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Error structures and parameter estimation
Nicolas Bouleau, Christophe Chorro

Abstract

This article proposes and studies a link between statistics and the theory of Dirichlet forms used to compute errors.
The error calculus based on Dirichlet forms is an extension of classical Gauss’ approach to error propagation. The
aim of this paper is to derive error structures from measurements. The links with Fisher’s information lay the
foundations of a strong connection with experiment. Here we show that this connection behaves well towards
changes of variables and is related to the theory of asymptotic statistics. Finally the study of products permits to
lay the premise of an infinite dimensional empirical error calculus.

Mathematical subject classification (2000): 31C25, 47B25, 49Q12, 62F99, 62B10, 65G99.

Keywords: Error, sensitivity, Dirichlet forms, squared field operator, Cramer-Rao inequality, Fisher
information.

1. Introduction

1.1. Intuitive notion of error structures

Let us consider a random quantity C (for example the concentration of some pollutant in a river) that
can be measured by an experimental device which result exhibits an error denoted by !C. These quan-
tities may be represented as random variables generally correlated (for higher pollution levels, the device
becomes fuzzier). In this classical probabilistic approach we have to know the law of the pair (C,!C) or
equivalently the law of C and the conditional law of !C given C. Thus, the study of error transmission
is associated to the calculus of images of probability measures. Unfortunately, the knowledge of the law
of !C given C by means of experiment is practically impossible. Now, let us look at the propagation of
errors when the errors are small. For the sake of simplicity we adopt temporarily the following assump-
tions:
• Only the conditional variance var[!C | C] is known.
• The errors are small enough to allow the simplification usually performed by physicists: !C = εY
where Y is a bounded random variable and ε a size parameter.



If f is C3(R, R) with bounded derivatives, supposing at first that the error is conditionally centered
E[!C | C] = 0, Taylor’s formula gives

!(f(C)) = f ′(C)! C +
1
2
f
′′
(C)(!C)2 + ε3 0(1)

hence
var[!f(C) | C] = f ′2(C)var[!C | C] + ε3 0(1)

E[!f(C) | C] = 1
2f ′′(C)var[!f(C) | C] + ε3 0(1).

In the same way, for another regular function h we have :

var[!(h ◦ f(C)) | C] = h′2(f(C))var[!f(C) | C] + ε3 0(1) (1)

E[!(h ◦ f(C)) | C] = h′(f(C))E[!f(C) | C] +
1
2
h′′(f(C))var[!f(C) | C] + ε3 0(1). (2)

These formulae of the propagation of variances and biases are interesting. In fact, once a nonlinear
function has been applied, the error is no longer centered and the bias has the same order of magnitude
as the variance. Through other applications this phenomenon persists. Moreover we can see that the
calculus on the variances is a first order calculus and does not involve the biases whereas the calculus on
the biases is of second order and involves the variances. This remark is fundamental: the error calculus
on variances is necessarily the first step of an analysis of errors based on differential methods. It will be
the main focus of our study.

On the probability space associated to the observation of C, (R, Bor(R), law of C) ( where Bor(R)
is the borelian σ-field of R), we introduce the operator ΓC called the quadratic error operator which
provides for each function f the asymptotical conditional variance of the error on f(C):

ΓC [f ](x) = Lim
ε→0

var[!f(C) | C = x]
ε2

.

As the covariance operator in probability theory, ΓC polarizes into a bilinear operator:

ΓC [f, g](x) = Lim
ε→0

covar[!f(C),!g(C) | C = x]
ε2

.

Moreover if F is in C2(R2, R) with bounded derivatives, we obtain a transport formula known as the
Gauss’ law of errors propagation ([6], Chap.1, Appendix):

ΓC [F (f, g)] = F ′21 (f, g)ΓC [f ] + F ′22 (f, g)ΓC [g] + 2F ′1(f, g)F ′2(f, g)ΓC [f, g]. (3)

Now we can adopt an intuitive definition of an error structure:
An error structure is a probability space (W,W,m) equipped with a positive, symmetric, bilinear

operator Γ acting on random variables and fulfilling a first order functional calculus on regular functions:

Γ[F (f1, . . . , fn)] =
∑

i,j

F ′i (f1, . . . , fn)F ′j(f1, . . . , fn)Γ[fi, fj ].

If φ : R → R is a regular mapping, this definition is preserved by image: we can equip the image space
(R, Bor(R), law of φ(C)) with the quadratic error operator Γφ(C) associated to the observation of φ(C).
We have the following fundamental relation

Γφ(C)[f ](x) = E[ΓC [f(φ)](C) | φ(C) = x]. (4)

When we observe a two-dimensional quantity C = (C1, C2) with erroneous components modelled
with two error structures (R, Bor(R), law of C1, ΓC1) and (R, Bor(R), law of C2,ΓC2), if (C1,!C1) is
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independent of (C2,!C2) we need to define an error structure (R2, B(R2), law of C1 ⊗ law of C2, ΓC1⊗C2)
such that ΓC1⊗C2 expresses a summation of errors component per component. Indeed, if F : R2 → R is
regular, from the independence hypothesis it follows

var[!(F (C1, C2)) | (C1, C2)] = F ′21 (C1, C2)var[!C1 | C1] + F ′22 (C1, C2)var[!C2 | C2] + ε30(1)

thus
ΓC1⊗C2 [F ](x, y) = ΓC1 [F (., y)] + ΓC2 [F (x, .)]. (5)

The preceding intuitive considerations lead to the following rigorous mathematical framework.

1.2. An extension tool

Now we present an axiomatic extension of the preceding notion of error structures using the language
of Dirichlet forms. It gives a powerful tool easy to handle in error calculations and sensitivity analy-
sis. As noticed above, we limit ourselves to a first order calculus which is already significant in most of
applications. We refer to [6] for a calculus on biases involving the infinitesimal generator associated to
the underlying Dirichlet form. This error calculus based on Dirichlet forms lies between the probabilistic
approach (errors are supposed to be random variables) and the deterministic one (dealing with infinitely
small deterministic errors to use differential calculus).

