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Skin and proximity effects are calculated in both active and passive conductors via a subproblem finite-element method based on a
perturbation technique. A reference limit problem considering either perfectly electric or magnetic conductors is first solved. It gives
the source for eddy-current perturbation subproblems in each conductor with its actual conductivity or permeability and its own mesh.
These subproblems accurately determine the current density distributions and ensuing losses in conductors of any shape in both fre-
quency and time domains, overcoming the limitations of the impedance boundary condition technique.

Index Terms—Eddy currents, finite-element method (FEM), perturbation method, skin and proximity effects.

I. INTRODUCTION

THE PERTURBATION of finite-element (FE) solutions
provides clear advantages in repetitive analyses, like in

non-destructive testing and moving systems applications [1],
[2]. This technique allows to benefit from previous computa-
tions instead of starting a new complete FE solution for any
variation of geometrical or physical characteristics. It also
allows different problem adapted meshes and computational
efficiency due to the reduced size of each subproblem.

A perturbation FE method is herein developed for accu-
rately calculating the skin and proximity effects in conductors
of any properties and shapes, in both frequency and time
domains. It is a generalization and extension of the method
developed in [3] and [4], applied to passive and active pure
conductors, respectively. Two kinds of limit problems are
defined, for both perfectly electric and magnetic conductors.
They give complementary reference solutions to be used as
sources in perturbation problems considering then the actual
finite properties. Each problem is defined in its appropriate
domain and mesh, which allows domain overlapping and
distinct mesh refinements. The developments are done for the
magnetic vector potential FE magnetodynamic formulation,
with attention on the proper discretization of the constraints
peculiar to the subdomain approach. The method is validated
on a test problem and its main advantages versus the impedance
boundary condition (IBC) technique [5] are pointed out.

II. REFERENCE AND MODIFIED EDDY-CURRENT PROBLEMS

A. Reference Problem and Its Strong Formulation

A magnetodynamic problem is defined in a domain , with
boundary , of the 2-D or 3-D Euclidean
space. The eddy-current conducting part of is denoted
and the non-conducting one , with . Mas-
sive conductors belong to .
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A problem, defined with subscript , is first considered.
Its equations and material relations in are

(1a-b-c)

(1d-e)

with boundary conditions (BCs) and interface conditions (ICs)

(1f-g-h)

(1i-j-k)

where is the magnetic field, is the magnetic flux density,
is the electric field, is the electric current density (including
source and eddy currents), is the magnetic permeability, is
the electric conductivity and is the external unit normal to a
boundary. Note that (1b) is only expressed in , whereas it is
reduced to the form (1c) in . Also, (1g) is more restrictive
than (1h). The notation expresses the discon-
tinuity of a quantity through any interface (of both sides
and ), which is allowed to be non-zero; the associated surface
fields , and are usually unknown, i.e., parts of
the solution. It is intended to solve successive problems, the so-
lutions of which being added to get the solution of a complete
problem. At this first step, the solution is a solution as a
whole, called reference or source solution.

B. Modified Problem Defining Perturbations

A modification of the problem due to a change of per-
meability or conductivity in some subregions leads to a pertur-
bation of each field quantity. Both large and small perturbations
are considered. These can result from the change of properties
of existing materials [1] or from the addition of new materials in
the ambient region [2], which actually also amounts to changing
some material properties. The governing equations and relations
in another domain , i.e., a modified form of , and the BCs
and ICs, are still of the form (1) with all the involved quantities
relative to the new solution and the involved boundaries relative
to . To point out the decomposition of the new solution as a
perturbation of the reference one, these quantities are written as

(2)
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Fig. 1. Domains of the reference (left) and perturbation (right) problems (cp �
cpe or cpm).

Subtracting each equation of (1) from its counterpart in the
so-modified problem, the perturbation equations that define the
problem , are

(3a-b-c)

(3d-e)

(3f-g-h)

(3i-j-k)

where the so-defined volume sources and are obtained
from the reference solution as

(4a-b)

The perturbation fields are still governed by the Maxwell equa-
tions in their classical forms (3a-b-c). However, their associated
material relations now include the additional sources (4a-b), that
only act in the modified regions.

