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On the distane between separatries for thedisretized pendulum equationIRMA - UMR 7501 CNRS/ULP7 rue René Desartes - 67084 Strasbourg Cedex, Franeemail: sellama�math.u-strasbg.frabstratWe onsider the disretization
q(t + ε) + q(t − ε) − 2q(t) = ε2 sin

(

q(t)
)

,

ε > 0 a small parameter, of the pendulum equation q′′ = sin(q); in systemform, we have the disretization
q(t + ε) − q(t) = εp(t + ε), p(t + ε) − p(t) = ε sin

(

q(t)
)

.of the system
q′ = p, p′ = sin(q).The latter system of ordinary di�erential equations has two saddle pointsat A = (0, 0), B = (2π, 0) and near both, there exist stable and unstable man-ifolds. It also admits a heterolini orbit onneting the stationary points Band A parametrised by q0(t) = 4 arctan

(

e−t
) and whih ontains the stablemanifold of this system at A as well as its unstable manifold at B. We provethat the stable manifold of the point A and the unstable manifold of the point

B do not oinide for the disretization. More preisely, we show that thevertial distane between these two manifolds is exponentially small but notzero and in partiular we give an asymptoti estimate of this distane. Forthis purpose we use a method adapted from the artile of Shäfke-Volkmer[10℄ using formal series and aurate estimates of the oe�ients. Our resultis similar to that of Lazutkin et. al. [9℄; our method of proof, however, is quitedi�erent.Keywords: Di�erene equation; Manifolds; Linear operator; Formal solu-tion; Gevrey asymptoti; Quasi-solution1 IntrodutionWe onsider the following di�erene equation
q(t + ε) + q(t − ε) − 2q(t) = ε2 sin

(

q(t)
)

. (1.1)1



This seond order equation is a disretization of the pendulum equation q′′ =
sin(q). It is equivalent to the following system of �rst order di�erene equations

{

q(t + ε) = q(t) + εp(t + ε),

p(t + ε) = p(t) + ε sin
(

q(t)
)

.
(1.2)whih an be onsidered as a disretization of the system

{

q′ = p,

p′ = sin(q).
(1.3)The latter system has two saddle points at A = (0, 0), B = (2π, 0) and there existstable and unstable manifolds. For the disretized equation (1.2) and su�ientlysmall ε > 0, these manifolds still exist.The system (1.3) has (q0(t), q

′

0(t)
), where q0(t) = 4 arctan

(

e−t
), as a hetero-lini orbit onneting the stationary points B and A; it is a parametrisation ofthe urve p = −2 sin(q/2) and ontains the stable manifold of (1.3) at the point

A as well as its unstable manifold at B. This urve, together with p = 2 sin(q/2),separates regions with periodi orbits from regions with non-periodi orbits andis therefore often alled a separatrix. Our purpose is study the behavior of thisseparatrix under disretization of the equation � it turns out that there is no longera heterolini orbit for system (1.2) and its the stable manifold at A and the un-stable manifold at B no longer oinide. More preisely, we want to estimate thedistane between the stable manifold W−
s,ε of (1.2) at A and the unstable manifold

W+
u,ε of (1.2) at B as a funtion of the parameter ε.Lazutkin et. al. [9℄, Gelfreih [4℄, (see also Lazutkin [7℄[8℄) had given an asymp-toti estimate of the splitting angle between the manifolds. Starting from a hetero-lini solution of the di�erential equation, they study the behavior of analyti so-lutions of the di�erene equation in the neighbourhood of its singularities t = ±π

2 i.We show that the distane between these two manifolds is exponentially smallbut not zero and we give an asymptoti estimate of this distane. This resultis similar to that of Lazutkin et. al. [9℄; our method of proof, however, is quitedi�erent.We use a method adapted from the artile of Shäfke-Volkmer [10℄ using a for-mal power series solution and aurate estimates of the oe�ients. This methodwas adapted for the logisti equation in Sellama[11℄. It turns out that the adap-tation of this method for the pendulum equation is more di�ult than in the aseof the logisti equation.We will showTheorem 1.1. Given any positive t0, it is known that for su�iently smal ε0 > 0and all t ∈] −∞, t0] there is exatly one one point w+
u,ε(t) = (q0(t), p̃

+
u,ε(t)) on thestable unstable manifold having �rst oordinate q0(t). There exist onstants α 6= 0,suh that for any positive t0distv(w+

s,ε(t),W
−
s,ε

)

=
4πα

ε2
cosh(t) sin

(2πt

ε

)

e−
π2

ε + O

(

1

ε
e−

π2

ε

)

, as ε ց 0,2



uniformly for −t0 < t < t0, where distv(P,W−
u,ε

) denotes the vertial distane of apoint P from the unstable manifolds W−
u,ε.This result orresponds to the result of Lazutkin et. al. [9℄ as the angle betweenthe manifolds at an intersetion point is asymptotially equivalent to

1
q′
0
(t)

d
dt distv(w+

s,ε(t),W
−
u,ε

), but we do not want to give any detail here.Our proof uses the following steps. First, we onstrut a formal solution forthe di�erene equation (1.1) in the form of a power series in d = 2arsinh(ε/2),whose oe�ients are polynomials in u = tanh(dt/ε). This is done in setion 2;the introdution of d is neessary beause polynomials are desired as oe�ients.Then, we give asymptoti approximations of these oe�ients using appropriatenorms on spaes of polynomials. To that purpose we introdue operators on poly-nomials series. In setion 6 we use the trunated Laplae transform to onstruta funtion whih satis�es (1.1) exept for an exponentially small error. The nextand last step is to give an asymptoti estimate for the distane of some point of thestable manifold from the unstable manifold. A alulation shows that α = 89.0334and therefore 4πα = 1118.8267 (See Remark 5.4); the orresponding onstants ofLazutkin have already been alulated with high preision (See Lazutkin et. al.[9℄). A proof that α 6= 0 as in [10℄ or [11℄ would be possible. Y.B. Suris [12℄ hadshown that α 6= 0.2 Formal solutionsThe purpose of this setion is to �nd a onvenient formal solution for equation(1.1). First, we need some preparations. We put
u : = tanh

(

d

ε
t

)

,

q0d(t) : = 4 arctan

(

exp

(

− d

ε
t

)

)

,

qd(t) =
√

1 − u2Ad(u) + q0d(t), Ad(u) =

∞
∑

n=1

An(u)dnfor a formal solution of (1.1), where d = ε +
∑∞

n=3 dnεn is a formal powers seriesin ε to be determined.Remark. The linearization of equation (1.1) at the point A gives the followingequation
Z(t + ε) + Z(t − ε) − 2Z(t) = ε2Z(t).The parameter d is suh that Z(t) = e−dt is a solution of this equation, therefore

ε and d are oupled by the relation d = 2arsinh(ε/2).3



By Taylor expansion, we obtain
q0d(t + ε) + q0d(t − ε) − 2q0d(t) = 2

+∞
∑

n=1

1

(2n) !
q
(2n)
0d (t) ε2n, (2.1)where 2

(2n)!
q
(2n)
0d (t)ε2n/d2n is an odd polynomial I2n−1(u) multiplied by √

1 − u2;we �nd I2n−1(1) = 4/(2n)!.Using cos(q0d) = 2u2 − 1, sin(q0d) = 2u
√

1 − u2, we an express our equation(1.1) in the form
Ad(T

+)

√

1 − (T+)2

1 − u2
+ Ad(T

−)

√

1 − (T−)2

1 − u2
− 2Ad(u) = f

(

ε, u,Ad(u)
) (2.2)or equivalently

Ad(T
+)

cosh(d) + u sinh(d)
+

Ad(T
−)

cosh(d) − u sinh(d)
− 2Ad(u) = f

(

ε, u,Ad(u)
) (2.3)where

f
(

ε, u,Ad(u)
)

= ε2

(

2u cos
(

Ad(u)
√

1 − u2
)

+
2u2 − 1√
1 − u2

sin
(

Ad(u)
√

1 − u2
)

)

−
+∞
∑

n=1

I2n−1(u) d2n,

T+ = T+(d, u) =
u + tanh(d)

1 + u tanh(d)
= tanh

(d

ε
(t + ε)

)

,

T− = T−(d, u) =
u − tanh(d)

1 − u tanh(d)
= tanh

(d

ε
(t − ε)

)

.As u → 1, the expressions T+ and T− redue to 1, the denominators in (2.3)simplify to e±d and hene equation (2.3) redues to
(e−d + ed − 2)Ad(1) = ε2(2 + Ad(1)) − 4(cosh(d) − 1).This is equivalent to (2 cosh(d) − 2 − ε2)(2 + Ad(1)) = 0 and hene we haveneessarily ε = 2 sinh(d/2) if we want a formal solution suh that the oe�ientshave limits as u → 1.Theorem 2.1. (On the formal solution) If ε = 2 sinh(d/2), then equation(2.2) has a unique formal solution of the form

Ad(u) =
+∞
∑

n=1

A2n−1(u)d2n, (2.4)where A2n−1(u) are odd polynomials of degree ≤ 2n − 1.4



Remark: A similar formal solution was found using another method in [12℄.Proof. We will use the Indution Priniple to show that there exist unique oddpolynomials A1, A3, A5...A2n−1 suh that
Zn(d, u) =

n
∑

k=1

A2k−1(u)d2k (2.5)satisfy
Rn(d, u) = O(d2n+4) (2.6)where

Rn(d, u) = Zn,d

(

T+
)

√

1 − (T+)2

1 − u2
+ Zn,d

(

T−
)

√

1 − (T−)2

1 − u2

− 2Zn,d(u) − f
(

ε, u, Zn,d(u)
) (2.7)For n = 1, a short alulation shows that we must have A1(u) = −1

4u and hene
Z1,d(u) = −1

4ud2. We obtain
R1(d, u) = (

−91

48
u5 +

137

48
u3 − 23

24
)d6 + O(d8).Suppose now that there exists A1, A3, A5...A2n−1 suh that

Zn(d, u) =

n
∑

k=1

A2k−1(u)d2k (2.8)satis�es (2.6), (2.7). We show that there is a unique polynomial A2n+1(u) suhthat
Zn+1(d, u) = Zn(d, u) + A2n+1(u)d2n+2 (2.9)satis�es (2.6). We put
Rn(d, u) = R2n+3(u)d2n+4 + O

(

d2n+6
) (2.10)where R2n+3(u) is odd and deg(R2n+3(u)) ≤ 2n + 3.We substitute Zn+1(d, u) in equation (2.7). Using Taylor expansion, (2.9),(2.10) and ε = 2 sinh(d/2), we obtain

Zn+1,d

(

T+
)

√

1 − (T+)2

1 − u2
− Zn+1,d

(

T−
)

√

1 − (T−)2

1 − u2
− 2Zn+1,d(u) −

f
(

ε, u, Zn+1,d

)

=

[

(u4 − 2u2 + 1)A
′′

2n+1(u) + (4u3 − 4u)A
′

2n+1(u) +

R2n+3(u)

]

d2n+4 + O
(

d2n+6
) 5



We notie that (2.10) is satis�ed if only if
[

(1 − u2)2A
′

2n+1(u)
]′

+ R2n+3(u) = 0 (2.11)This di�erential equation has a unique solution vanishing at u = 0 withoutsingularity at u = 1, namely
A2n+1(u) = −

∫ u

0

∫ t
1 R2n+3(s)ds

(1 − t2)2
dt. (2.12)We now show that this solution is an odd polynomial of u. It is lear that

∫ t
1 R2n+3(s)ds vanishes for t = 1 and as R2n+3(s) is odd, it also vanishes for

t = −1. It su�es to show that R2n+3(s) also vanishes at t = ±1. Indeed, takingthe limit of (2.7) as u → 1 as we did for (2.3) and using
lim
u→1

f
(

ε, u, Z(d, u)
)