From now on, an error structure is a term (W,W,m, D, Γ) where (W,W,m) is a probability space, D
is a dense vector subspace of L2(m) and Γ is a positive symmetric bilinear map from D× D into L1(m)
fulfilling:

1) the functional calculus of class C1 ∩ Lip i.e. if U = (U1, . . . , Un) ∈ Dn, V = (V1, . . . , Vp) ∈ Dp, F ∈
C1(Rn, R)∩Lip = {C1 and Lipschitz} and G ∈ C1(Rp, R)∩Lip then, (F (U1, . . . , Un), G(V1, . . . , Vp)) ∈
D2 and

Γ[F (U1, . . . , Un), G(V1, . . . , Vp)] =
∑

i,j

F ′i (U)G′j(V )Γ[Ui, Vj ],

2) 1 ∈ D (this implies Γ[1] = 0),
3) the bilinear form E [F, G] = 1

2

∫
Γ[F,G]dm defined on D×D is closed i.e. D is complete under the norm

of the graph
‖ . ‖E= (‖ . ‖2L2(m) +E [.])

1
2 .

We always write Γ[F ] for Γ[F, F ] and E [F ] for E [F, F ].

This notion is derived from the theory of Dirichlet forms ([3] Ch.1,[9],[14]). It is a natural extension of
the classical Gauss approach ([4]) and it seems to be a good way to study the propagation of errors and
the sensitivity to changes of parameters in physical and financial models ([4],[5],[6]).

The condition 1) is similar to the Gauss’ law of small errors propagation (3). For U = (U1, . . . , Un) ∈ Dn,
the intuitive meaning of the matrix Γ

=
[U ] = [Γ[Ui, Uj ]]1≤i,j≤n is the variance-covariance of the error on U

([6] Ch.1). Implicitly, we still suppose that the error is infinitely small although it is not mentioned in the
notation. It is as if we had an infinitely small unit to measure errors that was fixed in the whole problem.
Then, the hypothesis 3) is added to the heuristic definition and can be seen as a coherence principle.
In fact, if the random variables (Xn)n∈N and X are in D, if Xn → X in L2(m) and (Xn, error on Xn)
converges in a suitable sense, it converges necessarily to the pair (X, error on X).

From the hypotheses mentioned above, E is a local Dirichlet form and Γ its associated squared field
operator. The domain D is preserved by Lipschitz functions: if F : Rn → R is a contraction in the following
sense
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|F (x)− F (y)| ≤
n∑

i=1

|xi − yi|

then for U = (U1, . . . , Un) ∈ Dn one has F (U) ∈ D and

Γ[F (U1, . . . , Un)]
1
2 ≤

n∑

i=1

Γ[Ui]
1
2 .

We would like to underline that the closedness property is the key stone of our approach. It plays the
same role as the σ-additivity in probability theory and permits to compute the errors on functions known
as limits of simpler objects.

The operations of taking images by mapping (definition 3.1.2) and making countable products (defini-
tion 5.0.8) naturally provide error structures on spaces of stochastic processes ([3] Ch.2,[5],[6] Ch.6).

Since a probability space (W,W,m) can be known thanks to statistical experiments, we raise the
problem of the empirical identification of an error structure. In the same way as the σ-additivity of m on
W could not result from experiments but is a fundamental mathematical hypothesis, our error structure
will have to verify the closedness property 3) (This cannot be deduced from observation). Thus let θ be
a parameter taking its values in an open set Θ ⊂ Rd. It is frequently useful to treat θ as the realization
of a random variable V : (Ω,A, P) → Θ with a known distribution ρ chosen by combining experience
with convenience ([13] p.225). Let X be a random variable defined on the probability space (Ω,A, P)
with values in a measurable space (E,F). Let us denote by Pθ the conditional law of X given V = θ.
Classically, to estimate θ we may use the statistical model (Pθ)θ∈Θ generated by the observations of X.
Here we want to equip Θ with an error structure

SV = (Θ,B(Θ), ρ, DV , ΓV ) (6)

where ΓV will express the precision of our knowledge on θ. Our approach is to consider ΓV as the inverse of
the Fisher matrix which is an accuracy measure for regular statistical models (see [8]). We will study the
behavior of this identification through changes of variables and products to show its remarkable stability.

2. The Cramer-Rao Inequality (C.R.I.) and the Fundamental Identification (F.I.)

2.1. Regular models

From now on (., .) will denote the usual scalar product on Rd and ‖ . ‖ its associated norm. We suppose
that (Pθ)θ∈Θ satisfies the conditions of regular models ([11] p.65):

(a) The measures Pθ are absolutely continuous with respect to a σ-finite measure µ and dPθ
dµ = f(., θ) > 0.

(b) θ → f(x, θ) is continuous for µ-almost all x.
(c) We set g(x, θ) =

√
f(x, θ). There exists φ : E ×Θ → Rd such that ∀ θ ∈ Θ,

∫
‖ φ(x, θ) ‖2 dµ(x) < ∞

and ∫
|g(x, θ + h)− g(x, θ)− (φ(x, θ), h)|2dµ(x) = o(‖ h ‖2).

thus the positive semi-definite matrix J(θ) = 4
∫

φ(x, θ)φ(x, θ)tdµ(x) is defined as the Fisher informa-
tion matrix of our model.

(d) θ → φ(., θ) is continuous in L2(µ).
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(e) The model is identifiable: θ → Pθ is injective.

Remarks A: i) There exists several definitions of regular models. Here we use a notion taken from
[11] where the conditions are quite general. These hypotheses are made to allow a differentiation under
integrals which is needed for the proof of the Cramer-Rao inequality. We can found in [1] another definition
using the classical differential calculus and supposing that J is continuous when it is a simple consequence
of d).

ii) The assumption c) is a condition of differentiability in quadratic mean in L2(µ). Moreover, if we
assume that θ → f(., θ) is differentiable in the classical sense then φ(x, θ) = ∇f(x,θ)

2
√

f(x,θ)
and we obtain the

following expression of the so-called Fisher information matrix

J(θ) =




∫ ∂f(x,θ)

∂θi

∂f(x,θ)
∂θj

f(x, θ)
dµ(x)





0≤i,j≤d

.

To establish the differentiability in quadratic mean, one often proceeds by showing classical differentia-
bility and equi-integrability (see [7],[15]).

iii) Identifiability is a purely statistical hypothesis. Intuitively, it means that the model can distinguish
two different values of the parameter θ′ /= θ′′ if and only if Pθ′ /= Pθ′′ . In this case, if independent exper-
iments are available, we have an infinite family of independent variables with the same law Pθ denoted
by Zθ = (Xθ

i )i∈N and for θ′ /= θ′′, the laws of the processes Zθ′ and Zθ′′ are mutually singular. Thus, θ′

and θ′′ are perfectly identified thanks to experiment.!