Solving the perturbation problem (3) instead of the modified
one enables to avoid operations already performed in the ref-
erence problem (1). Moreover, at the discrete level, the meshes
of both reference and perturbation problems can be simplified,
with any overlapping of regions and distinct mesh refinements.

By construction, the summation of the solutions of (1) and
(3), i.e., (2), gives exactly the solution of the modified problem
under the condition that all materials are linear and that the
wished changes in domain with reference to domain are
expressed by (4a-b) in (3d-e).

For the sake of simplicity at the discrete level, domain can
disregard some materials initially present in domain , while
these must exist in the considered complete problem. Any in-
tersection of non-material regions of with the material re-
gions of is thus allowed [2]. This means that the corrections
(4a-b) are deliberately avoided in relations (3d-e) of the disre-
garded material regions [4]. For large perturbations, iterations
between subproblems are required to obtain an accurate solution
as a series of mutual perturbations. Nonlinear analyses are clas-
sically treated inside each problem, with possible inter-problem
iterations.

III. REFERENCE PROBLEM AS A LIMIT CASE

A. Reference Problem With Perfect Conductors

A first reference problem considers conductors as perfect,
with (see Fig. 1, left). These are denoted

, and their boundary . The re-
sulting surface currents are considered to flow between the outer
and inner sides of with regard to , i.e., and

. The perfect conductors are extracted from in

(1) and treated via a BC of zero normal magnetic flux density
on their boundaries , also occurring on , i.e.,

(5a-b)

The trace of the magnetic field is unknown on and
vanishes on , i.e., with (1i)

(6a-b)

The modified problem (3) considers the conductors
with their finite conductivity (see Fig. 1,

right). The fields in are not surface fields anymore but
penetrate the conductors. They are solutions of problem (3) with

including with particular ICs (3i-k) through
. On the one hand, (3k) with (2) and (1k) gives

(7)

due to the continuity of in (2) and the zero value of
via (6a-b). On the other hand, (3i) with (2) and (1i) gives

(8)

due to the continuity of in (2) and relation (6a).

B. Reference Problem With Perfect Magnetic Materials

Another reference problem considers conductors
, of boundary , as perfect mag-

netic materials, i.e., with (see Fig. 1, left). The domain
can thus be extracted from in (1) and treated via a BC

fixing a zero tangential magnetic field on its boundary ,
also occurring on , i.e.,

(9a-b)

Also, the trace of the magnetic flux density is unknown on
and vanishes on , i.e., with (1k)

(10a-b)

The modified problem (3) considers with
its finite permeability (see Fig. 1, right). The perturbation
fields are solutions of problem (3) with including
with particular ICs (3i-k) through . On the
one hand, (3k) with (2) and (1k) gives

(11)
due to the continuity of in (2) and relation (10a). On the
other hand, (3i) with (2) and (1i) gives

(12)

due to the continuity of in (2) and via (9a-b).

IV. FINITE ELEMENT WEAK FORMULATIONS

A. B-Conform Weak Magnetodynamic Formulations

The eddy-current problems are defined in with the mag-
netic vector potential formulation [6], expressing the electric
field in via a magnetic vector potential together with
the gradient of an electric scalar potential , and the magnetic
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flux density in as the curl of . The magnetody-
namic formulation of problem is obtained from the weak
form of the Ampère equation (1a), i.e., [6]

(13)

where is a gauged curl-conform function space defined
on and containing the basis functions for as well as for
the test function (at the discrete level, this space is defined by
edge FEs); and , respectively, denote a volume
integral in and a surface integral on of the product of their
vector field arguments. The surface integral term on ac-
counts for natural BCs of type (1f). The term on the surface
with essential BCs on is usually omitted because it does
not locally contribute to (13). It will be shown to be the key for
the post-processing of the reference solution, a part of which
being .

