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This paper presents the use of the multiobjective particle swarm optimization (PSO) technique for the identification of Jiles–Atherton
model parameters. This approach, implemented for the first time in order to solve this kind of problem, is tested for two magnetic mate-
rials: NO 3% SiFe and NiFe 20–80. The results are compared with those obtained with a direct search method and a genetic algorithm
procedure. Experimental measures performed on both samples of materials allow us to complete and argue the validation for the PSO
method.

Index Terms—Genetic algorithms (GAs), magnetic field measurement, magnetic hysteresis, magnetic materials, modeling, optimiza-
tion methods.

I. INTRODUCTION

THE estimation of ferromagnetic losses in electromagnetic
devices by field calculations requires accurate laws for the

materials. These laws must consider the dynamic effects in-
duced in the circuits (such as eddy-currents, wall motion, or
pinning effect) and hysteretic phenomenon of the material’s be-
havior. Generally, dynamic models of material’s behavior re-
quire a static hysteresis model. Thus it is crucial to dispose of
an accurate static hysteresis model.

The description of magnetization based on Jiles–Atherton
(J–A) theory [1] is often used because it can be easily imple-
mented. Moreover the J–A model requires few memory storage,
as its status is completely described by only five parameters.
However, convergence problems may be encountered in the
identification of these parameters by using iterative procedure
[2], [3].

Recently, based on theories and algorithms of optimization,
many researchers have proposed new stochastic optimization
methods and “intelligent” algorithm, such as the genetic algo-
rithm (GA) [4], [5], artificial neural network [6], chaos opti-
mization algorithm [7], ant colony algorithm [8], line up com-
petition algorithm [9], and various hybrid methods [10]–[12].
However, each method has its own applicability domain and
constraints.

In the case of the optimization of J–A’s parameters, GA [13]
and simulated annealing method [14] have been recently in-
troduced. Like these evolutionary computation techniques, par-
ticle swarm optimization (PSO) is a population-based search
algorithm.

After a reminder of the J–A model, this paper explains the
idea and the procedure of the basic PSO. Then some improve-
ments are described (multiobjective and constrained problem,
swarm mutation). Finally, an experimental validation is led with
comparison between PSO and direct search method (DSM) or
GA. An opening on an hybrid algorithm is also discussed.
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II. J–A MODEL

Let us remind the J–A model. The following form of J–A
equations are considered [15]:

(1)

where
— is the anhysteretic magnetization provided by the

Langevin’s equation

(2)

— is the Weiss’ effective field .
— is the irreversible magnetization component defined

by

with (3)

, , , , and are the parameters of the model where
is a form factor, the coefficient of reversibility of the

movement of the walls, the saturation magnetization,
and represent the hysteresis losses and the interaction

between the domains respectively.

III. BASIC PSO

A. Idea

PSO is an evolutionary computation technique developed by
Kennedy and Eberhart in 1995 [16], [17]. PSO is initialized with
a population of random solution called particles. Each particle is
also associated with a velocity. Particles fly through the search
space with velocities which are dynamically adjusted in a col-
laborative way. Therefore, particles have a tendency to fly to-
ward optimal solution(s).

B. PSO Process

Each particle of the swarm is defined as a potential solution
of the identification problem in a 5-D space. This particle is
associated to a position , and has its
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own speed (these values are randomized initially into a defined
interval).

The fitness function for a particle is defined as the squared
error between the measured values and the calculated ones (ob-
tained by considering the associated position) of a static hys-
teresis major loop

fitness (4)

where , , and represents respectively the number of
points of measurement, the calculated values and the measured
values.

The position with the lowest fitness score in each iteration is
defined to be the entire swarm’s global best gbest position. In
addition, each particle keeps trace of its own best position that
it has visited, known as the particle’s personal best pbest .

The particle motions are governed by the following rules
which update particle positions with variation’s step for each
parameters

pbest

gbest (5)

(6)

where is the current position of particle , is the velocity of
the th particle, is an inertia weight, and are cognitive
and social parameters, and are two random numbers
between 0-1, and is the current iteration. In addition, the value
of the inertia weight in the PSO is gradually decreased in order
to improve the accuracy during the final steps of optimization

(7)

where and are initial and final values for the random
inertia weight.

In order to avoid convergence problem, velocity are restricted
to a maximum value . Then, we are ensured that a max-
imum scope of the searching space is covered.

IV. IMPROVEMENT (PSO+)

A. Multiobjective Problem

It appears that the fitness explained previously is not a suffi-
cient criterion for any magnetic material optimization. In order
to improve the convergence, we introduced another fitness func-
tion (8) which represents the area error per cycle between mea-
surement and simulation (i.e., the discrepancy between the mea-
sured and computed losses during a single cycle)

fitness (8)

We can define a Pareto front with these two fitnesses. However,
the apparition of this front means a disappearance of the global
and personal best position concept: there is an impossibility to
design an only leader for the entire swarm. Therefore, we had
to revise the algorithm core.

Fig. 1. Example of the use of the multiobjective criterion. Each particle of the
front has a space dominance (represented by the arrows).

TABLE I
PARAMETER RANGES

To solve this difficulty we replaced the global best position
gbest (which in the former version was unique for the whole
population) with the nearest particle which is into the Pareto’s
front, by using the following norm in the space of the fitness
values:

Norm best best (9)

In this way each particle has its own gbest, which depends on
its position into the space of fitness (Fig. 1).