2.2. Cramer-Rao Inequality

Theorem 2.2.1 ([11] p.73) Let ψ : Rd → Rm be differentiable and (Pθ)θ∈Θ be a regular model with
∀θ ∈ Θ det(J(θ)) /= 0. If T (X) is an unbiased estimator of ψ(θ) such that E[T (X)2 | V = θ] is locally
bounded in θ then

E[(T (X)− ψ(θ))(T (X)− ψ(θ))t | V = θ] ≥ ψ′(θ)J−1(θ)ψ′(θ)t.

where ≥ is the order relation between symmetric matrices defined by the cone of positive symmetric ones.

Remark B: An estimator T (X) fulfilling the hypotheses of the preceding theorem is said to be a
regular unbiased estimator of ψ(θ).!

Now, up to the end, we suppose that the Fisher information matrix is regular. Thus, the Cramer-Rao
inequality gives a bound of estimation for the quadratic risk. Let us have a look on the error structure
(6) we want to determine. If the components of identity are in DV , according to the functional calculus,
we have for F ∈ Lip1(Θ) = {F ∈ C1(Θ, R) and Lipschitz},

ΓV [F ] = (∇F )tΓ
=

V [Id](∇F )

where the matrix Γ
=

V [Id](θ) represents the error of estimation on V given V = θ. Since Γ
=

V takes its
significance from a calculus on variances, the Cramer-Rao inequality leads us to state the fundamental
identification

Γ
=

V [Id] = J−1. (F.I)
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As well as the statistical identification of a probability space presupposes the σ-additivity of the measure,
we want to determine an error structure deriving from experiment in which EV is a closed form. According
to the fundamental identification we make the following assumption:

Hypothesis (E): From now on, we suppose the existence of a dense vector subspace of L2(ρ) denoted
by DV and the existence of an operator ΓV fulfilling conditions 1), 2) and 3) such that Lip1(Θ) ⊂ DV

and, for all F in Lip1(Θ), ΓV [F ] = F ′J−1(F ′)t. Moreover, as DV may not be uniquely defined, we take
it minimal for inclusion, which implies the density of Lip1(Θ) in DV for the norm ‖ . ‖EV .

This hypothesis dictates conditions on ρ and J−1 which are often fulfilled as seen in the following
proposition (see also [9]):

Proposition 2.2.2 a) Let Θ be a bounded open set of Rd of the form Θ =
d∏

i=1
]θi

0, θ
i
1[ where the θi

j are real

numbers such that θi
1 ≥ θi

0. We shall assume that ρ is a probability measure which is absolutely continuous
with respect to the Lebesgue measure on Θ with a positive density q in Lip1(Θ). Suppose that the model
(Pθ)θ∈Θ can be extended to a regular model on an open set Θ′ such that Θ ⊂ Θ′. Then, hypothesis E is
fulfilled.

b) When Θ = R, if we assume that
∫
Θ θ2dρ(θ) < ∞ and that 1

J belongs to L1(ρ), the hypothesis E is
equivalent to the conditions of Hamza theorem ([9] p.105).

Proof: a) Let (Fn)N be a sequence in Lip1(Θ) such that Fn → 0 in L2(ρ) and ΓV [Fn − Fm] → 0 in
L1(ρ) where ΓV : Lip1(Θ) → L1(ρ) is well-defined by ΓV [F ] = F ′J−1(F ′)t. If we show that ΓV [Fn] → 0
in L1(ρ), the conclusion follows according to [9] p.4.

One defines the mapping Φ:

Φ :




Θ× Sd 2−→ R∗+

(θ, ξ) −→
d∑

i,j=1
ai,j(θ)ξiξj





where Sd is the unit sphere of Rd and where the coefficients of J−1 are denoted by ai,j .
The function Φ is continuous on a compact set, thus there exists δ, δ′ > 0 such that δ ≤ Φ ≤ δ′. It

implies
δ|∇Fn −∇Fm|2 ≤ ΓV [Fn − Fm] ≤ δ′|∇Fn −∇Fm|2. (∗)

Hence, ∇Fn is a cauchy sequence in L2(ρ; Rd) and there is a function G = (G1, . . . , Gd) in L2(ρ; Rd)
satisfying for all i ∈ {1, . . . , n} ∂iFn → Gi in L2(ρ).
Let φ be a function in C∞K (Θ) = {F ∈ C∞(Θ, R) with compact support}. One notices that φ, q, Fn are
Lipschitz and can be extended to Θ. Thus, by integration by parts formula we obtain

−
∫

Θ
Fn(∂iφ)qdθ =

∫

Θ
(∂iFn)φqdθ +

∫

Θ
Fnφ(∂iq)dθ

and by passing to the limit, it follows that ∀φ ∈ C∞K (Θ),
∫

Θ
Giφqdθ = 0

thus Gi = 0. We can conclude using the inequality (∗).
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b) Hamza theorem gives necessary and sufficient conditions for the existence of an error structure
S = (R,B(R), ρ, D, Γ) such that C∞K (R) ⊂ D and Γ[F ] = F ′2

J on C∞K (R).
Let (Fn)n∈N be a sequence in C∞K (R) with the same Lipschitz constant 1 such that Fn → Id every-

where with ∀n |Fn| ≤ |Id| and F ′n → 1 everywhere. Using the dominated convergence theorem and the
closedness of Γ we obtain that Id ∈ D, hence Lip1(R) ⊂ D and Γ[F ] = F ′2

J for F ∈ Lip1(R). The result
follows naturally. !

Remarks C: i) The statistical situation with a constant information matrix is often encountered in
classical parametric models (see [13]): Location family, Normal models with fixed coefficient of variation,
Logistic model, Scale parameter. In this case the condition of extension of the model (Pθ)θ∈Θ can be
removed in a).

ii) The operator ΓV is bilinear. It is possible to introduce a new operator, the gradient, denoted by
∇V , which can be seen as a signed and linear version of the standard deviation of the error and satisfies
∀F ∈ DV

ΓV [F ] = (∇V [F ],∇V [F ]).
Since the error structure SV is defined on a finite dimensional space it is easy to construct ∇V putting

∇V :



DV 2−→ L2(ρ; Rd)

F −→ R(F ′)t





where R is the square root of J−1. The gradient fulfills the classical differentiation chain rule.
iii) We can notice that the fundamental identification gives, without other hypotheses, a second order

calculus with variances and biases as mentioned in the introduction. In fact, we can associate to the
Dirichlet form EV a unique self adjoint operator AV (see [3],[9]), called the infinitesimal generator. It has
a domain D(AV ) included in DV and it takes its values in L1(ρ). Moreover we have

AV [F (U)] = F ′(U)AV [U ] +
1
2
F ′′(U)ΓV [U ]

when U ∈ D(AV ), ΓV [U ] ∈ L2(ρ) and F : Θ → R is a function of class C2 with bounded derivatives.
Thus, the preceding formula expresses the propagation of the conditional expectation of the error in the
same way as (2).!