= ε2Z(d, 1)we obtain
R2n+3(1)d

2n+4 =

(

ed + e−d − 2 − ε2

)

Z(d, 1) + O(d2n+6).By our hoie of ε = 2 sinh(d/2), we obtain R2n+3(1)d
2n+4 = O(d2n+6). Conse-quently R2n+3(1) = 0. As R2n+3(u) is odd, we also have R2n+3(−1) = −R2n+3(1) =

0. This proves that A2n+1(u) is an odd polynomial of degree(A2n+1(u)
)

≤ 2n + 1and A2n+1(0) = 0.The �rst polynomials A2n−1(u) with n > 0 an be alulated using Maple.
n 1 2 3

A2n−1(u) −1
4u

(

91
864u3 − 47

576u

) (

− 319
2880u5 + 185

1152u3 − 3703
69120u

)Now, we ntrodue the operators C2, C,S2,S de�ned by
C(Z)(d, u) = 1

2

(

Z(d, T+ 1

2 ) + Z(d, T− 1

2 )
)

S(Z)(d, u) = 1
2

(

Z(d, T+ 1

2 ) − Z(d, T− 1

2 )
)

C1(Z)(d, u) = 1
2

(

Z(d, T+) + Z(d, T−)
)

S1(Z)(d, u) = 1
2

(

Z(d, T+) − Z(d, T−)
)

(2.13)
where T+ 1

2 = T+(d
2 , u), T− 1

2 = T−(d
2 , u) and Z(d, u) is a formal power series in dwhose oe�ients are polynomials. We an show that

C1 = 2S2 + Id
S1 = 2SC (2.14)6



and
C1(Q · G) = C1(Q)C1(G) + S1(Q)S1(G)

S1(Q · G) = C1(Q)S1(G) + S1(Q)C1(G))

C(Q · G) = C(Q)C(G) + S(Q)S(G)

S(Q · G) = C(Q)S(G) + S(Q)C(G)

(2.15)
if Q,G are formal power series in d whose oe�ients are polynomials of u.3 Norms for polynomials and basisIn this setion we reall some de�nitions and results of [10℄. Using a ertainsuquene of polynomials. we de�ne onvenient norms on spaes of polynomialswhih satis�es some useful proprieties. We denote by

• P the set of all polynomial whose oe�ents are omplex
• Pn the spaes of all polynomials of degree less than or equal to nProposition 3.1. [10℄. We de�ne the sequene of polynomials τn(u) by

τ0(u) = 1, τ1(u) = u, τn+1(u) =
1

n
Dτn(u) for n ≥ 1,where the operator D is de�ned by

D := (1 − u2)
∂

∂u
.Then we have1. T+(d, u) =

∑∞
n=0 τn+1(u)dn,2. τn(u) has exatly degree n and hene τ0(u), ..., τn(u) form a basis of Pn,3. τn(tanh(z)) = 1
(n−1) !

(

d
dz

)n−1(
tanh(z)

)De�nition 3.2. Let p ∈ Pn. As τ0(u), ..., τn(u) form a basis of Pn, we an write
p ∈ Pn as

p =

n
∑

k=0

akτk(u).Then we de�ne the norms
‖p‖n =

n
∑

i=0

|ai|
(π

2

)n−i
. (3.1)7



Theorem 3.3. [10℄. Let n,m be positive integers and p ∈ Pn, q ∈ Pm. The norms(3.1) have the following properties:1. ‖Dp‖n+1 ≤ n‖p‖n.2. If the onstant term of p in the basis {τ0, τ1.., τn} is zero, we have
‖p‖n ≤ ‖Dp‖n+1.3. There exists a onstant M2 suh that ‖pq‖n+m ≤ M2‖p‖n‖q‖m.4. There is a onstant M3 suh that that for all n > 1, |p(u)| ≤ M3

(

2
π

)n ‖p‖n

(−1 ≤ u ≤ 1).5. There is a onstant M4 suh that for all n > 1 with p(1) = p(−1) = 0

∥

∥

∥

p

τ2

∥

∥

∥

n−2
≤ M4‖p‖n4 OperatorsIn this setion we will use some de�nitions of Shäfke-Volkmer[10℄ and adapt theirresults on operators on polynomial series to our ontext. Let

Q :=

{

Q(d, u) =

∞
∑

n=0

Qn(u)dn, where Qn(u) ∈ Pn, for all n ∈ N

}

.By abuse of notation, let ‖Q‖n = ‖Qn‖n for a polynomial series
Q(d, u) =

∞
∑

n=0

Qn(u)dn.De�nition 4.1. Let f be formal power series of z whose oe�ients are omplex.We de�ne a linear operator f(dD) on Q by
f(dD)Q(d, u) =

∞
∑

n=0

(

n
∑

i=0

fiD
iQn−i(u)

)

dn (4.1)where f(z) =
∑∞

i=0 fiz
i and Q ∈ Q.By the above De�nition and (1) of Proposition 3.1 we an show that

Q(d, T+
(

θd, u)
)

=
(

exp(θdD)Q
)

(d, u) for Q ∈ Q and all θ ∈ C8



Thus with (2.14) and (1) of Proposition 3.1 we obtain
C(Q) = cosh(d

2D)Q, S(Q) = sinh(d
2D)Q

C1(Q) = cosh(dD)Q, S1(Q) = sinh(dD)Q
(4.2)for polynomial series Q in Q.Remark. Aording to the de�nition of norms in (3.1), we haveIf Q ∈ Q, then dQ ∈ Q and ‖dQ‖n =

π

2
‖Q‖n−1 for all n ≥ 1. (4.3)Theorem 4.2. [10℄ Let f(z) be formal power series having a radius of onvergenegreater than 2π and let k be a positve integer. There is a onstant K suh that: If

Q is a polynomial series having the following property
‖Q‖n ≤

{

0 for n < k
M(n − k) !(2π)−n for n ≥ kwhere M is independent of n and Q ∈ Q then the polynomial series f(dD)Qsatis�es

‖f(dD)Q‖n ≤
{

0 for n < k
MK(n − k) !(2π)−n for n ≥ kNow we de�ne on Q the following operator

J =
S

dD
. (4.4)where the notation S

dD means simply F (dD) with F (z) =
1

z
sinh(z

2 ).Lemma 4.3. For eah integer k there exist a positive onstant K suh that: If Qis a polynomial series with odd Qn of degree at most n, ‖Q‖n = 0 for n < k inase of positive k and
‖dDQ‖n ≤ M(n − k) !(2π)−n for n ≥ max(0, k),where M is independent of n, then the polynomial series J−1(Q) satis�es

‖J −1(Q)‖n ≤ MK(2π)−n







(n − k + 1) ! for k ≤ 1
(n − 1) ! log(n) for k = 2
(n − 1) ! for k ≥ 39



Proof. We an see easily that J−1 = π C̃−1 + g(dD), where C̃ = cosh(1
4dD) and

g(z) is analyti for |z| < 4π, and use the proof of [10℄.We have S = dD J = J dD, but using this relation for the inversion of Swould give an insu�ient result. Using of the formula
1 =

2

z
sinh(

z

2
) + F (z)z, where F (z) = z−2(z − 2 sinh(

z

2
))is an entire funtion, we obtain the relation

Q = 2JQ + F (dD) dDQ (4.5)for polynomial series Q ∈ Q. This will be essential in the proof ofTheorem 4.4. For eah integer k there exist a positive onstant K suh that: If
Q is a polynomial series with odd Qn of degree at most n, ‖Q‖n = 0 for n < k inase of positive k, and

‖S(Q)‖n ≤ M(n − k) !(2π)−n for n ≥ max(0, k),where M is independent of n, then the polynomial series Q satis�es
‖Q‖n ≤ MK(2π)−n















(n − k + 1) ! for k ≤ 1
(n − 1) ! log(n) for k = 2
(n − 1) ! for k ≥ 3Proof. By the preeding theorem, we have the wanted inequalities for dDQ =

J −1SQ in the plae of Q. Here we used again ‖dDZ‖n ≤ (n − 1)‖Z‖n−1 for anypolynomial series Z ∈ Q. Using theorem 4.2 implies the same for F (dD)dDQ withthe entire funtion F of (4.5) As ‖Z‖n ≤ ‖dDZ‖n+1 by theorem 3.3, we �nd thewanted inequalities (and even something better in the ases k ≥ 2) also for JQbeause dDJ = S. Thus formula (4.5) yields the result �In order to obtain an asymptoti approximation for the oe�ients of the formalsolution, we will need to reverse some operators. This is not possible for theoperators S and dD on the set Q, but we an de�ne a subset Q∗ of Q on whihthese operators have a right inverses.If we de�ne
Q∗ :=

{

Q(d, u) =

∞
∑

n=1

Pn(u)dn, where Pn(u) ∈ P∗
n, for all n ≥ 1

}

.where P∗
n is the subspae of Pn de�ned by

P∗
n :=

{

n
∑

i=0

αiτi ∈ Pn, | α0 = 0
}10



Then, the restritions of the operators dD,S to Q∗, denoted here by the samesymbols
dD : Q∗ → (1 − u2)d2Q
S : Q∗ → (1 − u2)d2Qare bijetive. We denote by T the inverse of the restrition of S to Q∗, , and wehave

T S = Id on Q∗Theorem 4.5. [10℄ We onsider a polynomial series
Qα(d, u) =

∞
∑

n=2

αn(n − 1) !
( i

2π

)n−1
τn(u)dnwhere αn = O(n−k) as n → ∞ with some integer k ≥ 2. Let

α :=
4

π

∞
∑

n=1

αn,then the oe�ients {T (Qα)}n of T (Qα) satisfy
∥

∥

∥

∥

∥

{T (Qα)}n − α(n − 1) !
( i

2π

)n−1
τn

∥

∥

∥

∥

∥

n

= O
(

(n − k) !(2π)−n
)as n → ∞ for n.Proof. The proof of this theorem is ompletely analogous to that of [10℄.Theorem 4.6. [10℄ Let k, l, p, q be integer with p ≥ k and q ≥ l. De�ne m as theminimum of k+q and l+p. then there is a onstant K with the following property:If P and Q are polynomial series suh that ‖P‖n = 0 for n < p, ‖Q‖n = 0 for

n < q and
‖P‖n ≤ M1(n − k) ! (2π)−n for n ≥ p
‖Q‖n ≤ M2(n − l) ! (2π)−n for n ≥ qthen

‖PQ‖n ≤ KM1M2(n − m) ! (2π)−n for n ≥ p + q.Remark 4.7. Observe that the results of this setion an also be applied, if theonstants M are replaed by any inreasing sequene (Mn)n∈N . In theorems 4.2and 4.6 the �rst n terms of the resulting polynomial series only depend of the �rst
n terms of the given series, so the "M" in the result simply has to be replaed by"Mn". In lemma 4.3 and theorem 4.4, the �rst n terms of the result depend of the�rst n + 1 given terms, so "M" in the result has to be replaed by "Mn+1".11



5 Asymptoti approximation of the oe�ients of theformal solutionIn this setion we will estimate the oe�ients of the formal solution obtainedpreviously (setion 2). The idea is to write equation (2.2) essentially in the form
V (d, u)S(Q1S(Q2 A))(d, u) = g

(

d, u,A(d, u)
)

, (5.1)where V,Q1 and Q2 are known polynomials of d and u and g is a ertain funtionof d, u and A involving the operators S, C and J multiplied by su�iently highpowers of d.Thanks to this equation, we will estimate the oe�ients of the formal solutionusing the results of the previous setion. We show that the oe�ients of thisformal solution is Gevrey-1, more preisely ‖A‖n = O
(

n ! (2π)−n
).

