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This paper is devoted to the presentation of a simple but powerful topological approach for the computation of basis functions involved
in the expression of finite element interpolants. It deals with the so-called nodal and edge elements but similar considerations can be made
for the construction of facet ones. All standard cells are treated including pyramids.

Index Terms—Algebraic topology, finite element methods.

I. INTRODUCTION

I N THIS PAPER, a general and simple procedure for the
construction of finite element basis functions corresponding

to several families of mesh cells is developed. Some basis
functions for tetrahedra, hexahedra, prisms and pyramids have
already been proposed in [4], [5], [13] but they are given as
formulas without any proof. The approach we propose here is
constructive. It is based on a strict generalization of Whitney
forms [12] on non-simplicial meshes. This extension has never
been proposed before even though some heuristics are available
in the literature [3], [7]. It leads to the formulation of new
topological construction rules which simplify the computation
of higher order basis functions. Indeed, higher order basis
functions on quadrangles, hexahedra, prisms and pyramids
are now only functions of simplicial ones which have mainly
been studied by several authors [1], [11]. Moreover, these rules
preserve hierarchy properties of simplicial families of finite
elements.

II. NODAL BASIS FUNCTIONS

Let us consider as the ambient space. By definition, a
-cell is a closed subset of for which the smallest affine

subspace containing it is of dimension . A
0-cell is a point and a 1-cell is a line. In our case, 2-cells may be
triangles (2-simplices) or parallelograms (2-parallelotopes) and
3-cells may be tetrahedra (3-simplices), parallelepipeds (3-par-
allelotopes), prisms or pyramids.

A. Join Cells

As one knows, the simplicial nodal basis functions corre-
spond to barycentric coordinates. Let denotes
a -simplex with vertices . We also define

such that , is the length of
, is the area of and is the volume of
. Given a -simplex and a 0-simplex

, we can construct a -simplex by
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Fig. 1. A 2-simplex � = p p p .

joining each vertex , , to by an edge. This
-simplex will be denoted by . If

, the join and it is said to be degener-
ated. Conversely, from a given simplex , we can
define a -simplex by disjunction, i.e. by deleting a vertex
from the simplex. The -simplex
obtained by deleting from will be denoted by
(see Fig. 1). Using this notation, it is easy to verify that the cor-
responding barycentric coordinate of a point
associated to the vertex is given by

(1)

Then, is uniquely expressed under the form

(2)

We also recall that the barycentric coordinates form a partition
of the unity, that is

(3)

The expression (2) is called an algebraic 0-chain in combinato-
rial topology: it is a linear combination of 0-cells (the vertices

). More generally, an algebraic -chain is a linear combination
of -cells.

B. Cartesian Cells

We recall that the Cartesian product of two sets and is
the set

(4)
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Fig. 2. Cartesian cells � , � and � .

This topological construction naturally extends to the space of
chains. Given a -chain and a -chain

, we can define the -chain

(5)

as the Cartesian product of and . From this concept, the
extraction of nodal basis functions for parallelotopes and prisms
is straightforward. Let , and
be three 1-simplices and be a 2-simplex. Then,

forms a 2-parallelotope,
forms a 3-parallelotope and forms a prism (see
Fig. 2). Using relations (2) and (5), we deduce that any point

is uniquely defined as

(6)

where are the nodal basis func-
tions for . More generally, one can observe that nodal basis
functions on Cartesian products of points are products of nodal
basis functions on these points. In particular, for any point

, nodal basis functions are
and for any point , they are

given by . It can be shown that
these nodal basis functions are a natural extension of simplicial
Whitney 0-forms[12] on Cartesian cells.

C. Cone Cells

In topology the cone over a set is the quotient space

(7)

where and denotes an equivalence relation on
induced by a surjective map by saying
that iff for all points . We
generalize this notion to cells as follows: given an -cell and
a 1-simplex , we define the cone as the

-cell formed by and
. The equivalence relation is then induced by a surjective map

satisfying

(8)

Fig. 3. Example of pyramid C(� ; � ).

such that for all
since . The fixed vertex

is called the apex of the cone and can be chosen arbitrarily
(see Fig. 3). Remembering that any point can
be uniquely expressed under the form

(9)

Considering the image , we obtain

(10)
As we observed previously, nodal basis functions on Cartesian
products of points are products of respective nodal basis func-
tions on these points because of (5). So

(11)

since by definition. Using (11) and the fact that
and , we finally obtain

(12)

where and
. These functions correspond to nodal basis func-

tions associated with any type of cone. Nodal basis functions
for pyramids are obtained by setting . A concrete ex-
ample of such a cone is given in Section IV-A of this paper.

III. EDGE BASIS FUNCTIONS

The extraction of edge elements from the topology of cells
lays on a procedure similar to the one we developed for nodal
basis functions.

