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Formal Sensitivity Computation of Magnetic Moment Method
H. L. Rakotoarison1, V. Ardon2, O. Chadebec1, B. Delinchant1, S. Guerin1, and J.-L. Coulomb1

Grenoble Electrical Engineering Laboratory (G2ELab), CNRS—UJF/INPG, 38402 Saint Martin d’Héres, France
Schneider Electric, Grenoble 38000, France

This paper presents a methodology for computing formally sensitivities of the magnetic moment method. This numerical method is
known to be very accurate and light to compute force and torque acting on an open field problem. We propose an approach which
computes formal derivatives with respect to the geometrical parameters of the device. Once the sensitivities are obtained, gradient based
optimization algorithm can be used.

Index Terms—Magnetostatic, moment methods, optimization, sensitivity.

I. INTRODUCTION

THE MODELING of devices containing ferromagnetic ma-
terial (iron, nickel, cobalt, and their alloys. etc.) in magne-

tostatic is achieved thank to numerical approaches like finite ele-
ment method (FEM), boundary element method (BEM), method
of moments (MoM). In a design process, the modeling must be
coupled with an optimization process. Even if stochastic method
(like genetic algorithm) can be applied, these techniques lead to
a very important computation time increasing drastically with
the number of parameters. The use of a surface response can
partially solve this problem but the number of parameters is still
limited. Gradient based methods (like Quasi-Newton algorithm)
are very efficient solution. It is then necessary to compute the
sensitivity of the objective function versus the parameters. Nu-
merical sensitivities calculation using finite difference is fairly
straightforward and an easy way to achieve it, but it is not a ro-
bust technique. Hence, we present an original method based on
formal differentiation of the MoM approach.

II. METHOD OF MOMENTS

The MoM is an accurate and light numerical approach
dedicated to the modeling of electromagnetic devices. In this
method, only active regions (i.e., ferromagnetic parts of the
device) are meshed. Thus it is particularly well adapted for the
modeling of simple radiated devices with few ferromagnetic
parts in comparison of the total air region.

The MoM is based on the discretization of the system (1),
associated with a point matching approach applied at the
barycenter of each elements [1]

(1)
By combining (1) with the magnetic law, we get the following

system of equations:

(2)
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Fig. 1. Reversed magnetization law of a ferromagnetic material, the function
is characterized by its slope and the saturation magnetization.

and are respectively the magnetic field and the ap-
plied external field generated by the sources (conductors, per-
manent magnet, etc. ) at the barycenter of the element; is the
interaction matrix between elements. It depends on the geomet-
rical parameters of the system and mesh processes, is the
magnetization of the material and a function which de-
pends on the material properties. The magnetization law of a
ferromagnetic material is shown in the Fig. 1; this function is
characterized by its slope at the origin and its saturation value.

If the material has a linear characteristic (paramagnetic, dia-
magnetic material, and ferromagnetic material working at low
excitation field) the reversed magnetization law function be-
comes simpler

(3)

where is the relative permeability of the material. For non-
linear behavior of a ferromagnetic material, the reversed mag-
netization law is given by

(4)

Reducing the system (2) into one set of nonlinear equations
leads to

(5)

In fact, (5) has a vector form. So, the scalar function
needs transformation (6) to be a vectorial function

(6)
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Fig. 2. Surface charge approach, used to compute force and torque calculation
after solving the magnetization state of the system.

The ferromagnetic volume is meshed into elements; magneti-
zation is supposed to be uniform on each of them. Equation (5) is
a system of equations (3 as the x, y, and z coordinate, an N
as the number of element). The unknown variable is the magneti-
zation M, which is a vector with the same size as the system (5).

A. Solving the Magnetization State of the System

Classically, it remains to solve (5) to get the magnetizations.
For a linear material, plugging (4) into (5) gives a simple linear
system

In the other hand, for nonlinear material the relation (5) is
solved by using Newton-Raphson algorithm. At the end of the
resolution process, magnetization of each element is obtained.

B. Computing Forces and Torques Acting on the Body

Once the magnetization state of the system is solved, forces
and torques acting on the devices can be computed by using the
well-known equivalent magnetic charge approach. The charge
distribution is expressed by

(7)

(8)

where is the external normal of the surface. As the magneti-
zation is supposed to be uniform inside an element, volume
density charge , and the surface density charge can be
evaluated by projecting the magnetization vector on the six sur-
faces of the element (Fig. 2). If are respectively
the permeability of the vacuum, the charge density of the sur-
face j owned by the element i and the point which describes the
surface of the element.

The force calculation applied on the N elements of the seg-
mented bloc is given by (9).

(9)

From (9), the computation of the torque is straightforward

(10)

where O is the pivot point where the torque is computed.
Let us note that in (5), the points where the vectors of ex-

ternal field are computed in the barycenter of each element,

whereas those of (9) and (10), are computed on each surface of
each element.

From here, let us consider a function which represents, the
torque or the force applied on the ferromagnetic material or its
radiated magnetic field at an observation point

(11)

depends on the resolved magnetization , on the applied
external field , and on the parameter of the model.

III. FORMAL DERIVATION OF THE METHOD

A. Drawbacks of the Finite Difference Approach

Finite difference of a function versus a parameter p is com-
puted easily by using

(12)

The advantage of this method is the easiness in its implemen-
tation, but users are aware of its well-known problem, it occurs
when the user supplies the right step “h.” Because, its choice de-
pends tightly of the variation of the function (which could not be
evaluated), and the accuracy of the computer which implement
the numerical code.

This approach presents another significant weakness because
the function needs to be evaluated two times. This can be
time consuming if this function calls an iterative algorithm, es-
pecially in our case the nonlinear implicit solver, moreover if
derivative versus n parameter is required, the algorithm will be
called times.