Now, we want to test the robustness of the fundamental identification by comparing its properties with
the well-known behavior of the Fisher information in the classical framework of parametric estimation.

3. Change of variables: the injective case

We are going to show the stability of the fundamental identification for regular changes of variables.

3.1. The regular injective case

Definition 3.1.1 We suppose that ψ : Θ → Rd is injective of class C1 ∩ Lip. This change of variables is
said to be regular if det(ψ′(x)) /= 0 for all x.

From the local inversion theorem, it follows that ψ is a C1-diffeomorphism on its image and ψ(Θ) is an
open set of Rd.
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Now, we want to equip ψ(Θ) with an error structure that expresses the intrinsic accuracy of our knowledge
on ψ(θ). There are two natural ways to proceed.

3.1.1. From the estimation point of view

In the injective case, the change of variables is just a reparameterisation of the model. To estimate ψ(θ)
we use the model (Pψ−1(a), a ∈ ψ(Θ)). Since dPψ−1(a)(x) = f(x, ψ−1(a))dµ(x), we can see easily that this
model is regular. Let us have a look on the error structure we obtain using the fundamental identification.
The operator Γψ(V ) is defined on Lip1(ψ(Θ)) by

Γψ(V )[F ](a) = (∇aF )t(Jψ(V )(a))−1(∇aF ) ∀a ∈ ψ(Θ)

where Jψ(V ) is the Fisher information matrix of the regular model (Pψ−1(a), a∈ψ(Θ)). Moreover, as ∀a ∈
ψ(Θ),

Jψ(V )(a) = [ψ′(ψ−1(a))−1]t [J(ψ−1(a))] [ψ′(ψ−1(a))−1]
one has for F ∈ Lip1(ψ(Θ))

Γψ(V )[F ](a) = (∇aF )t[ψ′(ψ−1(a))] [J(ψ−1(a))]−1 [ψ′(ψ−1(a))]t(∇aF ).

Using that ψ is injective of class C1 ∩ Lip, from hypothesis E it follows that the form Eψ(V ) defined on
Lip1(ψ(Θ)) by

Eψ(V )[F ] =
1
2

∫
Γψ(V )[F ]dψ∗ρ

is closable and we denote by Dψ(V ) the domain of its smallest closed extension. Thus, the error structure
associated to the fundamental identification for the estimation of ψ(θ) is

Sψ(V ) = (ψ(Θ),B(ψ(Θ)), ψ∗ρ, Dψ(V ),Γψ(V )).

Remark D: When d = 1 one obtains

Jψ(V )(ψ) =
J

ψ′2
.

Hence, if ψ is flat enough in θ, ψ(θ) can be estimated more accurately than θ. This property is intuitively
coherent since a value θ′ at a given small distance from θ will lead to a smaller deviation of ψ(θ′) from
ψ(θ) the smaller the value of |ψ′(θ)| is.!

3.1.2. From the error calculus point of view

Among the advantages of the error calculus based on Dirichlet forms, let us emphasize here its practical
flexibility. It is easy to define both the product of error structures and the image of an error structure
by a mapping. The following definition is the rigorous formulation of the intuitive expression (4) which
corresponded to a change of observation in our preliminary study of error calculus.

Definition 3.1.2 Let S = (W,W, m, D,Γ) be an error structure and Y : W → Rd ∈ Dd such that Y (W)
is an open set of Rd. Let us define D̃Y = {f ∈ L2(Y∗m) | f(Y ) ∈ D} and for f ∈ D̃Y , Γ̃Y [f ](x) =
Em[Γ[f(Y )] | Y = x].

If we denote by DY the closure of Lip1(Y (W)) in (D̃Y , ‖ . ‖ẼY
) and by ΓY the restriction of Γ̃Y to DY

then
ψ∗S = (Y (W),B(Y (W)), Y∗m, DY ,ΓY )

is an error structure called the image structure of S by Y .
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Let us study the image of SV by ψ which is another natural way to endow ψ(Θ) with an error structure.
For F ∈ Lip1(ψ(Θ)) one has, ∀a ∈ Im(ψ),

Eρ[ΓV [F (ψ)] | ψ = a] = Eρ[∇(F (ψ))t J−1 ∇(F (ψ)) | ψ = a]

and

Γψ(V )[F ] = ΓV
ψ [F ] ψ∗ρ a.e.

Thus, Γψ(V ) and ΓV
ψ are equal on Lip1(ψ(Θ)).

Using the density of Lip1(ψ(Θ)) in (DV
ψ , ‖ . ‖EV

ψ
), we have the following expected property:

Proposition 3.1.3 The fundamental identification is preserved by the transformation ψ. In other terms:

ψ∗S
V = Sψ(V ).

Remark E: Suppose we are studying the sensitivity of a physical or financial model depending on the
parameter θ to small random perturbation by using an error structure on Θ and the functional calculus
for Γ to compute the propagation of errors on the outputs of the model. If the error structure is obtained
by the Fisher information matrix of a statistical model as above, the preceding invariance result means
that the accuracy on θ has a physical significance, independently of mathematical repameterization.!

3.2. The non-regular injective case

After the regular case studied in the preceding section, let us see what happens at a point θ such that
ψ′(θ) is singular. First, we supposes that d = 1.

Let a0 be equal to ψ(θ0) with θ0 ∈ Θ and ψ′(θ0) = 0. We can see easily that the model (Pψ−1(a), a ∈
ψ(Θ)) possesses an irregularity at a0. Intuitively, as far as estimation is concerned, this situation is not
harmful because it induces a good approximation of a0 (see Remark D). If we put Jψ(V )(a0) = +∞ it
follows

Γψ(V )(Id)(a0) =
1

Jψ(V )(a0)
= 0 = Γψ

V (Id)(a0).

In the general case, since J(θ0) is supposed to be definite positive, we can reduce simultaneously ψ′(θ0)
and J(θ0) and work component per component. If ψ′(θ0) is singular, there exists eigenvectors for to the
eigenvalue 0 which correspond to directions of infinite information for Jψ(V )(a0). The other eigendirections
are dealt as in the regular case.

We can see that the fundamental identification is still stable in this case .