A. The Simplicial Case

Let be a -simplex. We recall that the edge
basis function on an edge , , corresponds to
the basis function involved in the expression of the simplicial
Whitney 1-form on this edge [12]. More precisely, this edge
basis function is given by

(13)

where the are given explicitly in (1).
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B. The Case of Other Cells

The computation of edge basis functions on other cells is re-
ally easy. Indeed, when cells are obtained from the Cartesian
product of simplices, their vertices are Cartesian products of
0-simplices by construction. Looking at their edges, we see that
they are Cartesian products of 0-simplices and joins. For ex-
ample, the 2-parallelotope defined previously contains the
four vertices , and the four edges and

for , , 1. The corresponding edge basis
functions are simply the products of respective nodal basis func-
tions and simplicial edge ones given in (13)

(14)

For the same reasons, edge basis functions on are
,

and for

suitable indices , , . Those of are

and for suitable
indices , , . Finally, the computation of edge basis functions
for cone cells is also straightforward and we have

(15)

from (13) and (14).

IV. EXTRACTION OF FINITE ELEMENT SPACES

Let be a mesh cell, a functional space of finite
dimension . The dual space of is a -di-
mensional space of linear forms called degrees of
freedom such that any can be uniquely written under
the form

(16)

We propose to identify suitable spaces for both nodal and
edge finite elements from the results we obtained in the previous
section.

A. Lagrangian Spaces

Let denote the coordinates of a point in the
canonical basis of and where
denotes the set of positive integers. We set

(17)

Given two finite dimensional spaces and
, we define the operation

(18)

which can be interpreted as a tensor product. If denotes the
set of the first strictly positive integers, we identify

(19)

as the functional space for -simplicial nodal basis functions by
expressing in the canonical basis of . From relation (6), we
identify

(20)

as the functional space corresponding to the cell .
Similarly, we find that functional spaces for cells
and are the spaces and respec-
tively. The case of the pyramid is not generic
since it depends on the choice of the apex. As illustra-
tion, we describe the case of the centered pyramidal cell

with apex (0, 0, 1) and cone mapping
and

we obtain from (12) that the corresponding functional space is
the space of rational functions

(21)

since and .

B. Nédélec’s Spaces

By computing explicitly edge basis functions for each cell,
we identify Nédélec’s spaces for simplicial and Cartesian cells
[9], [10]. The new result concerns the case of pyramids. Set-
ting , we identify the
space

(22)

as the suitable functional space for . This is a
natural extension of Nédélec spaces for this cell. Especially, its
dual space is the classical set of degrees of freedom

(23)

defined for each edge of the pyramid where denotes the
unitary tangent vector along .

V. HIGHER ORDER FINITE ELEMENT BASIS FUNCTIONS

A. Higher Order Whitney Forms

The computation of higher order finite element basis func-
tions is easily performed using our approach. The best way for
defining higher order Whitney 0-forms is to introduce artificial
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Fig. 4. Geometry of a brake retarder (only 1/8).

Fig. 5. Pyramidal elements on the surface of the rotor.

extra terms in (2). Let consider a -simplex . Re-
membering that and setting ,
any point is uniquely expressed under the form

, that is

(24)

The computation of higher order Whitney 0-forms for Cartesian
cells only consists in reproducing the strategy previously used
by computing respective Cartesian products of chains of the
form (24). In the case of cone cells, the approach remains
unchanged. The case of edge basis functions can be treated
similarly: one knows that higher order edge basis functions on
-simplices are given by the formula and

correspond to Nédélec’s elements of the second kind[10]. Then,
the corresponding edge basis functions are simply obtained by
replacing terms of the form by in relations (14)
and (15), etc.

B. Remark on the Construction of Hierarchic Basis Functions

Suppose now that a set of hierarchic basis functions for sim-
plices are known. Then, since the Cartesian product of chains is
distributive, this hierarchy will be preserved on Cartesian cells.
This nice property is also true for cone cells since they are ob-
tained from Cartesian cells by a change of variables.

VI. NUMERICAL VALIDATION

We propose here to validate lowest-order nodal and basis
functions on a AC steady state problem describing the brake
retarder given in Fig. 4. Numerical results come from Flux soft-
ware [6]. The rotor part is meshed by hexahedra and the static
part by prisms. Coils are not meshed. The airbox containing the
retarder (including the airgap) is discretized by means of tetrahe-
dral elements. Some pyramidal elements are introduced to main-
tain conformity at the interface of the rotor and the air domain.

Fig. 6. Evaluation of the magnetic torque.

They are represented in Fig. 5. The equations of the problem are
discretized using two versions of the formulation
[8]. In the first case, the current vector potential and the mag-
netic potential are interpolated using nodal basis functions.
The second version corresponds to the case where is interpo-
lated using edge basis functions. The evolution of the magnetic
torque is the same for the two versions and corresponds to the
physical behavior of the brake (see Fig. 6).
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