The weak formulation of the perturbation problem (3) is

(14)

where stands for the perturbed conducting region, i.e.,
or . A major consequence of the -conform for-

mulation used is that ICs (7) or (11) and (8) or (12) are to be
defined, respectively, in strong and weak senses, i.e., in
and in a surface integral term.

B. Perfect Conductors Perturbed to Real Ones

For a perfect conductor , BC (5a) leads to an essen-
tial BC on the primary unknown that can be expressed via
the definition of a surface scalar potential (in general single
valued, if no net magnetic flux flows in ) [7], i.e.,

(15)

or a floating component of in 2-D.
The reference formulation is of the form (13) where the per-

fect conductors are extracted from and and are only
involved through their boundaries (added to ) with
(15) strongly defined in .

The surface integral term is non-zero
only for the function grad [from (15)], the value of which
is then the total surface current flowing in (this can be
demonstrated from the general procedure developed in [7]). It is
zero for all the other local test functions (at the discrete level, for
any edge not belonging to ). This way, the circuit relation
can be expressed for each conductor and the coupling
with electrical circuits is possible.

For the associated perturbation formulation (14), IC (7) is
strongly expressed via the continuity of the vector potential
through . IC (8) can rather only act in a weak sense via
the surface integral term related to in (14). Indeed, its
involved quantity is not known in a strong sense on ,
but rather in a weak sense. One has

(16)

Fig. 2. Magnetic flux lines for the conventional FE solution bbb (left), the refer-
ence solution bbb (middle) and the perturbation solution bbb (right); system 1 with
a conductive non-magnetic core.

Fig. 3. Magnetic flux lines for bbb (left), bbb (middle), and bbb (right); system 2
with a conductive magnetic core.

in case no part of is in contact with [other-
wise the second and third terms of (13) have to be considered
as well]. This way, the surface integral term related to in
(14) is naturally calculated from a volume integral coming from
the reference problem (limited at the discrete level to one single
layer of FEs touching the boundary).

The discrete quantity in (16) is initially given in the mesh
of the reference problem. It has afterward to be expressed in the
mesh of the perturbation problem, through a projection method
[8] of its curl limited to the layer of FEs touching .

C. Perfect Magnetic Materials Perturbed to Real Ones

When perfect magnetic materials are
considered, the reference formulation is of the form (13) where
the perfect materials are extracted from and and are only
involved through their boundaries added to with the
BC (9a), i.e.,

(17)

For the associated perturbation formulation (14), IC (11) must
be strongly expressed via the vector potential . It can be ex-
pressed with a known discontinuous component of only
acting outside , with , i.e.,

(18)
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Fig. 4. Eddy-current density along the core surface for the conventional FE
solution, the perturbation technique and the IBC technique (top); relative dif-
ference between solutions of the last two techniques (bottom); system 1 with a
conductive non-magnetic core.

Fig. 5. Same as Fig. 4 but for system 2 with a conductive magnetic core.

or with an associated known discontinuous component of
, with , also only acting outside , i.e.,

(19)

IC (12) cancels the surface integral term related to in
(14), i.e., .

V. APPLICATION

Two core-inductor systems are considered as test problems
(see Figs. 2 and 3). Their five copper stranded inductors are
connected in series. The core of system 1 (see Fig. 2) is made
of aluminium m . The one of system 2
(see Fig. 3) is made of steel ( m and rela-
tive permeability ). A 2-D model with a vertical
symmetry axis is considered. For a direct comparison with the
IBC technique, a frequency domain analysis is done. However,
the subdomain perturbation technique can be directly applied
to time domain analyses without any change. The working fre-
quencies are 5 kHz and 500 Hz for systems 1 and 2, respectively,
to give equal skin depths 1.37 mm. The core
half-width is 12.5 mm and its height is 50 mm .