The formal approach allows solving those problems, because
it involves only one call to the function even if we need the
evaluation of the partial derivative of the function versus the n
parameters of the model.

B. Classical Approach

The differential of the function is given by

(13)

So, the classical computation of the sensitivity of versus
can be expressed

(14)

The evaluation of

depends on how is expressed, and depend strongly on the
mesh method.

can be easily computed by using formal deriva-
tion on the equations modeling the magnetic field produced by
source (permanent magnet and conductors) [3].
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is obtained such that we have the following: the
derivation of (5) according to the parameter gives

(15)

Then, the arrangement of (15) gives a linear system like (15),
which can be solved easily

(16)

The above equation needs

(17)

Then, the sensitivity of versus p is obtained by combining
(13) and the solution of the linear system (16).

Once again, the evaluation of could be expressed
formally by applying formal derivation on the model of external
field given by permanents magnets or conductors carrying cur-
rent density as in [3]. The formal computation of is
possible if the mesh process could be parameterized according
the dimension of the ferromagnetic part.

To achieve the jacobian computation (i.e., vector of partial
derivative of versus the parameters ), the linear system
(16) has to be solved times or matrix inversion operation is
used; thus it can be time consuming in the case of optimization
process. A well-known method to overpass this problem is the
use of the adjoint state as in [2].

C. Enhanced Approach by Using the Adjoint State

Now, let us introduce the adjoint state , which has the same
dimension as , and satisfies (18)

(18)

The transposition of the (18) gives

(19)

Multiplying the (16) by gives

(20)

TABLE I
PARTIAL DERIVATIVE OF SOME TERM ACCORDING

TO THE TYPE OF THE PARAMETER

Fig. 3. Irron plate actuated by a permanent magnet. The position of the perma-
nent magnet is characterized by the parameter “tx,” and the width and the height
of the device is characterized respectively by “w” and “h.”

Using the combination of (19) and (20) in (14) gives the finale
result shown in

(21)

So, only one linear system (18) resolution per function is
required to its derivative versus parameters. This approach is
more efficient than (16) if the number of function is smaller
than the number of parameter , which is often the case.

The parameter can be one of the following kinds.
, if is a geometrical parameter of the ferromag-

netic body.
, if is a physical parameters of the ferromagnetic

material ( and ).
, if acts on the external field (the geometrical or

physical parameter of the magnetic field source object like
permanent magnet or coil).

, if is a mesh parameter. The derivative ac-
cording this last kind of parameter could not be computed
formally because it is a discrete parameter and it does not
contribute to the real behavior of the model. Table I gives
a guide which shows that some terms in (21) equals to 0;
crosses mean that the partial derivative exists and needs to
be evaluated.

IV. APPLICATION

Let us study an iron plate actuated by a magnetic field pro-
duced by a parallel piped permanent magnet (Fig. 3); it repre-
sents a MEMS actuator like [4]. The plate is fixed into a torsion
beam and can rotate around the axis. The magnet is magne-
tized according the direction, it has only one degree of freedom
which is its translation according the direction, its position is
parameterized by “tx.”
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Fig. 4. Device is meshed and simulated on an FEM software, remark the need
of the mesh density surrounding the plate.

Fig. 5. Behavior of the torque and its formal sensitivity versus the magnet trans-
lation, the plate dimensions and orientation remains fixed.

We had meshed and simulated the device by an FEM software
(Fig. 4), because of the high ratio between the dimension of the
magnet (10 5 5 mm ) and the plate (1 1 0.01 mm ), we
have surrounded this last by three level of boxes, the inner box
which is closest of the plate is meshed finely and the outer box is
meshed coarsely. Finally, the finite element model contains more
than 40 000 elements. Despite this mesh strategy, the problem is
hard to convergence for some particular positions of the magnet.
This is one of the reasons which lead us to use the MoM model.

Fig. 5 shows the torque behavior applied on the plate and
its formal sensitivity calculation versus the parameter. The
angular position of the plate is fixed.

V. OPTIMIZATION

The derivative is validated; the next step consists to optimize
the device; the following are the corresponding specifications:

• Objective function:
— minimize the volume of the device

• Inputs constrains
— physical and geometrical parameters of the iron plate is

fixed
— two fixed angles for the iron

plate rotation.
• Output constrains:

— .
— .
— the difference is fixed.

Fig. 6. Specifications applied on the torque behavior.

Fig. 6 helps us to formulate the specifications of the
torques. We had adopted an innovative optimization strategy to
guarantee the global optimum and an accurate solution of the
optimization, it consists in optimizing the model into two steps.

• First, we have chosen randomly inside the space of input
constrains, N initial inputs points. Starting form these
points, we have optimized N times a coarse model of the
iron plat (in our case, a subdivision of four elements is
enough) by an SQP algorithm. Each optimization spends
much iteration but because of the lightness of the coarse
model, each process converges quickly into a local op-
timum; finally we choose the best local optimum, which
becomes the global optimum of the coarse solution.

• Then, we had optimized a heavy and accurate model (com-
posed by 100 elements) by supplying as the initial point of
the SQP algorithm the corresponding input parameter the
global optimum of the coarse solution; this leads to a fast
convergence of the heavy model and guarantees a accurate
and global optimum.

VI. CONCLUSION

The approach shows the feasibility of the formal sensitivity
calculation applied on the Magnetic Moment Method. The
formal sensitivity computation is more robust than the finite
difference method for an optimization process based on a gra-
dient algorithm. Finally, we supply an innovative optimization
strategy as application of the approach.
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