Remarks F: i) The concept of infinite information appears in asymptotic statistics where it expresses
a faster convergence of the maximum likelihood estimator toward the parameter.

ii) We have seen that, for injective changes of variables, the error structure obtained estimating directly
ψ(θ) coincides with the image by ψ of the structure associated to the estimation of θ. This phenomenon
can be viewed as a sufficiency principle (well known for the Fisher information [11], p.70) because when
ψ is injective, Pθ depends on θ only through ψ.

iii) The proposition 3.1.3 is based on the simple relation between Jψ(V ) and J . This property of the
Fisher information is not fulfilled for other types of information bound. For example, for the bounds of
Bhattacharaya type (see [11]) (which involve higher derivatives and are more precise) it is impossible to
obtain such a coherence property. The hypotheses of regular models are the good level of axiomatization
for our study.!

9



4. The non injective case

We are now in a special situation: we have put in correspondence an error structure and a parametric
model thanks to the Fisher information. But on one side (error structures) non-injective changes of
variables are allowed (def 3.1.2) and on the other side (statistical models) they meet difficulties. We
derive benefit of this remark to propose a new framework for the estimation of a parameter in this case
which is directly linked with the notion of error structure.

Here we suppose that ψ is a function in Lip1(Θ) not necessarily injective but such that ψ(Θ) is an
open set of Rd (in order to apply definition 3.1.2 with Y = ψ ).

To estimate ψ(θ) the reparameterisation introduced in the previous section is meaningless. To avoid
this problem, we give a new protocol.

4.1. Estimation protocol of ψ(θ) when ψ is not injective

To estimate θ we use a regular model (Pθ)θ∈Θ such that hypothesis E is fulfilled. In this section the
random variables X1 . . . Xn defined on (Ω,A, P) with values in (E,F) will be, given V = θ, a n-sample
of Pθ.

To estimate ψ(θ), it is natural to use the model (Qa)a∈ψ(Θ) generated by the observation of X1 . . . Xn

given ψ(V ) = a. From the definition of the conditional expectation it follows that

dQa(x) = Eρ[f(x, .) | ψ = a]dµ(x).

In particular, we need a global knowledge of f(x, .) to perform Qa.

Remarks G: i) When ψ is injective, the preceding protocol coincides with the reparameterisation. In
this case a pointwise knowledge is sufficient.

ii) The case of non-injective changes of parameters is often tackled in the literature on the following
restrictive form. When d=1, we consider a point θ0 such that ψ′(θ0) /= 0. Since ψ is in C1(Θ, R), according
to the local inversion theorem there exists θmin

0 , θmax
0 such that ψ : ]θmin

0 , θmax
0 [→ ψ(]θmin

0 , θmax
0 [) is a

C1-diffeomorphism with an inverse denoted by iθ0 (which depends on θ0 contrary to the injective case).
If we suppose that previous observation leads us to believe that θ is in ]θmin

0 , θmax
0 [, locally we are going

back to the case processed in section 3. Thus, we set ∀a ∈ ψ(]θmin
0 , θmax

0 [),

Jψ(V )
θ0

(a) =
J(iθ0(a))

ψ′2(iθ0(a))
.

The quantity Jψ(V )
θ0

(a) is called the local Fisher information because it takes into account only one
antecedent of a.

When we do not have any a priori information on θ, one has to use a concept which expresses the
entire behavior of ψ.!

Since ψ is non-injective, the model (Qa)a∈ψ(Θ) may present irregularities. Thus, the Fisher information
may be undefined. Moreover, even if it exists, the information matrix is not easy to perform. So we are
going to show the relevance of error calculus in this case, showing that the operator ΓV

ψ is a substitute of
the inverse of the Fisher information in the sense that it gives a simple bound of estimation and is linked
to asymptotic statistics.
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4.2. ΓV
ψ as an estimation bound

To simplify, let us suppose that d = 1.
Using a regular parametric model to estimate θ, we have seen that for a regular unbiased estimator

T (X) of ψ(θ), the Cramer-Rao inequality

E[(T (X)− ψ(θ))2 | V = θ] ≥ ψ′2(θ)
J(θ)

(7)

gave a bound of the quadratic risk and lead to interpret J as the information on θ contained in observation
X. In the same way, when the estimators are built with the independent observations (X1, . . . Xn), it is
easy to see that the additivity property of the Fisher information matrix ensures that

E[(T (X1, . . . , Xn)− ψ(θ))2 | V = θ] ≥ ψ′2(θ)
nJ(θ)

if E[T (X1, . . . Xn)|V = θ] = ψ(θ).
Thus, conditioning (7) with respect to ψ one has

E[(T (X)− a)2 | ψ(V ) = a] ≥ Eρ[
ψ′2

J
| ψ = a] = ΓV

ψ [Id](a)

and ΓV
ψ [Id] appears as a natural bound of the problem. Similarly, one obtains

E[(T (X1, . . . , Xn)− a)2 | ψ(V ) = a] ≥
ΓV

ψ [Id](a)
n

.

Remark H: 1
ΓV

ψ
can be seen as an additive information when independent observations are combined.!

4.3. Links with asymptotic statistics

For the sake of simplicity about the question of existence and unicity of the maximum likelihood
estimator we suppose that for the model (Pθ)θ∈Θ, for all n ∈ N, for all (x1, . . . , xn) ∈ En, the equation

n∑

i=1

∂

∂θ
logf(xi, θ) = 0

has a unique solution denoted by θ̂n(x1, . . . , xn) which is a maximum for the function θ →
n∏

i=1
f(xi, θ).

In this section we assume that Θ is a convex bounded subset of R (this could easily be extended to any
finite dimension).

In order to show that ΓV
ψ is the key stone of some asymptotic results, one requires preliminary knowledge

concerning the convergence of the sequence of estimators (θ̂n(X1, . . . , Xn))n∈N.

4.3.1. Convergence of the maximum likelihood estimator

We essentially refer the reader to [10], [11] for the proof of the results exposed here and for comple-
mentary details.

The asymptotic techniques used in this section can be easily extended to a more general framework
than the case of experiments based on the observation of n-samples (especially for the applications to
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stochastic processes). These techniques are not based on the historical approach using Taylor’s formula
any more (see for example [12] p.469) but on large deviation tools.

An important idea of Ibragimov and Has’minskii has been to study the likelihood ratio

Zn,θ(u) =
n∏

i=1

f(Xi, θ + u√
n
)

f(Xi, θ)
with u ∈ Un,θ = {u ∈ R | θ +

u√
n
∈ Θ}.

Its asymptotic behavior is linked to that of the maximum likelihood estimator by the following inequality

P(
√

n(θ̂n − θ) > H | V = θ) ≤ P( sup
|u|>H

Zn,θ(u) ≥ 1 | V = θ).