Holes are considered in the core in order to point out the
effect of several corners. They are non-uniformly distributed
to allow for different lengths of plane portions between them.
Small lengths should penalize the IBC technique, which is gen-
erally based on analytical solutions in practice only valid far
from any geometrical discontinuities, e.g., edges and corners.

The magnetic flux lines are shown in Figs. 2 and 3 for the dif-
ferent calculations performed. Figs. 4 and 5 show the eddy cur-

rent and Joule power density distributions in the core, as well
as the relative error on these quantities made by the IBC versus
the subdomain FE approach, the results of which are checked to
be very similar to those of the conventional FE approach. The
error significantly increases in the vicinity of the conductor cor-
ners: it reaches 50% for the Joule power density and 30% for
the current density in the smallest plane portions. This affects
the total losses accuracy when the size of the conductor por-
tions decreases. The error with the IBC is shown to be signifi-
cant up to a distance of about from each corner. A good ac-
curacy is only obtained beyond this distance for system 1. The
IBC error increases with with respect to the structure dimen-
sions, whereas the developed approach successfully and accu-
rately adapts its solution to any .

VI. CONCLUSION

The developed subdomain perturbation FE method allows
to split eddy-current analyses into subproblems of lower
complexity regarding meshing operations and computational
aspects. Reference solutions, related to two limit behaviors of
conductors, can be used in several subproblems. This allows
efficient parameterized analyses on the electric and magnetic
characteristics of the conductors in a wide range, i.e., on all
the parameters affecting the skin depth. Nonlinear analyses,
e.g., with temperature dependent conductivities, could then
benefit from this. The method is valid for conductors of any
shape in both frequency and time domains, which overcomes
the limitations of the IBC technique.

ACKNOWLEDGMENT

This work was supported in part by the Belgian Science
Policy (IAP P6/21) and the Belgian French Community (Re-
search Concerted Action ARC 03/08-298).

REFERENCES

[1] Z. Badics et al., “An effective 3-D finite element scheme for com-
puting electromagnetic field distortions due to defects in eddy-current
nondestructive evaluation,” IEEE Trans. Magn., vol. 33, no. 2, pp.
1012–1020, Mar. 1997.

[2] P. Dular and R. V. Sabariego, “A perturbation method for computing
field distortions due to conductive regions with h-conform magnetody-
namic finite element formulations,” IEEE Trans. Magn., vol. 43, no. 4,
pp. 1293–1296, Apr. 2007.

[3] P. Dular, R. V. Sabariego, J. Gyselinck, and L. Krähenbühl, “Sub-do-
main finite element method for efficiently considering strong skin and
proximity effects,” COMPEL, vol. 26, no. 4, pp. 974–985, 2007.

[4] P. Dular, R. V. Sabariego, and L. Krähenbühl, “Subdomain perturba-
tion finite element method for strong skin and proximity effects in in-
ductors,” COMPEL, vol. 27, no. 1, pp. 72–84, 2008.

[5] L. Krähenbühl and D. Muller, “Thin layers in electrical engineering.
Example of shell models in analyzing eddy-currents by boundary
and finite element methods,” IEEE Trans. Magn., vol. 29, no. 2, pp.
1450–1455, Mar. 1993.

[6] P. Dular, P. Kuo-Peng, C. Geuzaine, N. Sadowski, and J. P. A. Bastos,
“Dual magnetodynamic formulations and their source fields associated
with massive and stranded inductors,” IEEE Trans. Magn., vol. 36, no.
4, pp. 3078–3081, Jul. 2000.

[7] P. Dular, J. Gyselinck, T. Henneron, and F. Piriou, “Dual finite element
formulations for lumped reluctances coupling,” IEEE Trans. Magn.,
vol. 41, no. 5, pp. 1396–1399, May 2005.

[8] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros, “A
galerkin projection method for mixed finite elements,” IEEE Trans.
Magn., vol. 35, no. 3, pp. 1438–1441, May 1999.

Manuscript received June 24, 2007. Corresponding author: P. Dular (e-mail:
patrick.dular@ulg.ac.be).