B. Constrained Problem and Swarm’s Modification

In order to make easier the convergence and to eliminate
nonphysical solutions, the search domain has been bounded
(Table I).

Moreover several sets of parameters do not produce an hys-
teretic curve and their fitness values are huge. So we introduce a
swarm modification by deleting these “crazy” particles (if their
fitness is more than Fitness ) and replacing them by a
new randomly initialized.

V. VALIDATION—DISCUSSION

As a first step of validation, we fed basic and improved PSO
with artificial data generated by the J–A model. The purpose of
this step is to check the capability of our PSO algorithm to re-
trieve (known) J–A parameters in the ideal case where provided
data are perfectly consistent with the model to fit. Two different
materials have been used. As comparison, two other optimiza-
tion methods (DSM and GA) have been used to solve this same
problem. The foundations and implementations of the DSM and
GA techniques are developed in several works [5], [18] . The GA
method has already been implemented for the J–A parameters
identification [19]. The same parameters for this method (muta-
tion, selection, and crossover probability) as then ones specified
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TABLE II
OPTIMIZATION RESULTS

are considered. In practice, the Matlab Optimization Toolbox
[20] have been used.

The improved PSO and GA methods are carried out 50 times
from different initial seeds of the random number generator to
ensure the repetitiveness of convergence. It has been observed
that the final solutions that we obtain with these two algorithms
do not differ much (standard deviation are less than 1% of the
mean value). So presented parameters are the mean of the 50
parameters. The number of individuals was set to 50. The con-
vergence criterion is reached if one of the following criteria (10)
are satisfied:

fitness fitness or Iteration Number (10)

The further step has been to test the PSO with true measure-
ments. Again, we considered two materials.

A. NO 3% SiFe Material

The material sample is built of a stack of rings made of NO
3% SiFe. The static first magnetization curve and the static
major loop of the sample are measured at 1 Hz. The current
excitation waveform is sinusoidal. The curve used during
the different optimizations is a major loop with a saturation
point A/m; T, a coercitive field

A/m and remanent induction T. Table II
compares the values of the different parameters obtained by
using both PSO and PSO+, DSM, and GA algorithm. Four
methods lead to close solutions. The PSO and GA methods
require a similar number of iterations to converge, while the
DSM needs five times more iterations. Modifications performed
on PSO technique allow obtain the convergence more quickly
and the accuracy of optimized parameters remains correct.

With the aim of analysing and comparing the efficiency of
each method, the discrepancy between the measured datas and
the calculated ones by the J–A model by considering the four
sets of parameters is computed. In the Table III, the error is cal-
culated in the following several characteristic points: (re-
spectively ) is a point on the descending part of the B-H
major loop, whose H-coordinate is equal to (respec-
tively ) and is a point on the first magnetization
B-H curve, whose H-coordinate is equal to .

PSO and GA allow to obtain an accurate determination of the
first magnetization , contrary to a DSM.

B. NiFe 20–80 Material

The sample is a stack of rings made of NiFe. Because of thick-
ness of each ring, a very low frequency (0.05 Hz) operation is
used to measure the static characteristic of the material.

The curve used during the different optimizations is a major
loop with a saturation point A/m; T,

TABLE III
ESTIMATION ERRORS FOR A MAJOR HYSTERESIS LOOP

TABLE IV
OPTIMIZATION RESULTS AND ESTIMATION ERRORS

FOR MAJOR HYSTERESIS LOOP

Fig. 2. Dissymmetric minor loop using parameters identified with major loop.

a coercitive field A/m and remanent induction
T. The DSM for this material leads to negative values of

and (not physical). However the PSO, PSO+, and GA suit.
Results obtained with PSO+ and GA are reported in Table IV.

The high relative error obtained for is not relevant because
the material has a very small coercivity field (less than 1 A/m).

In order to obtain more insight about the performances of
our optimization methods, the estimated parameters has been
used to simulate a minor loop with the J–A model. The Fig. 2
shows the comparison between measurements and simulations
by using the sets of parameters provided by PSO+ and GA.

Although parameters were identified on a major loop, it is
noticed that they are advisable to recreate a dissymmetric minor
loop. However PSO+ is more accurate than GA.
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TABLE V
COMPARATIVE BETWEEN PSO AND GA

VI. COMPARISON GA/PSO+

In order to make a comparison between GA and PSO+, we
made different tests on the second material (NiFe 20–80). A
summary is given in Table V. CPU time is expressed in seconds.

We notice that for a population of ten individuals, GA does
not converge while PSO+ nearly converge with the maximal

iterations fitness fitness . This trend is con-
firmed by the simulations with 20 particles: GA fails to converge
whereas PSO+ provides good results. For all the other simula-
tions we observe that GA and PSO+ both converge, but PSO+
requires less time.

VII. CONCLUSION

The PSO method is implemented for the first time to solve
the optimization of J–A model parameters. The classical and
the improved PSO methods have been successfully tested for
several materials. Experimental results allow to validate these
algorithms. The results obtained by both methods are also com-
pared with those obtained with DSM and GA.

During this study, we noticed that PSO+ and GA suit for this
kind of identification; however, with our tuning, PSO+ is more
faster than GA. In fact, tuning for GA (mutation, crossover and
selection probabilities) is difficult to choose, whereas PSO al-
gorithms are generally simpler to tune. Moreover this algorithm
is more easy to implement than GA.

In future work it should be possible to create an hybrid
PSO-GA algorithm which uses operations of GA into PSO
system. The PSO method is being implemented to optimize
other kind of applications of our laboratory.
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