Furthermore this quantity is connected to the Hellinger’s distance:

E[Z
1
2
n,θ(u) | V = θ] = 1− 1

2
r(Pn

θ+ u√
n
, Pn

θ )

where, for a given parametric model (Pθ), the Hellinger’s distance r is defined by

r(Pθ, Pθ′) =
∫

(
√

f(x, θ)−
√

f(x, θ′) )2dµ(x).

It is a measurement of the identifiability i.e the capacity of a model to distinguish two different values of
the parameter θ.

The following theorem gives sufficient conditions for the consistence of the maximum likelihood esti-
mator.

Theorem 4.3.1 ([11] p.42) Let us suppose that
1) ∀θ, ∀n, the function u → Zn,θ(u) is continuous
2) ∀θ, ∃M > 0, ∃m > 0 such that ∀n

sup
|u1|≤R,|u2|≤R

|u1 − u2|−2 E[ |Z
1
2
n,θ(u1)− Z

1
2
n,θ(u2)|2 | V = θ] ≤ M(1 + Rm)

3) ∃a > 0 such that ∀u ∈ Un,θ, ∀n
E[Z

1
2
n,θ(u) | V = θ] ≤ e−a|u|2 .

Then, ∀θ , ∃B > 0, ∃b > 0 such that ∀ε > 0, for n sufficiently large, one has

Eρ[1√n|θ̂n(X1,...,Xn)−θ|>ε
| V = θ] ≤ Be−bε2

.

Consequently we obtain the almost sure convergence of θ̂n toward θ.

Remarks I: i) We can notice that hypothesis 3) implies the identifiability of the model. This condition
is necessary because one can’t find consistent estimators for a non-identifiable model.

ii) There exists a uniform extension of the preceding theorem: If K is a compact set included in Θ and
if hypotheses 2) and 3) are fulfilled uniformly for θ ∈ K then ∃b(K) > 0, ∃B(K) > 0 such that ∀ε > 0,
for large n,

sup
θ∈K

Eρ[1√n|θ̂n−θ|>ε
| V = θ] ≤ Be−bε2

.!

The hypotheses of theorem 4.3.1 may appear restrictive, but the following result shows that they are
satisfied for a large class of regular models.

Proposition 4.3.2 ([11] p.81) If Pθ is a regular model fulfilling

12



1) 0 < inf
Θ

J(θ) ≤ sup
Θ

J(θ) < ∞

2) ∀θ, ∀δ > 0
inf

u∈U1,θ,|u|>δ
r(Pθ, Pθ+u) > 0

then the hypotheses of theorem 4.3.1 hold.

From a practical point of view, the condition of local asymptotic normality introduced in the follow-
ing theorem, yields a useful result for constructing confidence intervals. It possesses also a uniform version.

Theorem 4.3.3 ([11] p.185) We suppose that the hypotheses of theorem 4.3.1 are fulfilled. Moreover we
assume that the model satisfies the local asymptotic normality condition introduced by Le Cam: for all
θ, the sequence of stochastic processes (Zn,θ(u)) converges in the sense of finite dimensional marginals
toward the process Zθ(u) = eu+− 1

2 J(θ)u2
where ! is a random variable distributed as N (0, J(θ)). Then,

∀θ ∈ Θ, one has
1) given V = θ

√
n(θ̂n(X1, . . . , Xn)− θ) →

L(P)
N (0,

1
J(θ)

),

2) ∀p > 0
E[n

p
2 (θ̂n(X1, . . . , Xn)− θ)p | V = θ] → mp,

where mp is the p-th moment of the law N (0, 1
J(θ) ).

Remarks J: i) The hypotheses of theorem 4.3.1 lead to the tightness of the process (Zn,θ(u)) in the
space of continuous functions vanishing at infinity. The pointwise convergence of this sequence becomes
functional and gives 1).

ii) The maximum likelihood estimator is asymptotically unbiased and achieves asymptotically the
bound of the Cramer Rao inequality.

iii) Since J is continuous under the hypotheses of regular models, the construction of asymptotic con-
fidence intervals is done classically.!

Now, one of the most important property of regular models is the following:

Proposition 4.3.4 ([11] p.114) The condition of local asymptotic normality is fulfilled for regular models.

In the following section we used those asymptotic results to give a new interpretation of ΓV
ψ .

4.3.2. ΓV
ψ as an asymptotic variance

We are able to exhibit a consistent estimator in the problem of the direct estimation of ψ(θ) using the
experiment generated by the observation of (X1, . . . , Xn), given ψ(V ) = a. The quantity ΓV

ψ will appear
in the limit theorems associated to this statistical procedure.

Proposition 4.3.5 Under the hypotheses of proposition 4.3.2 one has ∀a ∈ ψ(Θ),
1) ∀ε > 0,

E[1|ψ(θ̂n(X1,...,Xn))−ψ(V )|>ε
| ψ(V ) = a] → 0.

2) Given ψ(V ) = a √
n(ψ(θ̂n)− a) →

L(P)
Ga

13



where Ga is a random variable with the following density

g(x, a) = Eρ[1ψ′ ,=0
1√

2π ψ′2

J

e
−x2J

2ψ′2 | ψ = a]

with respect to Lebesgue measure on R ( Ga has a variance equal to ΓV
ψ [Id](a)).

Proof: 1) We denote by C the Lipschitz constant of ψ.
According to Fubini theorem and by definition of the conditional expectation, ∀(x1, . . . , xn) ∈ (E)n,∀a ∈

ψ(Θ),
E[1|ψ(θ̂n(X1,...,Xn))−ψ(V )|>ε

| ψ(V ) = a]

is equal to

Eρ[
∫

1|ψ(θ̂n(x1,...,xn))−a|>ε
f(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a].

But we have
1|ψ(θ̂n(X1,...,Xn))−ψ(Θ)|>ε

≤ 1|θ̂n(X1,...,Xn)−Θ|> ε
C

and the result follows by theorem 4.3.1 and dominated convergence theorem.
2) When ψ′(θ0) = 0, theorem 4.3.3 yields

E(1√
n|ψ(θ̂n(X1,...,Xn))−ψ(Θ)|>ε

| V = θ0)−−−→n→∞ 0

and when ψ′(θ0) /= 0, Slutsky’s lemma (see [12] p.86) gives that, given V = θ0,

√
n(ψ(θ̂n(X1, . . . , Xn))− ψ(θ0)) →

L(P)
N

(
0,

ψ′2(θ0)
J(θ0)

)
.