5.1 Rewriting of equation (2.2)Consider the deomposition
A(d, u) = U(d, u) + F (d, u) (5.2)where U is the initial part of A alulated before

U(d, u) = −1

4
ud2 +

(

91

864
u3 − 47

576
u

)

d4 +

(

− 319

2880
u5 +

185

1152
u3 − 3703

69120
u

)

d6.We insert this into (2.3), with (2.14) and (2.15), and obtain
2 cosh(d) · C1(F ) − 2u sinh(d) · S1(F ) = W0 · F + f1

(

d, u, F (d, u)
) (5.3)12



where
W0 =

(

cosh2(d) − u2 sinh2(d)
)

[

2 + (2u2 − 1)ε2 cos
(

U ·
√

1 − u2
)

− 2u ε2 sin
(

U ·
√

1 − u2
)

·
√

1 − u2

]

f1

(

d, u, F (d, u)
)

= ε2
(

cosh2(d) − u2 sinh2(d)
)

[

(

2u2 − 1√
1 − u2

sin
(

U ·
√

1 − u2
)

+ 2u cos
(

U ·
√

1 − u2
)

)

cos
(

F (d, u)
√

1 − u2
)

+

(

2u2 − 1√
1 − u2

cos
(

U ·
√

1 − u2
)

− 2u sin
(

U ·
√

1 − u2
)

)

×
(

sin
(

F (d, u)
√

1 − u2
)

− F (d, u)
√

1 − u2

)

]

−
(

cosh2(d) − u2 sinh2(d)
)

+∞
∑

n=1

I2n−1(u)d2n − 2 cosh(d)C1(U)

− 2u sinh(d)S1(U) − 2
(

cosh2(d) − u2 sinh2(d)
)

· U.Observ that f1 has the form
f1

(

d, u, F (d, u)
)

= y0(d, u) + y1(d, u)

∞
∑

n=1

1

(2n)!
(1 − u2)nF (d, u)2n+

y2(d, u)

∞
∑

n=1

1

(2n + 1)!
(1 − u2)nF (d, u)2n+1,

(5.4)where yn(d, u), n = 1, 2, 3 are onvergent polynomial series.Now, we let
F (d, u) = Q(d, u) · G(d, u),
J(d, u) = Q1(d, u) · S(G),

(5.5)where G is a formal power series whose the �rst term ontains d8 and
Q(d, u) = 1 + 1

4(1 − u2)d2 +

(

91
432u4 − 13

48u2 + 13
216

)

d4

+

(

− 319
960u6 + 1079

1728u4 − 937
2880u2 + 287

8640

)

d6,

Q1(d, u) = (u2 − 1)d2 + 1
4(1 − u4)d4 − 5

48
(1 − u2)

(

4
9u4 + u2 + 1

)

d6

+ (1 − u2)

(

− 367
2160u6 + 185

432u4 − 997

4320
u2

)

d8.

(5.6)
13



The hoie of Q1(d, u) and Q(d, u) depends in a preise way of the form of theequation (5.1) and has been determined using Maple.Using (5.5), (5.6) and (2.15), we an rewrite equation (5.3) in the form
W0Q + f1

(

d, u, Fd(u)
)

=
[

2 cosh(d)C1(Q) − 2u sinh(d)S1(Q)
]

C1(G)

+
[

2 cosh(d)S1(Q) − 2u sinh(d)C1(Q)
]

S1(G).Using (2.14), we obtain
V · S2(G) + W · SC(G) = W1G + f2

(

d, u, Fd(u)
) (5.7)where f2

(

d, u, Fd(u)
)

= 1
4f1

(

d, u, Fd(u)
)

V (d, u) = cosh(d)C1(Q) − u sinh(d)S1(Q)
W (d, u) = cosh(d)S1(Q) − u sinh(d)C1(Q)

W1(d, u) = 1
4

(

− 2 cosh(d)C1(Q) + 2u sinh(d)S1(Q) + W0Q
)

(5.8)The alulation of the �rst terms of the series W1 by Maple shows that the on-vergent polynomial series W1(d, u) begins with a term ontaining d10.Using (5.5) and (2.15), we �nd
S(J) = S

(

Q1S(G)
)

= C(Q1)S2(G) + S(Q1)SC(G). (5.9)Using
V1(d, u) = 1 + (1 − u2)d2 +

(

− 71

432
u4 − 1

12
u2 +

107

432

)

d4

+

(

1351

2160
u6 − 193

144
u4 +

49

60
u2 − 11

108

)

d6,we obtain
V1 · C(Q1) = Q1V + W2

V1 · S(Q1) = Q1W + W3where W2(d, u) and W3(d, u) are onvergent polynomials series beginning with d10.With (5.7) and (5.9), this implies
V1 · S

(

Q1S(G)
)

= W2 · S2(G) + W3SC(G) + Q1W1G + Q1f2

(

d, u,Q1G(d, u)
)

.(5.10)This allows us to prove the following theorem14



Theorem 5.1.
G(d, u) =

( α

d2
+ (β +

α

3
)
)uH0(d, u)

τ2(u)
−
(

βd +
α

d

)

H2(d, u)

+ δdH1(d, u) + S(d, u) (5.11)where α, β, δ are onstants and the polynomial series H0,H1,H2, S are de�ned by
H0(d, u) : =

∞
∑

n=10
n even

(n − 1) !
( i

2π

)n
τn(u) dn

H1(d, u) : =
∞
∑

n=9
n odd

(n − 1) !
( i

2π

)n+1
τn(u) dn

H2(d, u) : =
∞
∑

n=9
n odd

n !
( i

2π

)n+1
τn(u) dn (5.12)and S(d, u) is a polynomial series satisfying

‖S‖n = O
(

(n − 3)!(2π)n
)

.To prove this theorem we need to make some overvaluations on the oe�ientsof the polynomial series S
(

Q1S(G)
). This will be the subjet of the followingparagraph.Remark: Observe that the series F,G are odd in u, even in d and beginningwith d8. The series J is even in u, odd in d and beginning with d11 . In the series

F,G,A, J , the degree of the polynomial that is the oe�ient of dn is at most n−1; thus the results of setion 4 an still be applied and d−1F, d−1G, d−1A, d−1J ∈ Q5.2 Upper bounds for the oe�ients of S(Q1S(G)
)In this paragraph, we will use equation (5.10), together with the de�nitions of V1and Q1, J and G, Wi, i = 1, 2, 3, to proveLemma 5.2.

∥

∥

1

d
S
(

Q1S(G)
)∥

∥

n
= O

(

(n − 8) !(2π)−n
) as n → ∞.Proof. We set

en :=
(2π)n

∥

∥S(J)
∥

∥

n

(n − 8) !
for n ≥ 12 (5.13)15



We must show that en = O(n−1). In the sequel, we will use the following onven-tion: if an, n = 0, 1, .... is any sequene of positve real numbers, then
a+

n := max(a0, a1, ...an) for all n ≥ 0We have
∥

∥S(J)
∥

∥

n
≤ en(n − 8) !(2π)−n for n ≥ 12. (5.14)Using Theorem 4.4 and Remark 4.7, we obtain

∥

∥J
∥

∥

n
≤ K1e

+
n+1(n − 1) !(2π)−n, for n ≥ 11. (5.15)where K1 denotes the onstant assoiated with the operator S in Theorem 4.4, itis independent of the present ontext. In this proof Ki, i = 1, ..9 will always denoteonstants independent of n and the sequene en.Using (5.5), we obtain

∥

∥Q1S(G)
∥

∥

n
≤ K1e

+
n+1(n − 1) !(2π)−n for n ≥ 11 (5.16)We use (5) of Theorem 3.3 and 4.6. Sine Q1(d, u)

τ2(u)d2
is a onvergent power seriesbeginning with 1, there is a onstant K2 suh that

∥

∥S(G)
∥

∥

n
≤ K2 e+

n+3(n + 1) !(2π)−n, for n ≥ 9. (5.17)Using again Theorem 4.4 (and remark 4.7) and the fat that F = G/Q where Qis given in (5.6), we obtain
∥

∥G
∥

∥

n
≤ K3e

+
n+4(n + 2) !(2π)−n for n ≥ 8,

∥

∥F
∥

∥

n
≤ K3e

+
n+4(n + 2) !(2π)−n for n ≥ 8,

(5.18)where K3 is a onstant independent of n.This together with theorem 4.6 implies that there are onstants K4, L suhthat for all k ≥ 2

∥

∥F k
∥

∥

n
≤ K4L

k
1f

(k)
n (n − 5) !(2π)−n for n ≥ 8k (5.19)where

f
(2)
n =

n−8
∑

i=8

e+
i+4e

+
n−i+4

(i + 2) ! (n − i + 2) !

(n − 5) !
, for n ≥ 16,

f
(k+1)
n =

n−8k
∑

i=8

e+
i+4f

(k)
n−i

(i + 2) ! (n − i − 5) !

(n − 5) !
, for n ≥ 8(k + 1),with f

(k)
n := 0 for n < 8k. 16



Using Theorems 4.2 and 4.6 and Wi = O(d10), i = 1, 2, 3, we obtain
∥

∥

∥
W2 · S2(G)

∥

∥

n
≤ K5e

+
n−6(n − 9) !(2π)−n for n ≥ 20 (5.20)

∥

∥

∥
W3SC(G)

∥

∥

∥

n
≤ K6e

+
n−6(n − 9) !(2π)−n for n ≥ 19, (5.21)

∥

∥

∥
Q1W1G

∥

∥

∥

n
≤ K7e

+
n−8(n − 10) !(2π)−n for n ≥ 20, (5.22)

∥

∥

∥
Q1f2

(

d, u, Fd(u)
)
∥

∥

∥

n
≤ K8(1 +

∑

k≥2

Lk
2

k!
f

(k)+
n−4 )(n − 9) !(2π)−n for n ≥ 12, (5.23)Now, let us take the equation (5.10)

∥

∥

∥
V1 ·S(J)

∥

∥

∥

n
≤
∥

∥

∥
W2 ·S2(G)

∥

∥

n
+
∥

∥

∥
W3SC(G)

∥

∥

∥

n
+
∥

∥

∥
Q1W1G

∥

∥

∥

n
+
∥

∥

∥
Q1f2

(

d, u, Fd(u)
)∥

∥

∥

nUsing (5.20), (5.21), (5.22) and (5.23), we obtain
∥

∥V1 · S(J)
∥

∥

n
≤ K9

(

1 + e+
n−6 +

∑

k≥2

Lk
2

k!
f

(k)+
n−4

)

(n − 9)! (2π)−n (5.24)Sine, V1 is a onvergent polynomial series begins with 1 , we also have
∥

∥S(J)
∥

∥

n
≤ K10

(

1 + e+
n−6 +

∑

k≥2

Lk
2

k!
f

(k)+
n−4

)

(n − 9)! (2π)−n (5.25)Using (5.13), we obtain
e+
n ≤ K

n

(

1 + e+
n−6 +

∑

k≥2

Lk
2

k!
f

(k)+
n−4

) for n ≥ 12 (5.26)lem5.2Lemma 5.3. Under the ondition (5.26), we have en = O(n−1) as n → ∞.Proof. Let K1 ≥ 10 !e+
12 an arbitrary number. We assume that

en ≤ K1(n + p − 1) !

