induced magnetization of each
surface element. The magnetic interaction matrix is called C and
the vector of the external field is called K

C-M=K. (©6)

The total field at any point r. is calculated by

ne

H(r,)= % 3 RUSE m¢1L+H0(rc) 0
k=1 1Lk

Our goal is the magnetization identification based on near
field measurements and it is already possible to estimate what
will be the results of this formulation for the near field compu-
tation. Clearly, they will not be precise near the ferromagnetic
sheet steel because magnetization is constant on each element.
In term of charge density, it means that the sources of the mag-
netic field are only on the elements’ edges. It is not a problem far
from the elements but near them singularities appear. The use
of linear magnetization in this formulation has been studied but
the gradient computation of the integral in (4) is very complex.

C. Scalar Potential Formulation

The total scalar potential U is the sum of the source potential
Uy and the reduced potential U, cq

U="Uo+ Urea. ®)
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Naturally
M = —y,gradU ®
and thanks to (3)

I'—I'
red— /// I‘—I‘/|3dQ

Using (8), (9), and (10), the induced potentials are given

by [5]
Xr [
Q

Now, as normal magnetization is neglected, the potential
can be considered constant in the thickness of the sheet. Inside
each element, the scalar potential is approximated by linear or
quadratic shape functions ¢

(10)

(1)

ZU% (T1,72) (12)

Tl>T2

where 71, T2 are a local base of the kth element.

Notice that the use of quadratic shape functions needs nq new
nodes in the middle of each edge of the mesh elements. Only the
quadratic functions will be used in the following. Thus, the mag-
netization is linear along each element. In addition, the use of
quadratic shape functions allows having a tangential continuity
of the magnetization between two elements.

As in (4), the integral computation of (11) is not easy and
because of the shape functions no collocation method at the
barycentres is possible. Obviously, no analytical solution exists
for this integral and consequently a numerical computation is
needed. However, a direct numerical computation is not recom-
mended because of the high singularity of the 1/r? term. Indeed,
the integration is done on the whole volume, we cannot avoid
the case r = r’ as in the M-formulation. But mathematically,
the field created by the volume distribution is equivalent to a
surface charge density and a volume charge density [6]

1 M- 1 1
Useq = —// DS — —/// SdivMdQ.  (13)
47 r 47 r
S Q

In this equation, the singularity is reduced (1/r instead of
1/r?) and divM is a constant. A good solution to compute
these two integrals is to integrate analytically with respect to
the normal direction of the element and then to use numerical
integration method.

As a consequence, the discretization of (11) at node j is

Ugj = U

nn+nq . 1
2; U; Z //G —Xa4s /é//divG-EdQ (14)

where
Dy 3@
— 1 1 1
G 87'1 m + 8 2 ( 5)
= |I‘j — I‘i|. (16)

Equation (14) is written at each node of the mesh to obtain
a linear matrix of nn+nq rows and columns and called ¥. The



1056

H R=1m : ‘|E]'
I d=l.05m: —

X 10-5 Component X
45 .................................. cesnees
B4 | K
e 43 £
S 41
2
- 4 ..........................................................
39 —e—Analytical
LY | e Unformuiation |~
38 —o—M-formulation
-05 0 0.5
Position (m)

Fig. 3. Magnetic field along the defined line: analytical versus M-formulation
versus U-formulation.

source vector is called SU. The total potential at each node is
obtained by solving the linear system

.U =8U. (17)

The total field at any point r, is calculated thanks to
H(r.) = Xr orad radU —<— " dO+H (re). (18)
c) — 4ﬂ_g g |I‘C—I'|3 o\lc/-
Q

In that case, an accurate near field computation is expected.
Indeed, the magnetic sources are far less singular than in M for-
mulation because it is now the sum of a surface charge density
and a volume charge density instead of a linear charge density
located on the edges of the elements.

D. Numerical Example

The better accuracy of the U formulation is illustrated thanks
to the following example: a 1 m radius hollow sphere, with
the thickness 1.4 mm and with the relative permeability pr =
96, is meshed in 576 quadrangular elements. It is placed in a
30 A-m~1! external field along the z axis. The quadratic shape
functions are used.

The magnetic field is calculated along the dotted line in Fig. 2.

The results of the two formulations are compared to the ana-
lytical result (see Fig. 3).