If F is a bounded continuous function, using the same argument as in 1), one has that
∫

F (
√

n(ψ(θ̂n)− a))Eρ[f(x1, .) . . . f(xn, .) | ψ = a]dµ(x1) . . . dµ(xn)

is equal to

Eρ[
∫

F (
√

n(ψ(θ̂n(x1, . . . , xn))− ψ))f(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a]

and the result comes by dominated convergence.!

Remarks K: i) When ψ is injective, ψ(θ̂n) is the maximum likelihood estimator associated to the
model (Qa)a∈ψ(Θ).

ii) Using the Borel-Cantelli theorem and the fact that ψ is in Lip1(Θ), we can extend the convergence
in probability in 1) to an almost sure convergence.

iii) ΓV
ψ [Id] is a mean of the inverse of the local Fisher information. Let us simply show this on an

example: we suppose that Θ =]− 1, 1[ \ {0}, ρ(θ) = q(θ)dθ and ψ(θ) = θ2.
If a0 ∈]0, 1[, this point has two antecedents for ψ: θ1 =

√
a0 with the local Fisher information

Jψ(V )
θ1

(a0) = J(θ1)
ψ′2(θ1)

and θ2 = −√a0 with Jψ(V )
θ2

(a0) = J(θ2)
ψ′2(θ2)

. A calculus of conditional expectation
gives

ΓV
ψ [Id](a0) =

q(θ1))

Jψ(V )
θ1

(a0)
+ q(θ2)

Jψ(V )
θ2

(a0)

q(θ1) + q(θ2)
which is none other than a barycenter weighted by ρ.
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iv) When ρ(θ) = q(θ)dθ with q continuous, we have similar results if we replace the maximum likelihood
estimator by the bayesian estimator associated to the quadratic loss function and the a priori law ρ.

v) The estimation bound given in 4.2 becomes an asymptotic equality.!

In order to obtain a quadratic convergence for
√

n(ψ(θ̂n) − a) ( allowing to approximate in this way
ΓV

ψ [Id] by Monte-Carlo methods) we have to reinforce the hypotheses of proposition 4.3.5.

Proposition 4.3.6 Let us suppose that the model (Pθ)θ∈Θ can be extended in a regular model on an open
set Θ′ such that Θ ⊂ Θ′. Moreover, if
1) 0 < inf

Θ′
J(θ) ≤ sup

Θ′
J(θ) < ∞

2) ∀δ > 0
inf
θ∈Θ′

inf
u∈Ũ1,θ,|u|>δ

r(Pθ, Pθ+u) > 0

where Ũ1,θ = {u ∈ R | θ + u ∈ Θ′}, then, ∀a ∈ ψ(Θ)

E[n(ψ(θ̂n(X1, . . . , Xn))− a)2 | ψ(V ) = a] → ΓV
ψ [Id](a).

Proof: Conditions 1) and 2) lead to an uniform version of theorem 4.3.3:

sup
θ∈Θ

(E[n(θ̂n − θ)2 | V = θ]− 1
J(θ)

) → 0. (8)

By Fubini theorem,
E[n(ψ(θ̂n)− a)2 | ψ(V ) = a]

is equal to

Eρ[
∫

n(ψ(θ̂n(x1, . . . , xn))− ψ)2f(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a].

Since ψ is lipschitzian, it follows from (8) that

A =
∫

n(ψ(θ̂n(x1, . . . , xn))− ψ(θ))2f(x1, θ) . . . f(xn, θ)dµ(x1) . . . dµ(xn)

fulfills A ≤ k
J(θ) with J−1 ∈ L1(ρ) and k ∈ R∗+. We conclude thanks to the dominated convergence

theorem using that

E[n(θ̂n − θ)2 | V = θ] → 1
J(θ)

implies

E[n(ψ(θ̂n)− ψ(θ))2 | V = θ] → ψ′2(θ)
J(θ)

.!

4.3.3. Comments and perspectives

From the hypotheses made on the model (Pθ)θ∈Θ, we are able to give a bound concerning the direct
estimation of ψ(θ), using the experiment generated by the observation of (X1, . . . , Xn) given ψ(V ) = a.
A question naturally arises: what happens when the model (Qa)a∈ψ(Θ) is sufficiently regular to define
its Fisher information matrix Jψ(V )? One has another estimation bound that appears in some limits
theorems associated to the estimation of a = ψ(θ) by means of a n-sample of Qa.
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When ψ is injective it is easy to show that those bounds coincide, but it is not generally the case as
we can see on the following example.
Suppose
- Θ =]− 1; 1[ \{0}, ρ is distributed as the normalized uniform law on Θ
- dPθ(x) = f(x, θ)dµ(x) = 1√

2π
e
−(x−θ)2

2 dx

- ψ(θ) = θ2.
The model (Pθ)θ∈Θ is regular and fulfills the assumptions of proposition 2.2.2 a). From the definition

of the conditional expectation, we obtain for a ∈]0, 1[

dQa(x) =
f(x,

√
a) + f(x,−

√
a)

2
dx = h(x, a)dx.

As the function a → h(x, a) is in C1(]0, 1[, R) and that, according to the dominated convergence theorem,
a →

∫ (h′a(x,a))2

h(x,a) dx is continuous, using the method of [13] p.95, one shows that the model (Qa) is regular.
Moreover we have

ΓV
ψ [Id](a) = 4a.

In order to compare ΓV
ψ [Id] and Jψ(V ) we need the following lemma.

Lemma 4.3.7 Suppose that p(x, θ)dµ(x) and r(x, θ)dµ(x) are two regular models on Θ such that the
function θ → (p(x, θ), r(x, θ)) is differentiable. If we put s(x, θ) = p(x, θ) + r(x, θ) then

∫
s′2

s
dµ(x) ≤

∫
p′2

p
dµ(x) +

∫
r′2

r
dµ(x). (9)

Proof: We set s̃ =
√

s, p̃ = √
p, r̃ =

√
r, inequality (9) becomes

∫
s̃′2dµ(x) ≤

∫
p̃′2dµ(x) +

∫
r̃′2dµ(x). (10)

It is easy to show that
(10) ⇔ p̃′2r̃2 + r̃′2p̃2 ≥ 2p̃p̃′r̃′r̃ µ− a.e

and (9) follows with equality if and only if p̃r̃′ = p̃′r̃.!

Thus we have
1

Jψ(V )
> ΓV

ψ [Id]. (11)

Hence, in this situation, we can see that error calculus gives a more precise bound. At present, we are
not able to exhibit an example where (11) is contradicted.

5. Product structures

First of all, we recall the definition of the product of two error structures (see [3] p.200).