(n − 2) !(p + 11) !
for 12 ≤ n ≤ N − 4 (5.27)with some p ≥ −1, N ≥ 16. This gives for 16 ≤ n ≤ N

(n − 5) !f (2)
n ≤ K2

1

n−8
∑

i=8

(i + p + 3) !(n + p − i + 3) !
(

(p + 11) !
)2 .The �rst and last term of the above sum are the largest, so we an easily estimate

n−8
∑

i=8

(i + p + 3) !(n + p − i + 3) ! ≤ (p + 11) !(n + p − 4) ! .17



We obtain
f (2)

n ≤ K2
1

(n + p − 4) !

(p + 11) !(n − 5) !
for 16 ≤ n ≤ N.In a similar way, we an prove by indution that

f (k)
n ≤ Kk

1

(n + p − 4) !

(p + 11) !(n − 5) !
≤ Kk

1

(n + p − 1) !

(p + 11) !(n − 2) !
for 8k ≤ n ≤ N.Using the assumption of the lemma, we obtain

en ≤ K

n
e(1+L2)K1

(n + p − 1) !

(p + 11) !(n − 2) !
for 16 ≤ n ≤ N.Now we hoose N0 ≥ 16 so large that K exp((1+L2)K1)

N0
≤ K1 and then p so largethat (5.27) holds for N = N0. In a �rst step, our onsiderations imply by indutionover N that (5.27) holds for all N and hene

en = O
(

(n + p − 1) !

(n − 2) !

) as n → ∞for this possibly large value of p.As K1 is arbitrary in (5.27), we have also shown for any p ≥ −1 that
en = O

(

(n + p − 1) !

(n − 2) !

) as n → ∞implies that
en = O

(

(n + p − 2) !

(n − 2) !

) as n → ∞ .Consequently the last assertion is proved for p = −1 and we have shown
en = O

(

n−1
) as n → ∞ .Finally we have proved that

∥

∥S(J)
∥

∥

n
= O

(

(n − 9) !(2π)−n
) as n → ∞and hene that

∥

∥

1

d
S(J)

∥

∥

n
= O

(

(n − 8) !(2π)−n
) as n → ∞whih ompletes the proof of the lemma. �18



5.3 Proof of theorem 5.1Let E :=
1

d
S(J) = S(d−1J). The polynomial series E is odd in d and its oe�ientsare odd in u. We partition it

En(u) = αn(n − 1) !
( i

2π

)n−1
τn(u) + βn−2(n − 3) !

( i

2π

)n−3
τn−2(u) +

γn−4(n − 5) !
( i

2π

)n−5
τn−4(u) + En−6(u) (5.28)for odd n ≥ 11, where αn , βn and γn are real numbers and also En have at mostdegree n for all n. For the whole series E this is equivalent to

S(d−1J) = E = E1 + d2E2 + d4E3 + d6E (5.29)where
E1 =

+∞
∑

n=11

αn(n − 1) !
( i

2π

)n−1
τn(u)dn

E2 =
+∞
∑

n=9

βn(n − 1) !
( i

2π

)n−1
τn(u)dn

E3 =
+∞
∑

n=7

γn(n − 1) !
( i

2π

)n−1
τn(u)dn

E =
+∞
∑

n=5

En(u)dnLemma 5.2 implies that
αn = O(n−7), βn = O(n−5), γn = O(n−3) and ‖En‖n = O

(

(n − 2) !(2π)−n
)

.Applying T to (5.29) we obtain
1

d
J = T (E1) + d2T (E2) + d4T (E3) + d6T (E) (5.30)To the �rst three summands we apply Theorem 4.5. Thus we obtain

∥

∥

∥
{T (E1)}n − α(n − 1) !

( i

2π

)n
τn(u)

∥

∥

∥

n
= O

(

(n − 7) !(2π)−n
)

∥

∥

∥
{T (E2)}n − β(n − 1) !

( i

2π

)n
τn(u)

∥

∥

∥

n
= O

(

(n − 5) !(2π)−n
)

∥

∥

∥
{T (E3)}n − γ(n − 1) !

( i

2π

)n
τn(u)

∥

∥

∥

n
= O

(

(n − 3) !(2π)−n
)where

α =
4

π

∞
∑

n=11
n odd

αn, β =
4

π

∞
∑

n=9
n odd

βn, γ =
4

π

∞
∑

n=7
n odd

γn.19



To the last part of (5.30) we apply Theorem 4.4 and obtain
∥

∥

∥
{T (E)}n

∥

∥

∥

n
= O

(

(n − 1) !(2π)−n log(n)
)

,thus altogether
∥

∥

∥

∥

{(1

d
J)}n − α(n − 1) !

( i

2π

)n
τn − β(n − 3) !

( i

2π

)n−2
τn−2 −

γ(n − 5) !
( i

2π

)n−4
τn−4

∥

∥

∥

∥

n

= O
(

(n − 7) !(2π)−n log(n)
)

.Using (4.3) we obtain
∥

∥

∥

∥

{J}n − α(n − 2) !
( i

2π

)n−1
τn−1 − β(n − 4) !

( i

2π

)n−3
τn−3

− γ(n − 6) !
( i

2π

)n−5
τn−5

∥

∥

∥

∥

n

= O
(

(n − 8) !(2π)−n log(n)
)

.Remark 5.4. The asymptoti of Jn gives a good approximation of α; its su�eto alulate , using a formal alulation software (for example: Pari), the �rst
40 terms of A(d, u) by the reurrene of Setion 2 and to evaluate the highestoe�ients of Jn to get the approximation α = 89.0334.Next we observe that J = Q1S(G), where Q1 is given in (5.6) Using part 5. ofTheorem 3.3, we obtainEA

∥

∥

∥

∥

{

S(G)
}

n
+ αn !

( i

2π

)n+1 τn+1

τ2
+
(

β − αp2(u)
)

(n − 2) !
( i

2π

)n−1 τn−1

τ2

+(γ − βp2(u) − αp4(u)
)

(n − 4) !
( i

2π

)n−3 τn−3

τ2

∥

∥

∥

∥

n

= O
(

(n − 6) !(2π)−n log(n)
) (5.31)where

p2(u) = −1

4
− u2

4
= −1

2
+

τ2

4

p4(u) =
1

24
− u2

48
− 7u4

432
=

1

216
+

55

1296
τ2 +

7

432
τ4.Remark: Observe that the approximation (5.31) of the oe�ients {S(G)}nis polynomial. Indeed; the polynomials τn(u), n ≥ 2 are divisible by τ2(u).In order to �nd an asymptoti estimation for the oe�ients of the formalsolution, we need to apply the inverse of operator S . To this purpose, we showthe following lemma 20



Lemma 5.5. If H0,H1,H2 are the polynomial series de�ned in (5.12). Then
• 1 If we de�ne the operator C 1

4

= cosh
(dD

4

), then the polynomial series
C 1

4

(H0), C 1

4

(H1) are onverging.
• 2. the polynomial series S(H0),S(H1) are onverging.
• 3. C(H0) = −H0 + µ1(d, u), where µ1(d, u) is a onvergent series.
• 4. S(H2) =

1

2
H0 +µ2(d, u), where H2 = d

∂

∂d
H1 and µ2(d, u) is a onvergentseries .

• 5. S
(

H0

τ2(u)

)

= −u sinh(d)
H0

τ2(u)
+ µ3(d, u), where µ3(d, u) is a onvergentseries .

• 6. S
(

uH0

τ2(u)

)

= −1
2(u2 + 1) sinh(d)

H0

τ2(u)
+ µ4(d, u), where µ4(d, u) is aonvergent series .

• 7. S( uH0

sinh(d)τ2(u)
−H2

)

= − H0

τ2(u)
+µ5(d, u), where µ5(d, u) is a onvergentseries .Proof. (1)- We have

C 1

4

(H0) =
∞
∑

m=0
m even

1

4mm!
dmDm

( ∞
∑

n=10
n even

(n − 1) !
( i

2π

)n
τn(u) dn

)using the de�nition of the operator D in Proposition 3.1, we obtain
C 1

4

(H0) =
∑

m,n

1

4mm!
(n + m − 1) !

( i

2π

)n
τn+m(u) dn+m

=

∞
∑

k=10
k even

γk(k − 1)!
( i

2π

)k
τkd

k (5.32)where
γk :=

k−10
∑

m=0
m even

1

4mm!

(2π

i

)m
.Hene

γk =

∞
∑

m=0
m even

1

4mm!

(2π

i

)m −
∞
∑

m=k−8
m even

1

4mm!

(2π

i

)m
.21



Using
∞
∑

m=0
m even

1

4mm!

(2π

i

)m
=

∞
∑

l=0

(−1)l

(2l)!

(π

2

)2l
= cos(

π

2
) = 0,we �nd

γk = −
∞
∑

m=k−8
m even

1

m!

( π

2i

)mwhih implies
|γk| ≤ 1

(k − 8)!

(π

2

)k−8
∞
∑

m=0
m even

1

m!

(π

2

)m

≤ cosh(π/2)

(k − 8)!

(π

2

)k−8This with (5.32) imply that C 1

4

(H0) = µ(d, u) is onvergent. For C 1

4

(H1), we anuse the same method.(2)- As S = 2S 1

4

C 1

4

, where S 1

4

= sinh
(dD

4

), we obtain using (1),
S(H0) = 2S 1

4

(

C 1

4

(H0)
)

= 2S 1

4

(µ)This implies that S(H0) is onvergent. For S(H1), we an use the same method.(3)- We have C(H0) = (2C2
1

4

− Id)H0 = −H0 + 2C2
1

4

(H0). This with (1) imply
C(H0) = −H0 + µ1(d, u)where µ1(d, u) is a onvergent series.(4)- We di�erentiate the equation S(H1) = C1 with respet to d. As

z
d

dz

(

sinh(z/2)
)

=
z

2
cosh(z/2),we obtain

S(H2) +
1

2
C(dDH1) = d

∂C1

∂dUsing (3) of this lemma, we obtain
S(H2) =

1

2
dDH1 + µ2(d, u) =

1

2
H0 + µ2(d, u),where µ2(d, u) is a onvergent series. 22



(5)- Using (2.15) and (2), (3) of this lemma we obtain
S(H0) = S

(

τ2(u)
H0

τ2(u)

)

= S
(

τ2(u)
)

C
(

H0

τ2

)

+ C(τ2(u))S
(

H0

τ2

)

= µ3(d, u),

C(H0) = C
(

τ2(u)
H0

τ2(u)

)

= C
(

τ2(u)
)

C
(

H0

τ2

)

+ S(τ2(u))S
(

H0

τ2

)

= −H0.This implis
S
(

H0

τ2

)

=
S
(

τ2(u)
)

C
(

τ2(u)
)2 − S

(

τ2(u)
)2 H0 + µ4(d, u)

= −u sinh(d)
H0

τ2(u)
+ µ4(d, u),where µ3(d, u), µ4(d, u) are onverging series.(6)- The proof of (6) is similar to that of (5).(7)- Using (4) and (6), we obtain

S
(

uH0

sinh(d)τ2(u)
− H2

)

=
(

− 1

2
(u2 + 1) − 1

2
τ2(u)

) H0

τ2(u)
+ µ5(d, u)

= − H0

τ2(u)
+ µ5(d, u),where µ5(d, u) is a onvergent series. This ompletes the proof of Lemma.Using the de�nition of H0 in (5.12) and (5.31), we an rewrite 1

d
S(G) in theform

1

d
S(G) = −α

H0

d2τ2(u)
− (β +

1

2
α)

H0

τ2(u)
+

1

4
αH0 + X, (5.33)where

∥

∥X
∥

∥

n
= O

(

(n − 3) !(2π)−n
)

.Using (2) and (5) of the previous Lemma and applying also the inverse of theoperator S in (5.33), we obtainRE34
1

d
G =

1

d2

(

α + (β +
1

2
α)d2

)[ 1

sinh(d)

uH0

τ2(u)
− H2

]

+
1

2
αH2 + δH1 + X1 (5.34)23



where, δ is a onstant and
H2(d, u) = d

∂H1

∂d
(d, u) =

∞
∑

n=9
n odd

n !
( i

2π

)n+1
τn(u) dn (5.35)

∥

∥X1

∥

∥

n
= O

(

(n − 2) !(2π)−n
) (5.36)

δ =
4

π

∞
∑

n=1

δn, (5.37)with δn = O(n−2). In the expression of 1
dG, the term δH1 omes from the fat thatthe series X an be written

X(d, u) = D1(d, u) + d2D2(d, u)where
D1(d, u) =

∞
∑

n=8

δn(n − 1)!