At a short distance of the sheet steel, the scalar potential
formulation results are excellent compared to M-formulation’s
ones.

Finally, the U-formulation seems to be better adapted than
the M-formulation to identify magnetization based on near field
measurements.

III. REMANENT MAGNETIZATION IDENTIFICATION

The problem is to determine the remanent magnetization of
sheet steel from a few number of magnetic field measurements.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008

The starting point of the inverse problem is (18), for the U-for-
mulation, which links sources and effects. In (18), H is the mea-
surement and the unknowns are U.

A. Addition of Physical Information

Among the infinite number of solutions of (18), it is necessary
to choose the most physical one. For this purpose, the following
equations, describing the shell magnetic behavior with remanent
magnetization are added to (18), [3]:

Mind — XrH
M = Mind + Mrem.

19)
(20)

B. Inverse Problem: M-Formulation

Introducing (19) and (20) in (5) and (7) leads to the following
system [3] which is solved by pseudo-inverse:

C C—1Id\ (M (K
Am  Am MPer ) T\ b

where Id is the identity matrix, b the vector of measurements,
and Am the matrix expression of (7) at sensors’ position.

21

C. Inverse Problem: U-Formulation

The choice of the unknown that will represent the remanent
part of the magnetization is not obvious because the existence
of a remanent scalar potential is not clearly established. In par-
ticular, the relation below imposes strong constraints on the re-
manent magnetization

curlM™™ = 0. (22)

Nevertheless, this formulation is written and will be tested
with real measurements. Consequently, the total potential is
considered as the sum of the induced and remanent potentials

U=Urtyurem, (23)

The regularized inverse problem is obtained by adding (19)
and (20) to (18)

Vv —Jd\ U\  [(SU
Umn  Um Urem | 7\ b

where Um is the matrix expression of (18).

(24)

D. Inverse Problem: U/M-Formulation

As the inverse U-formulation is of doubtful validity, a more
rigorous formulation is introduced: a coupled induced potential
and remanent magnetization formulation.

Using (9), (19), and (20)

M = —x,gradU + M"™, (25)
And (11) becomes
Xr r—r’
U+ = dU - ————dQ2
+47r///gra v —r/|3
Q
(26)

1 r—r
S Mre™m . ———dO = U,.
A=
Q
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Signature

Fig. 5. Mock-up’s mesh with sensors and signature line.

Inside each element, M"*™ is approximated by linear shape
functions. Equation (18) is similarly modified and the regular-
ized inverse problem is obtained by solving the linear system

v P uind\  /SU
Um A Mrem ]\ b
where P and A are the matrix expressions of the integrals con-
taining IM"e™.

27)

E. Example: Identification Based on Experimental Near Field
Measurements

The mock-up is made of steel (e = 0.0014 m, x, = 95) and
is 4.4 m long (see Fig. 4). The external field is the earth’s field
(Hy = =044 Am~', Hy = —17.94 Am~" H, = —32.36
A-m~1). The signature is evaluated on a line below the mock-up
(see Fig. 5). Measurements come from 32 magnetic tri-axial
sensors which are 20 cm far from the hull. The magnetization is
unknown and unspecified.

In the case of the M-formulation and U/M-formulation, there
is a good agreement between the predicted and real field (on
Figs. 6 and 7 only U/M-formulation’s results are shown because
they are very close to the results of M-formulation). So our new
formulation is validated to identify magnetization based on near
field measurements. The U-formulation is not. The constraint
(22) is clearly too strong. It appears that the remanent scalar po-
tential is not adapted to represent remanent magnetization. To
go further, we can reasonably think that remanent scalar poten-
tial does not exist in general.

IV. CoNCLUSION

A new formulation of the magnetostatic inverse problem has
been proposed: a coupled induced potential and remanent mag-
netization formulation. It allows a better computation of field
close to the sheets than a classical M-formulation. In addition,
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it is able to identify magnetization based on near field measure-
ments but shows no improvement compared to the M-formula-
tion. Sensors seem to be far enough from the hull to avoid inac-
curacy of the M-formulation.

Furthermore, it was proven thanks to real measurements that
remanent scalar potential is not adapted to represent remanent
magnetization.

To conclude, we expect to improve our results thanks to a
statistical approach which may allow introducing new phys-
ical knowledge and take into account data that are not perfectly
known (relative permeability for example).
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