Definition 5.0.8 If Si = (Wi,Wi,mi, Di,Γi) (i=1,2) are two error structures, the product, denoted by
S1 ⊗ S2, is define as the structure (W1 ×W2,W1 ⊗W2, m1 ⊗m2, D, Γ) with
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D = {f ∈ L2(m1 ⊗m2)| for m2 − almost every y f(., y) ∈ D1

for m1 − almost every x f(x, .) ∈ D2∫
Γ[f ](x, y)dm1(x)dm2(y) < ∞}

and
Γ[f ](x, y) = Γ1[f(., y)](x) + Γ2[f(x, .)](y).

Here we are interested in the evaluation of a parameter θ = (θ1, θ2) where θ1 and θ2 are supposed to be
independent i.e. V1 and V2 are independent random variables. Let us denote by V = (V1, V2) : (Ω,A, P) →
Θ1 ×Θ2 the realization of the parameter θ. The law of the random variables V , denoted by ρ, fulfills:

dρ(θ) = dρ1(θ1)dρ2(θ2).

To estimate θ1 [resp.θ2] we choose the following regular parametric model:

dPθ1 = f(x, θ1) dµ(x) [resp. dQθ2 = g(y, θ2) dν(y)]

with a regular Fisher information matrix J1(θ1) [resp.J2(θ2)] such that hypothesis E is fulfilled.
Let us consider a random variable X [resp. Z] with a conditional law given V1 = θ1 [resp. V2 = θ2]

having the density:
f(x, θ1) dµ(x) [resp. g(y, θ2) dν(y)].

We suppose that (X, V1) and (Z, V2) are independent.

Remark L: We are in the situation where the pairs (parameter, observation) are independent. In terms
of errors, this independence has to be linked with (5) which is the intuitive meaning of the preceding
definition of product structures.!

To estimate θ, it is natural to use the conditional law of (X,Z) given V = (θ1, θ2) denoted by Rθ1,θ2 .
From these hypotheses, it comes that

dRθ1,θ2 = f(x, θ1) g(y, θ2) dµ(x) dν(y).

Thus, we obtain for this model the following Fisher information matrix


J1(θ1) 0

0 J2(θ2)





and for F ∈ Lip1(Θ1 ×Θ2),

ΓV [F ](θ1, θ2) =
[F ′1(θ1, θ2)]2

J1(θ1)
+

[F ′2(θ1, θ2)]2

J2(θ2)
.

Then we have the following proposition:

Proposition 5.0.9 1) SV = SV1 ⊗ SV2

2) If ψ1 and ψ2 are regular changes of variables then

(ψ1, ψ2)∗S(V1,V2) = ψ1 ∗S
V1 ⊗ ψ2 ∗S

V2 .

Proof: 1) Let us notice that Lip1(Θ1×Θ2) is included in the domain of the product structure SV1 ⊗SV2 .
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Moreover, from the expression of the information matrix, for F ∈ Lip1(Θ1 ×Θ2) it follows that

EV [F ] =
∫
EV1 [F (., y)]dρ2(y) +

∫
EV2 [F (x, .)]dρ1(x).

Thus ‖ . ‖EV coincides on Lip1(Θ1 × Θ2) with the norm associated to the product structure. Hence, we
can deduce that the hypothesis E is fulfilled for the model (Rθ1,θ2)Θ1×Θ2 : SV is well-defined.

Furthermore, since Lip1(Θ1×Θ2) is dense in (DV , ‖ . ‖EV ), DV is included in the domain of the product
structure and the two squared field operators coincide on DV .

For the other inclusion, we use the fact that the functions of the form F =
p∑

i=1
figi with fi ∈ DV1 and

gi ∈ DV2 are dense in the domain of the product structure for the associated norm (see [3] p.201) and
belong to DV as easily seen using the closedness of the forms EV1 and EV2 .

2) The equality comes from 1) and section 3.!

Remarks M: i) The preceding results extended obviously to n-tuple.
ii) We can notice that this property expresses the additive property of the Fisher information for in-

dependent experiments.!

Since it is easy to build infinite products of error structures (see [3],[6],[14]), we are able to obtain an
empirical error calculus associated to the estimation of the parameters of the type θ = (θi)i∈N working
component per component.

6. The choice of an a priori law ρ

In the preceding sections, the choice of an a priori law on the space of parameters Θ is left to the
practitioner as in the bayesian analysis. The determination of our error structure SV can appear, to some
degree, incomplete. We are going to show that, once a regular parametric model is chosen, a natural
probability measure becomes apparent: the Jeffreys prior (see [12] p.490). This probability is well known
in bayesian analysis. Moreover, it possesses a remarkable stability concerning error calculus: it is invariant
under reparameterization and compatible with the notion of product.

Let (Pθ)θ∈Θ be a regular model such that

K =
∫

Θ

√
det(J(θ))dθ < ∞.

We can define on Θ the following probability measure

ρV (dθ) =
IΘ

√
det(J(θ))dθ

K
called the Jeffreys prior induced by the model (Pθ)θ∈Θ. It is often used in bayesian analysis for its invari-
ance under reparameterisation. Moreover it is the prior measure which has the smallest influence on the
posterior measure in the sense of the asymptotic Shannon information (see [13]). In term of error calculus
its properties are summarized in the following proposition:

Proposition 6.0.3.1 a) If ψ : Θ → Rd is a regular change of variables

ψ∗ρ
V = ρψ(V ).

b) In the framework of section 5
ρ(V1,V2) = ρV1 ⊗ ρV2 .
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Proof: Obvious using the classical properties of the Fisher information.!

Finally, with suitable hypotheses, the Jeffreys prior may be seen as the invariant measure of the gener-
ator associated to the induced infinitesimal perturbation in the convergence of the maximum likelihood
estimator.

7. Conclusion

Through statistical experiments, we have seen that the fundamental identification gave an error struc-
ture intrinsically linked to the observed physical phenomenon. The remarkable robustness of this identi-
fication, regarding injective changes of variables and products, yields a particularly fitting tool for finite
dimensional estimation.

The existence of such an error structure built from the parametric model allows to propagate the
accuracy through calculations performed with the parameter thanks to a coherent specific differential
calculus (property 1) of Γ). Moreover error calculus provides a natural framework concerning the study
of non-injective mapping. A possible extension will be to generalize such an experimental protocol when
J is singular and also to explore more precisely the connections between Dirichlet forms and asymptotic
statistics. Finally, we wonder whether the semi-parametric and non-parametric estimation theories (see
[15]) could lay the foundation of an infinite dimensional identification in order to get Γ on the Wiener
space, using a direct functional reasoning instead of a component per component argument as above.
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