(

i

2π

)n

τn(u)dn

∥

∥D2

∥

∥

n
= O

(

(n − 1) !(2π)−n
)if we apply theorem 4.5 on the series D1(d, u) and Theorem 4.4 on D1(d, u), theterm δH1 appears in the expression of 1

dG.Sine 1sinh(d)
= d−1 − d

6
+ O(d3), we obtain

G(d, u) =
( α

d2
+ (β +

α

3
)
)uH0(d, u)

τ2(u)
−
(

βd +
α

d

)

H2(d, u)

+ δdH1(d, u) + S(d, u) (5.38)where ‖S‖n = O
(

(n − 3)!(2π)n
)

�Observe that in d−2 uH0

τ2(u)
, d−1H2 the degree of the oe�ients of dn exeeds n.This is due to the fat that the expressions u τn+2

τ2
− τn+1 et., whih are of degree

n − 1, were split.It is not neessary (but would not be di�ult) to write down asymptoti ap-proximations for the oe�ients of F , beause equations (5.5) and (5.3) an beused. This ompletes the proof of the theorem 5.1 �6 Funtions and quasi-solutionsSo far, we have shown that equation (2.2) has a formal solution and we have foundan asymptoti approximation of the oe�ients of the formal solution. We will use24



this to onstrut a quasi-solution, i.e. a funtion that satis�es equation (2.2) exeptfor some exponentially small error. To that purpose, we de�ne the funtions
Hn(u) : = (n − 1) !

( i

2π

)n
τn(u) (6.1)and

h0(t, u) : =

∞
∑

n=10
n even

Hn(u)
tn−1

(n − 1) !
(6.2)

h1(t, u) : =
i

2π

∞
∑

n=9
n odd

Hn(u)
tn−1

(n − 1) !
(6.3)

h2(t, u) : =
i

2π

∞
∑

n=9
n odd

n Hn(u)
tn−1

(n − 1) !
. (6.4)This means that

h0(t, u) =
i

2π

∞
∑

n=1
n odd

( i

2π

)n
τn+1(u) tn −

(

H2 t + H4
t3

3!
+ H6

t5

5!
+ H8

t7

7!

)

h1(t, u) =
( i

2π

)2
∞
∑

n=0
n even

( i

2π

)n
τn+1(u)tn − i

2π

(

H1 + H3
t2

2!
+ H5

t4

4!
7H7

t6

6!

)(6.5)Using part 4. of the proposition (3.1), we obtain
i

2π

∞
∑

n=1
n odd

( i

2π

)n
τn+1(u) tn =

i

2π

∞
∑

n=1
n odd

1

n !

( it

2π

)n dn

dnξ

(

tanh(ξ)
)This is obviously the di�erene of two Taylor expansion and thus we an write

h0(t, u) =
i

4π

[

tanh
(

ξ +
it

2π

)

− tanh
(

ξ − it

2π

)

]

−
(

H2 t + H4
t3

3!
+ H6

t5

5!
+ H8

t7

7!

)

. (6.6)Similarly,
h1(t, u) = − 1

4π2

∞
∑

n=0
n even

1

n !

( it

2π

)n dn

dnξ

(

tanh(ξ)
)

− i

2π

(

H1 + H3
t2

2!
+ H5

t4

4!
7H7

t6

6!

)25



or equivalently
h1(t, u) =

−1

8π2

[

tanh
(

ξ +
it

2π

)

+ tanh
(

ξ − it

2π

)

]

− i

2π

(

H1 + H3
t2

2!
+ H5

t4

4!
7H7

t6

6!

)

. (6.7)The funtional equations for the trigonometri and hyperboli funtions implythat
h0(t, u) = − 1

2π

(1 − u2) sin
(

t
2π

)

cos
(

t
2π

)

cos
(

t
2π

)2
+ u2 sin

(

t
2π

)2

+
τ2

4π2
t − τ4

16π4
t3 +

τ6

64π6
t5 − τ8

256π8
t7

h1(t, u) = − 1

4π2

(u − u3) sin
(

t
2π

)2

cos
(

t
2π

)2
+ u2 sin

(

t
2π

)2

+
τ1

4π2
− τ3

16π4
t2 +

τ5

64π6
t4 − τ7

256π8
t6 (6.8)For �xed real u the funtions hk(., u), k = 0, 1, 2 are analyti in |t| < ρ, where

ρ = π2. In the subsequent de�nition, we onsider real values of u, 0 < u ≤ 1, here
hk, k = 0, 1, 2 are also analyti with respet to t on the positive real axis.We de�ne the funtions Hk(d, u), k = 0..3, by

H0(d, u) : =

∫ +∞

0
e−

t
d h0(t, u)d t for 0 < u ≤ 1

H1(d, u) : =

∫ +∞

0
e−

t
d h1(t, u)d t for 0 < u ≤ 1

H2(d, u) : =

∫ +∞

0
e−

t
d h2(t, u)d t for 0 < u ≤ 1. (6.9)We have H2(d, u) = d

∂H1

∂d
(d, u). Indeed

d
∂H1

∂d
(d, u) =

∫ +∞

0

(1

d
e−

t
d

)

t · h1(t, u)d t

= −
∫ +∞

0

∂

∂t

(

e−
t
d

)

· t · h1(t, u)d t

=

∫ +∞

0
e−

t
d

(

h1(t, u) + t · ∂

∂t
h1(t, u)

)

d t

=

∫ +∞

0
e−

t
d h2(t, u)d tThe funtions Hk(d, .) are real analyti; they an be ontinued analytiallyto the interval −1 < u ≤ 1 in the following way. Choose some positive number26



M and let Γ1 the path onsisting of the segment from 0 to Mi and of the ray
t 7→ t + Mi, t ≥ 0. Let Γ2 the symmetri path that ould also be obtained using
−M instead of M . Realling (6.6), we an also de�ne

H0(d, u) : =
i

4π

[
∫

Γ2

e−
t
d tanh

(

ξ +
it

2π

)

dt −
∫

Γ1

e−
t
d tanh

(

ξ − it

2π

)

dt

]

+ µ0(d, u), (6.10)where
µ0(d, u) :=

1

4π2
τ2(u)d2 − 3

8π4
τ4(u)d4 +

15

8π6
τ6(u)d6 − 315

16π8
τ8(u)d8,for − tanh( 2

πM) < u ≤ 1, where ξ = artanh(u), beause the singularities of tanhare i(π
2 +nπ), n integer. As M is arbitrary, this de�nes the analyti ontinuation of

H0(d, .) for −1 < u ≤ 1. Similarly, the real analyti ontinuations of Hk, k = 1, 2are de�ned.In the sequel, we use the operator C,S also for funtions.Lemma 6.1. Consider the funtions Hk(d, u), k = 0..2, de�ned in (6.9). Then,for −1 < u ≤ 1

• 1 For k = 0, 1,
Hk(d, T± 1

2 ) = −Hk(d, u) + µ±
k (d, u), (6.11)where T+ 1

2 , T− 1

2 are de�ned in (2.13) and the funtions µ±
k (d, u), k = 0, 1,are analyti, beginning with d10, resp d9

• 2. For k = 0, 1, S(Hk) = µk(d, u) , where the funtions µk(d, u), k = 0, 1,are analyti, beginning with d11, resp d10 .
• 3. For k = 0, 1, C(Hk) = −Hk(d, u) + λk(d, u) , where the funtions

λk(d, u), k = 0, 1, are analyti, beginning with d10, resp d9.
• 4. S(H2) =

1

2
H0(d, u) + µ2(d, u), where µ2(d, u) is a analyti funtion,beginnings with d10 .

• 5. S
(

uH0

τ2(u)

)

= −1
2(u2 + 1) sinh(d)

H0

τ2(u)
+ µ4(d, u), where the funtion

µ4(d, u) is analyti, beginnings with d11 .Proof. (1)- For k = 0 we replae u by T+ 1

2 in (6.6). Using (6.10) and ξ(T+ 1

2 ) =
ξ(u) + 1

2d we obtain for 0 < u ≤ 1

H0(d, T+ 1

2 ) =

∫ +∞

0
e−

t
d h0(t, T

+ 1

2 )d t =
i

4π
I+ + µ(d, T+ 1

2 ) (6.12)27



where
I+ =

∫ +∞

0
e−

t
d tanh

(

ξ +
d

2
+

it

2π

)

d t −
∫ +∞

0
e−

t
d tanh

(

ξ − d

2
+

it

2π

)

d tIf we substitute t + πi d in the �rst part, t − πi d in the seond part we obtain
I+ = −

∫ +∞−πid

−πid
e−

t
d tanh

(

ξ +
it

2π

)

d t +

∫ +∞+πid

πid
e−

t
d tanh

(

ξ − it

π

)

d t .Now, we apply Cauhy's theorem
I+ = −

∫ +∞

0
e−

t
d

(

tanh
(

ξ +
it

2π

)

− tanh
(

ξ − it

2π

)

)

d t

+

∫ −πid

0
e−

t
d tanh

(

ξ +
it

2π

)

d t −
∫ πid

0
e−

t
d tanh

(

ξ − it

2π

)

d t .Substituting t = −i ds in the seond part, t = i ds in the third part, we obtain
I+ =

∫ +∞

0
e−

t
d

(

tanh
(

ξ +
it

2π

)

− tanh
(

ξ − it

2π

)

)

d t

− 2i d

∫ π

0
cos(s) tanh

(

ξ + d
s

2π

)

ds.With (6.12) this implies for 0 < u ≤ 1

H0(d, T+) = −H0(d, u) + µ+
0 (d, u) (6.13)where

µ+
0 (d, u) =

d

2π

∫ π

0
cos(s) tanh

(

ξ + d
s

2π

)

ds + µ(d, T+ 1

2 ).By real analyti ontinuation, this formula is valid for −1 < u ≤ 1. We use thesame method for H0(d, T− 1

2 ),H1(d, T± 1

2 ) and obtain for −1 < u ≤ 1

H0(d, T− 1

2 ) = −H0(d, u) + µ−
0 (d, u)

H1(d, T+ 1

2 ) = −H1(d, u) + µ+
1 (d, u)

H1(d, T− 1

2 ) = −H1(d, u) + µ−
1 (d, u) (6.14)where

µ−
0 (d, u) =

d

2π

∫ π

0
cos(s) tanh

(

ξ − d s

2π

)

d s + µ0(d, T− 1

2 )

µ+
1 (d, u) = − d

4π2

∫ π

0
sin(s) tanh

(

ξ +
d s

2π

)

d s + µ1(d, T+ 1

2 )

µ−
1 (d, u) = − d

4π2

∫ π

0
sin(s) tanh

(

ξ − d s

2π

)

d s + µ1(d, T− 1

2 )

µ1(d, u) =
1

4π2
τ1(u)d − 1

8π4
τ3(u)d3 +

3

8π6
τ5(u)d5 − 45

16π8
τ7(u)d728



(2)- Using the de�nition of the operator S in (2.13) and (1) of this Lemma, theresult is immediate.(3)- The proof of (3) is similar to that of (2).(4)- For k = 1, we di�erentiate (6.11) with respet to d. Beause
∂T± 1

2

∂d
= ±1

2

(

1 − (T± 1

2 )2
)

,then
H2(d, u) ± d

2

(

1 − (T± 1

2 )2
)∂H1

∂u
(d, T± 1

2 ) = −H2(d, u) + dµ′±
1 (d, u)implies

S
(

H2

)

= −d

2
C
(

(1 − u2)
∂H1

∂u

)

+ d
(

µ′+
1 (d, u) − µ′−

1 (d, u)
)

=
d

2
(1 − u2)

∂H1

∂u
+ µ2(d, u)

=
1

2
H0(d, u) + µ2(d, u)where µ2(d, u) is analyti funtion beginings with d10.(5)- Using (2.15) and (2), (3) of previous lemma , we obtain

S
( u

τ2
H0

)

= S
( u

τ2

)

C
(

H0

)

+ C
( u

τ2

)

S
(

H0

)

= −1

2
(u2 + 1) sinh(d)

H0

τ2(u)
+ µ4(d, u),where the funtion µ4(d, u) is analyti, beginnings with d11. This ompletes proofof the Lemma.In the sequel we onsider u0 ∈] − 1, 0].Proposition 6.2. We have1. Uniformly for u0 ≤ u ≤ 1,

H0(d, u) ∼
∞
∑

n=2
n even

(n − 1) !
( i

2π

)n
τn(u)dn as d ց 0

H1(d, u) ∼
∞
∑

n=3
n odd

(n − 1) !
( i

2π

)n+1
τn(u)dn as d ց 0

H2(d, u) ∼
∞
∑

n=3
n odd

n !
( i

2π

)n+1
τn(u)dn as d ց 0 (6.15)29



2. For i = 1..3, ∣∣∂Hi

∂u (d, u)
∣

∣ ≤ Kd for u0 < u ≤ 1 (d > 0)Proof. The proof of this proposition is similar to that of [11℄.With the aim of applying the results of [10℄, we onsider Sn−2(u) = Rn(u),where Sn(u) is the remainder term in (5.38). Then Rn(u), n is a sequene ofpolynomials of degree at most n and
‖Rn‖n = O

(

(n − 5) !(2π)−1 log(n)
)Lemma 6.3. [10℄ If we de�ne

r(t, u) : =

∞
∑

n=10

Rn(u)
tn−1

(n − 1) !
(t ∈ C, |t| ≤ π2, u0 ≤ u ≤ 1)

r(t, u) : = r
(

π2, u
)

+
(

t − π2
)∂r

∂t

(

π2, u
)

(t > π2, u0 ≤ u ≤ 1)

R(d, u) : =

∫ ∞

0
e−

t
d r(t, u)dtthen1. r is ontinuously di�erentiable funtion on the set B of all (t, u) suh that

u satis�es u0 ≤ u ≤ 1 and t is a omplex number and satis�es |t| ≤ π2 or
t > π2. The restrition of r to u0 ≤ u ≤ 1, |t| ≤ π2 is twie ontinuouslydi�erentiable. for �xed u0 ≤ u ≤ 1 the funtion r(t, u) is analyti in |t| < π22. R(d, u) is ontinuous, partially di�erentiable with respet to u, has ontinuouspartial derivative and

R(d, u) ∼
∞
∑

n=10

Rn(u)dn as d ց 0 (6.16)3. ∣∣R(d, u)
∣

∣ ≤ Kd3,
∣

∣

∂R
∂u (d, u)

∣

∣ ≤ Kd3 for u0 ≤ u ≤ 1 (d > 0)The importane of our de�nition of R lies in a ertain ompatibility withinsertion of the funtions T+, T− for u. First let
∞
∑

n=10

R+
n (u)dn =

∞
∑

n=11

Rn(T+)dn

∞
∑

n=10

R−
n (u)dn =

∞
∑

n=11

Rn(T−)dnWe obtain a new sequenes R+
n (u), R−

n (u) of polynomials of degree at most n. Thisfollows from the relation
p
(

T+(d, u)
)

=
∞
∑

k=0

1

k!
Dkp(u)dk . (6.17)30



Theorem 4.2 implies
∥

∥R+
n (u)

∥

∥

n
= O

(

(n − 5) !(2π)−n log(n)
)

∥

∥R−
n (u)

∥

∥

n
= O

(

(n − 5) !(2π)−n log(n)
)Therefore we an use the previous lemma for R+

n (u), R−
n (u) and obtain funtions

R+(d, u), R−(d, u).Theorem 6.4. There is a positive onstant K independent of d, u suh that
∣

∣R+(d, u) −R(d, T+)
∣

∣ ≤ Kd3e−
π2

d , for (d > 0, u0 < u ≤ 1),
∣

∣R−(d, u) −R(d, T−)
∣

∣ ≤ Kd3e−
π2

d for (d > 0, u0 < u ≤ 1).Proof. The proof is exatly the one of [10℄ .De�nition 6.5. Let D(d, u) be a funtion de�ned for 0 < d < d0 and u0 < u < 1.We say that D(d, u) has property G if
D(d, u) =

∫ ∞

0
e−

t
d q(t, u)dt (0 < d < d0, u0 < u < 1)is the Laplae transform of some funtion q(t, u) that has the following properties1. q(t, u) is de�ned if u0 < u < 1 and either t is omplex and |t| < π2 or t isreal and t ≥ 0,2. q(t, u) is analyti in |t| < π2 for u0 < u < 1,3. q(t, u) restrited to 0 ≤ t < π2 or t ≥ π2 is ontinuous and the limt→π2 q(t, u)exists for every u0 < u < 1,4. there is a positve onstant K suh that

|q(d, u)| ≤ KeKt for t ≥ 0, (0 < d < d0, u0 < u < 1)Lemma 6.6. For u0 < u ≤ 1, we have1. If Hi(d, u), i = 0, 1, 2 are the funtions of (6.9) then
d2Hk(d, u) = (1 − u2)H̃k(d, u) + O

(

(1 − u2)e−
π2

d

)

, k = 0, 1and
d3H2(d, u) = (1 − u2)H̃2(d, u) + O

(

(1 − u2)e−
π2

d

)

,where H̃i(d, u), i = 1, 2, 3 have property G.31



2. Let k be a psitive integer. If D1,D2 have property G and their �rst terms inthe Taylor development at d = 0, begin with dk then
D1(d, u)D2(d, u) = dkD(d, u) + O

(

dke−
π2

d

)

,where D(d, u) has property G3. Any funtion D(d, u) analyti in a neighborhood of d = 0 has property G if
D(0, u) = 0 for all u,4. If R(d, u) is de�ned by lemma 6.3 then 1

d2
R(d, u) has property G5. If D1,D2 have property G then so do D1 + D2, D1 −D2 and D1 · D26. If D(d, u) has property G then

∣

∣D(d, u)
∣

∣ ≤ Kd
(

0 < d <
1

K
) (6.18)with some onstant K > 0 independent of u.Proof1. For i = 0,(i)-If u > 0, we have

d2H0 = (1 − u2)

∫ ∞

0
e−

t
d g2(t, u)dt (6.19)where

g2(t, u) =
1

(1 − u2)

∫ t

0

∫ τ

0
h0(s, u)ds dτ

g2(t, u) has a logarithmi singularity at tk(s) = (2k + 1)π2 ± d
2π s

ε
i for

(k ≥ 0, s > 0). it is analyti in |t| < π2 and limt→π2 g2(t, u) exists.If we put
H̃0(d, u) =

∫ ∞

0
e−

t
d g̃2(t, u)d twhere

g̃2(t, u) =

{

g2(t, u), if t ≤ π2

g2(π
2, u), if t ≥ π2then H̃0(d, u) has property G and

d2H0(d, u) = (1 − u2)H̃0(d, u) + O
(

(1 − u2)e−
π2

d

)

.32



(ii)- For −u0 < u < 1, where 0 < u0 < 1� we have
H0(d, u) =

∫ ∞eiϕ

0
e−

t
d h0(t, u)d t + 2πi

∑

k≥0

Res
(

e−
t
d h0(t, u), tk(s)

)

=

∫ ∞eiϕ

0
e−

t
d h0(t, u)d t + O

(

(1 − u2)e−
π2

d

)where π

2
< ϕ <

π

4
. For 0 < u < u0, this formula oinides with the formula

∫ ∞

0
e−

t
d h0(t, u)d tand extends it by real analyti ontinuation for −u0 < u < 0.This implis

d2H0(d, u) = (1 − u2)

∫ ∞eiϕ

0
e−

t
d g2(t, u)d t + O

(

(1 − u2)d2e−
π2

d

)we obtain
d2H0(d, u) − (1 − u2)H̃0(d, u) = (1 − u2)

∫

Γ
e−

t
d g2(t, u)dΓ

+ O
(

(1 − u2)e−
π2

d

)

,where Γ is the path following the real line from in�nity to (π2, 0), then alongthe vertial line from (π2, 0) to (π2, π2 tan(ϕ)
) and �nally along the line

y = tan(ϕ)x from (

π2, π2 tan(ϕ)
) to in�nity.Sine g2(., u) is bounded on Γ, then

∣

∣

∣
d2H0(d, u) − (1 − u2)H̃0(d, u)

∣

∣

∣
≤ K(1 − u2)e−

π2

d ,where K is positive onstant. Finally
d2H0(d, u) = (1 − u2)H̃0(d, u) + O

(

(1 − u2)e−
π2

d

) for (0 < u0 < u ≤ 1)For i = 1 we an use the same method.For i = 2, we use the same method with
d3H2 = (1 − u2)

∫ ∞

0
e−

t
d g2(t, u)d t (6.20)where

g2(t, u) =
1

(1 − u2)

∫ t

0

∫ σ

0

∫ τ

0
h2(s, u)ds dσ dτ.33



2. We assume that D1(d, u),D2(d, u) have property G and their �rst terms inthe Taylor development at d = 0 begin with dk. Then
D1 =

∫ ∞

0
e−

t
d f(t, u)d t

D2 =

∫ ∞

0
e−

t
d g(t, u)d twhere f(t, u), g(t, u) are analyti in |t| < π2 and f(t, u) = O(tk−1), g(t, u) =

O(tk−1).
D1(d, u)D2(d, u) =

∫ ∞

0
e−

t
d (f ∗ g)(t, u)d t (6.21)Sine

h(t, u) = (f ∗ g)(t, u) =

∫ s

0
f(t, u)g(t − s, u)ds

=

∫ t

0
f(t − s, u)g(s, u)ds

=

∫ t

t/2
f(s, u)g(t − s, u)ds +

∫ t

t/2
f(t − s, u)g(s, u)ds.For t < π2, the funtion h(t, u) is k times di�erentiable with respet to t and

h′(t, u) = f(t, u)g(0, u) + f(0, u)g(t, u) − f(
t

2
, u)g(

t

2
, u)

+

∫ t

t/2
f(s, u)g′(t − s, u)ds +

∫ t

t/2
f ′(t − s, u)g(s, u)ds

=

∫ t

t/2
f(s)g′(t − s)ds +

∫ t

t/2
f ′(t − s, u)g(s, u)ds

− f(
t

2
, u)g(

t

2
, u)

h(k)(t, u) =

∫ t

t/2
f(s)g(k−1)(t − s)ds +

∫ t

t/2
f (k−1)(t − s, u)g(s, u)ds

−
k−1
∑

n=0

f (n)(
t

2
, u)g(k−1−n)(

t

2
, u)Observe that h(k)(t, u) is ontninuous on [0, 2π2[, it is analyti for |t| < π2.If we put

h̃(t, u) =

{

h(t, u), if t < π2

(t − π2)k. if t ≥ π2then
∫ ∞

0
e−

t
d h̃(k)(t, u)d t,34



has property G and
(D1 · D2)(d, u) =

∫ ∞

0
e−

t
d h(t, u)d t =

∫ ∞

0
e−

t
d h̃(t, u)d t + O

(

dke−
π2

d

)

= dk

∫ ∞

0
e−

t
d h̃(k)(t, u)d t + O

(

dke−
π2

d

)

= dkD(d, u) + O
(

dke−
π2

d

)where D(d, u) has property G.For 0 ≤ u ≤ 1, the proof of (3), (4), (5) and (6) is exatly the one of [10℄. Thisproof is valid for u0 < u ≤ 1.Now we have a formal solution of the equation (2.2) and an asymptoti estimatefor its oe�ients. With the results on the funtions in the beginning of this setionwe have enough information to be able to give a preise funtion whih satis�esthe equation (2.2) with an exponentially small error as d → 0.In Theorem 2.1 we found that (2.2) has a uniquely determined formal powerseries solution
A(d, u) = U(d, u) + Q(d, u)G(d, u) (6.22)where U,Q are de�ned in (5.2), (5.6) and G is given by (5.38). This suggest thatwe put

G(d, u) =
( α

d2
+ (β +

α

3
)
)uH0(d, u)

τ2(u)
−
(

βd +
α

d

)

H2(d, u)

+ δdH1(d, u) + d
−2R(d, u)

A(d, u) = U(d, u) + Q(d, u)G(d, u) (6.23)for d > 0, u0 < u ≤ 1, where Hi(d, u), i = 0..2 are de�ned in (6.9) and R(d, u) isthe funtion orresponding to Rn, n = 8.10.. aording to lemma 6.3. Using (1)of proposition 6.2 and (2) of lemma 6.3, we obtain
G(d, u) ∼ G(d, u) as d ց 0 for everyu0 < u ≤ 1. (6.24)Consequently

A(d, u) ∼ A(d, u) as d ց 0 for every u0 < u ≤ 1. (6.25)Theorem 6.7. The funtion G(d, u) satis�es (5.10) exept for an exponentiallysmall error. More preisely
∣

∣

∣

∣

∣

V1·S
(

Q1S(G)
)

−W2·S2(G)−W3SC(G)−Q1W1G−Q1f2

(

d, u,G
)

∣

∣

∣

∣

∣

≤ Kd3(1−u2)e−
π2

d ,uniformly for (u0 < u < 1, 0 < d < d0, ), where K is a onstant independent of dand u. 35



In the proof of this Theorem the funtions Di(d, u), i = 1.2.. have property G.Proof. We set
F(d, u) = V1·S

(

Q1S(G)
)

−W2·S2(G)−W3SC(G)−Q1W1G−Q1f2

(

d, u,G
)

. (6.26)Using (2), (4), (5) of Lemma 6.1, and (6.23), we obtain
S(G) = −

(

α1 sinh(d)
1

τ2
− (

α1

2
sinh(d) − β1

2
)
)

H0 + (1 − u2)d8D1(d, u) + d−2S(R)where D1(d, u) has property G and
α1 : =

α

d2
+ (β +

α

3
)

β1 : =
α

d
+ βdThis with lemma 6.1 imply

V1S
(

Q1S(G)
)

= d5D2(d, u)H0 + (1 − u2)d11D3(d, u) + d−2V1S(Q1)CS(R)

+ d−2V1C(Q1)S2(R),where D2(d, u),D3(d, u) have property G. Beause
C(Q1) = (1 − u2)d2

(

1 + O(d2)
)

,

S(Q1) = (1 − u2)d3
(

u + O(d2)
)

,

V1 = 1 + O(d2)it is su�ient to apply Theorem 6.4, (4) of Lemma 6.6 for R and (1) of Lemma6.6 for H0 we obtain
V1S

(

Q1S(G)
)

= d5D2(d, u)H0 + (1 − u2)d2D4(d, u) + O
(

(1 − u2)d3e−
π2

d

)where D4(d, u) has property G. With (1) of lemma 6.6 this implies
V1S

(

Q1S(G)
)

= (1 − u2)d2D5(d, u) + O
(

(1 − u2)d3e−
π2

d

) (6.27)Using the same method for the terms W2 · S2(G), W3SC(G) and Q1W1G, weobtain
W2 · S2(G) = (1 − u2)d10D6(d, u) + O

(

(1 − u2)d10e−
π2

d

)

,

W3SC(G) = (1 − u2)d9D7(d, u) + O
(

(1 − u2)d10e−
π2

d

)

,

Q1W1G = (1 − u2)d8D8(d, u) + O
(

(1 − u2)d10e−
π2

d

)

. (6.28)36



To study the term Q1f2

(

d, u,G
), we �rst treat G2 and G3 .

G2(d, u) = α2
1

u2

τ2
2

H2
0 + β2

1H2
2 + δ2d2H2

1 + d−4R2 − 2α1β1
u

τ2
H0H2 + 2α1δ

u

τ2
H0H1

+ 2d−2α1
u

τ2
H0R− 2β1δdH1H2 − 2d−2β1RH2 + 2d−1δRH1 (6.29)Using (1), (2) and (4) of the lemme 6.6 we obtain

G(d, u)2 = d2D9(d, u) + O
(

d2e−
π2

d

) (6.30)With (2) of lemma 6.6 this implies
G(d, u)3 = G(d, u)G(d, u)2 = d8D10(d, u) + O

(

d8e−
π2

d

)

. (6.31)We an rewrite
f2

(

d, u,G
)

= y0(d, u) + y1(d, u)G2f1,1

(

d, u,G2) + y2(d, u)d2G3f1,2

(

d, u,G2
)(6.32)where f1,1, f1,2 and yi, i = 0, 1, 2 are analyti .Lemma 6.8. For i = 1, 2,

f1,i(d, u,G2) =

∫ ∞

0
e−

t
d fi(t, u)d t + O

(

d2e−
π2

d

) for(d > 0, u0 < u ≤ 1) (6.33)where fi(., u) is analyti in |t| < π2 and ontinuous in [0, π2[ and [π2,∞[Proof. Using (6.30), we an rewrite
G2(d, u) =

∫ ∞

0
e−

t
d g(t, u)d t + O

(

d2e−
π2

d

)where g(., u) is analyti in |t| < π2, it is ontinuous in [0, π2[ and [π2,∞[, twiedi�erentiable in |t| < π2. We obtain
f1,i(d, u,G2) =

∞
∑

n=1

fn,i(d, u)G2nwhere
fn,i(d, u) =

∫ ∞

0
e−

t
d ϕn,i(t, u)d tand ϕn,i(t, u) are entire funtions.Using the proof of theorem 5.1 from [1℄, we �nd

f1,i(d, u,G2) =

∫ ∞

0
e−

t
d fi(t, u)d t + O

(

d2e−
π2

d

) (6.34)37



where the series
∞

∑

n=1

(ϕn,i ∗ g∗n)(t, u)
)

, g∗n = g ∗ ... ∗ g, n timesis uniformly onvergent to a funtion fi(t, u) analyti in |t| < π2 and ontinuousin [0, π2[ and [π2,∞[, satis�es also
|fi(t, u)| ≤ K exp(Kt) for t ≥ 0, u0 < u ≤ 1.Then

f1,i(d, u,G2) = Yi(d, u) + O
(

d2e−
π2

d

) for(d > 0, u0 < u ≤ 1),where Yi(d, u), i = 1, 2 have property G.This lemma with (6.32) and (2) of lemma 6.6 imply
Q1f2

(

d, u,G
)

= d6(1 − u2)D10(d, u) + O
(

d6(1 − u2)e−
π2

d

) (6.35)Combining (6.27), (6.28) and (6.35), we �nd
F(d, u) = d2(1 − u2)D(d, u) + K(d, u)where D(d, u) has property G and

∣

∣K(d, u)
∣

∣ ≤ Kd3(1 − u2)de
−π2

d for (0 < d < d0, u0 < u < 1). (6.36)Hene
F(d, u) = (1 − u2)d2

∫ ∞

0
e−

t
d q(t, u)dt + K(d, u)where q(t, u) is analyti in |t| < π2, it is ontinuous on [0, π2[ and ]π2,∞[, has alimit as t → π2 for every u0 < u < 1 and satis�es

|q(t, u)| ≤ K eKt, (6.37)with a onstant K independent of u. If q(t, u) =
∑∞

n=0 qn(u)tn is the power seriesof q(t, u) near t = 0, Watson's lemma with (6.36) imply
F(d, u) ∼

∞
∑

n=0

n!(1 − u2)qn(u)dn+3 as d ց 0 for every u0 < u < 1 .On the other hand beause of its de�nition
F(d, u) ∼ V1 · S

(

Q1S(G)
)

− W2 · S2(G) − W3SC(G)

− Q1W1G − Q1f2

(

d, u,G
)

= 0 + 0d + · · · ,38



sine the formal series G satis�es (5.10). This means that all qn ≡ 0. Thus weobtain for u0 < u < 1 with (6.37)
(1 − u2)d2

∫ ∞

0
e−

t
d |q(t, u)|dt ≤ (1 − u2)d2

∫ ∞

π2

e−
t
d KeKtdt

≤ K(1 − u2)d3e−
π2

d (0 < d < d0)and thus
∣

∣F(d, u)
∣

∣ ≤ K(1 − u2)d3e−
π2

d (0 < d < d0) .We have proved that
∣

∣

∣

∣

∣

V1 · S
(

Q1S(G)
)

− W2 · S2(G) − W3SC(G) − Q1W1G − Q1f2

(

d, u,G
)

∣

∣

∣

∣

∣

≤ K(1 − u2)d3e−
π2

d ,for 0 < d < d0, u0 < u < 1, i.e. Q(d, u) is a quasi-solution of (5.10) on this interval.This implies that the funtion A(d, u) de�ned in (6.23) is a quasi-solution of (2.2),more preisely
∣

∣

∣

∣

∣

√

1 − (T+)2

1 − u2
A(d, T+) +

√

1 − (T−)2

1 − u2
A(d, T−) − 2A(d, u) − f

(

ε,A(d, u)
)

∣

∣

∣

∣

∣

≤ Kde−
π2

d , (6.38)7 Distane Between Points of ManifoldsClearly, if qε(t) is an exat solution of the di�erene equation (1.1), then (qε(t), pε(t)),where pε(t) = 1
ε

(

qε(t) − qε(t − ε)
), is an exat solution of the the system (1.2). Inthe introdution, we have mentioned that the stable manifold W−

s of this systemat A = (0, 0) is parametrized by t → (q−ε (t), p−ε (t)) and the unstable manifold W+
uof (1.2) at B = (2π, 0) is parametrized by t → (q+

ε (t), p+
ε (t)), where (q−ε (t), p−ε (t))is an exat solution of (1.2) and q+

ε (t) = 2π − q−ε (−t), p+
ε (t) = p−ε (−t + ε).In the previous setion, we have onstruted a quasi-solution A(d, u) for equa-tion (2.2), i.e. it satis�es this equation with an exponentially small error. Wedenote by W̃s, W̃u the manifolds lose to W−

s respetively W+
u parametrized by t 7→

(

ξ−(t), ϕ−(t)
) respetively t 7→

(

ξ+(t), ϕ+(t)
), where ξ−(t) =

√

1 − u(t)2A
(

d, u(t)
)

+

q0d(t) and ξ+(t) = 2π − ξ−(−t), ϕ−(t) =
1

ε

(

ξ−(t)− ξ−(t− ε)
), ϕ+(t) =

1

ε

(

ξ+(t)−
ξ+(t− ε)

). Here and in the sequel, we often omit to indiate the dependene withrespet to ε for the sake of simpliity of notation.We will �rst show that the vertial distane between some point (q1, p1) of thestable manifold W−
s and the manifold W̃s is exponentially small. For this purpose,39



we onsider the sequene Zn = (qn, pn) on the stable manifold W−
s , de�ned by

Zn+1 =

(

qn+1

pn+1

)

= φ

(

qn

pn

)

=

(

qn + εpn+1

pn + ε sin(qn)

)

, for n = 1, 2, 3, .... (7.1)There is a sequene tn suh that
ξ−(tn) = qn =

√

1 − u(tn)2A
(

d, u(tn)
)

+ q0d(tn). (7.2)The vertial projetion of the point (qn, pn) on the manifold W̃s is the point
(qn, bn), where bn = ϕ−(tn) = g(qn) := ϕ−

(

ξ−1
− (qn)

) for n = 1, 2, 3, ... . We denoteby △ε(n) the vertial distane between the point (qn, pn) and the manifold W̃s.Then
△ε(n) = pn − bn. (7.3)For the φ-image of the point (qn, bn) on W̃s, we �nd

(

q̃n+1

b̃n+1

)

= φ

(

qn

bn

)

=

(

qn + εb̃n+1

bn + ε sin(qn)

)

,

=

(

ξ−(tn) + εb̃n+1

ε−1
(

ξ−(tn) − ξ−(tn − ε)
)

+ ε sin
(

ξ−(tn)
)

)

=

(

2ξ−(tn) − ξ−(tn − ε) + ε2 sin
(

ξ−(tn)
)

ε−1
(

ξ−(tn) − ξ−(tn − ε)
)

+ ε sin
(

ξ−(tn)
)

) (7.4)As the funtion ξ− satis�es equation (1.1) exept for an exponentially small errorbeause of (6.38) and (7.2), we have
q̃n+1 = ξ−(tn + ε) + en+1(ε)

b̃n+1 = ϕ−(tn + ε) +
1

ε
en+1(ε), (7.5)where |en+1(ε)| ≤ Kε exp(−π2

ε
) with some K independent of ε and n. Sine

g
(

ξ−(tn + ε)
)

= ϕ−(tn + ε), we have
b̃n+1 = g

(

ξ−(tn + ε)
)

+
1

ε
en+1(ε)

= g
(

q̃n+1 − en+1(ε)
)

+
1

ε
en+1(ε) (7.6)On the other hand, using (7.3) and the de�nition of φ, we obtain

(

q̃n+1

b̃n+1

)

= φ

(

qn

pn −△ε(n)

)

=

(

qn + εpn + ε
2

sin(qn) − ε△ε(n)

pn + ε sin(qn) −△ε(n)

)

,

=

(

qn+1 − ε△ε(n)

pn+1 −△ε(n)

)

. (7.7)40



With (7.3) and (7.6) this implies
△ε(n + 1) = pn+1 − bn+1 = pn+1 − g(qn+1)

= △ε(n) + b̃n+1 − g
(

q̃n+1 + ε△ε(n)
)

= △ε(n) + g
(

q̃n+1 − en+1(ε)
)

− g
(

q̃n+1 + ε△ε(n)
)

+
1

ε
en+1(ε).Using Taylor expansion we obtain

△ε(n + 1) =
(

1 − εg′(θn+1)
)

△ε(n) +
1

ε

(

1 − εg′(θn+1)
)

en+1(ε) (7.8)where q̃n+1 − en+1(ε) < θn+1 < q̃n+1 + ε△ε(n).Now g is ε-lose to the urve p = −2 sin(q/2), hene
g′(θn+1) = − cos

(θn+1

2

)

+ O(d).Thus given any positive µ < π, there is a positive onstant c suh that for all
q1 ≤ µ, all n and su�iently small d,

1 − εg′(θn+1) ≥ 1 + εc .It is now onvenient to write (7.8) in the form
△ε(n) =

(

1 − εg′(θn+1)
)−1△ε(n + 1) − 1

ε
en+1(ε)As △ε(n) → 0 as n → ∞, this implies that that there is a positive onstant Ksuh that

∣

∣△ε(n)
∣

∣ ≤ Ke−
π2

ε

∞
∑

k=0

(1 + εc)−kConsequently
△ε(n) = O

(

1

ε
exp

(

− π2

ε

)

)

. (7.9)In partiular distv((q1, p1), W̃s) = O

(

1

ε
exp

(

− π2

ε

)

)

, (7.10)where (q1, p1) is any point on the stable manifold W−
s , provided q1 ≤ µ < π; heredistv denotes the vertial distane.The estimate (7.10) an be extended to any µ < 2π and a starting point (q1, p1)with q1 ≤ µ in the following way. The relation (7.8) remains valid, only now wejust have the existene of some onstant c > 0 suh that 1 − εg′(θn+1) ≥ 1 − εcfor all n. As system (1.2) an be regarded as a one-step numerial method for the41



system (1.3) of di�erential equations and the starting point is at a distane O(ε)of its solution (q0(t), q
′
0(t)), results on the onvergene of one-step methods an beapplied and yield that qk = q0(t1 + (k − 1)ε) +O(ε), where q0(t1) = q1, uniformlyfor integer k, 1 ≤ k ≤ L/ε, where L is any positive onstant. We hoose L suh

q0(t1 + L) ≤ µ/2 < π. Repeated appliation of (7.8) now gives
|△ε(n) −△ε(n + [L/ε])| ≤ Ke−

π2

ε

[L/ε]
∑

k=0

(1 − εc)−k ≤ KeLc

cε
e−

π2

ε .To the quantity △ε(n + [L/ε]), inequality (7.9) an be applied, beause qn+[L/ε] ≤
µ/2 < π. Thus (7.9) and hene also (7.10) remain valid also uniformly for 0 <
q1 ≤ µ, provided µ < 2π.The analogous reasoning applies to the vertial distane of a point (q̃1, p̃1) onthe unstable manifold W+

u from the manifold W̃u and yieldsdistv((q̃1, p̃1), W̃u) = O

(

1

ε
exp

(

− π2

ε

)

)

. (7.11)Another method to obtain (7.11) onsists in using (7.10) and symmetry.Now we will estimate the vertial distane between the two manifolds W̃s and
W̃u. As the quasi-solution A(d, u) is de�ned for −1 < u =: tanh(t) < 1, we ande�ne

A+(d, u) = −A(d,−u),

ξ+(t) =
√

1 − u(t)2A+
(

d, u(t)
)

+ 2π − q0d(−t) = 2π − ξ−(−t), (7.12)
Dε(t) = ξ+(t) − ξ−(t) for − 4

3
< t <

4

3
. (7.13)Using (7.12) and the de�nition of ξ−(t) we �nd

Dε(t) = −
√

1 − u(t)2

(

A
(

d, u(t)
)

+ A
(

d,−u(t)
)

)

− q0d(t) − q0d(−t) + 2π

= −
√

1 − u(t)2

(

A
(

d, u(t)
)

+ A
(

d,−u(t)
)

) (7.14)With (5.5) and (6.23) this implies
Dε(t) = −

√

1 − u(t)2Q(d, u)

[

α1
u

τ2

(

H0(d, u) −H0(d,−u)
)

−

β1

(

H2(d, u) + H2(d,−u)
)

+ δd
(

H1(d, u) + H1(d,−u)
)

]where Q(d, u) is de�ned in (5.6), α1, β1 are de�nd in (6.27) and Hi(d, u) are de�nedin (6.9) and an be ontinued analytially to −1 < u ≤ 1 as in (6.10).42



Using the fat that the funtions uh0(s, u), h1(s, u), h2(s, u) in (6.9) are odd,we an apply the residue theorem and obtain for −1 < u < 1 that
Hi(d, u) + Hi(d,−u) =

∑

Im(sk(t))<0

2πiRes(e− s
d hi(s, u), sk(t)

)

−
∑

Im(sk(t))>0

2πiRes(e− s
d hi(s, u), sk(t)

)

, i = 0, 1, 2,where sk(t) = π2 ± 2dπ t
ε i + 2kπ2 for k ≥ 0. We obtainRes(e− s

d h0(s, u), sk(t)
)

=
1

2
e
−

(k + 1)π2

d e
∓

2πti

εRes(e− s
d h1(s, u), sk(t)

)

= ± i

4π
e
−

(k + 1)π2

d e
∓

2πti

εRes(e− s
d h2(s, u), sk(t)

)

= ± i

4εd

(

πεi ∓ 2dt
)

e
−

(k + 1)π2

d e
∓

2πti

εand hene
Dε(t) =

1

d2
φ1(t, ε) exp

(

− π2

d

)

+ O

(

e−
π2

d

)

. (7.15)where
φ1(t, ε) = 2πα

[

sinh
(dt

ε

)

+ t/ cosh
(dt

ε

)

]

sin
(2πt

ε

)

+

[

πα

cosh
(

dt
ε

)

]

cos
(2πt

ε

) (7.16)As a onsequene of (7.15) and (7.12), we obtain immediately that
ξ±(0) = π + O(ε−2e−π2/ε) . (7.17)Now, let us take a point (ξ+(t), ϕ+(t)) on the manifold W̃u. We suppose thatthe point (ξ−(t1), ϕ−(t1)) is its vertial projetion on the manifold W̃s. We willevaluate the vertial distane between these two pointsdistv(t) = ϕ+(t) − ϕ−(t1) = ϕ+(t) − g

(

ξ+(t)
)

, (7.18)where g(x) = ϕ−

(

ξ−1
− (x)

). Thus by (7.13)distv(t) = ϕ+(t) − g
(

ξ−(t) + Dε(t)
)

. (7.19)Using Taylor expansion, we �nddistv(t) = ϕ+(t) − g
(

ξ−(t)
)

− Dε(t)g
′
(

η(t)
)

, (7.20)43



where ξ−(t) < η(t) < ξ−(t) + Dε(t). Here
η(t) = q0d(t) + O(d), hene (7.21)

g′
(

η(t)
)

= − cos
(η(t)

2

)

+ O(d) = − tanh
(dt

ε

)

+ O(d). (7.22)As g
(

ξ−(t)
)

= ϕ−(t), this yieldsdistv(t) = ϕ+(t) − ϕ−(t) − Dε(t)g
′
−

(

η(t)
)

,

=
1

ε

(

ξ+(t) − ξ+(t − ε)
)

− 1

ε

(

ξ−(t) − ξ−(t − ε)
)

− Dε(t)g
′
−

(

η(t)
)

,

=
1

ε

(

Dε(t) − Dε(t − ε)
)

− Dε(t)g
′
(

η(t)
)

. (7.23)Now formula (7.15) applies and we obtain
Dε(t − ε) = Dε(t) +

1

d
φ2(t, ε) exp

(

− π2

d

)

+ O

(

e−
π2

d

) (7.24)where
φ2(t, ε) = −2πα

[cosh
(

dt
ε

)2
+ 1

cosh
(

dt
ε

) − t
tanh

(

dt
ε

)

cosh
(

dt
ε

)

]

sin
(2πt

ε
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+ πα

[ tanh
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ε
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cosh
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]

cos
(2πt

ε

)

. (7.25)With (7.23) and (7.22) this impliesdistv(t) =
1

d2

[

− φ2(t, ε) + tanh
(dt

ε

)

φ1(t, ε)

]

e−
π2

d + O

(

1

d
e−

π2

d

)

. (7.26)Consequently, for −4

3
≤ t ≤ 4

3distv(t) =
4πα

ε2
cosh(t) sin

(2πt

ε

)

e−
π2

ε + O

(

1

ε
e−

π2

ε
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