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abstract

We consider the discretization

q(t +¢) + q(t — ) — 2q(t) = > sin (q(t)),

€ > 0 a small parameter, of the pendulum equation ¢’ = sin(q); in system
form, we have the discretization

q(t+¢)—q(t) =ep(t+¢), p(t+e) — p(t) = esin (q(t)).

of the system
¢ = p, p' =sin(q).

The latter system of ordinary differential equations has two saddle points
at A = (0,0), B = (2m,0) and near both, there exist stable and unstable man-
ifolds. It also admits a heteroclinic orbit connecting the stationary points B
and A parametrised by qo(t) = 4arctan (e~*) and which contains the stable
manifold of this system at A as well as its unstable manifold at B. We prove
that the stable manifold of the point A and the unstable manifold of the point
B do not coincide for the discretization. More precisely, we show that the
vertical distance between these two manifolds is exponentially small but not
zero and in particular we give an asymptotic estimate of this distance. For
this purpose we use a method adapted from the article of Schifke-Volkmer
[10] using formal series and accurate estimates of the coefficients. Our result
is similar to that of Lazutkin et. al. [9]; our method of proof, however, is quite
different.

Keywords: Difference equation; Manifolds; Linear operator; Formal solu-
tion; Gevrey asymptotic; Quasi-solution

1 Introduction
We consider the following difference equation

q(t+¢) +q(t —e) — 2q(t) = *sin (q(t)). (1.1)



This second order equation is a discretization of the pendulum equation ¢” =
sin(q). It is equivalent to the following system of first order difference equations

{q(t +¢) = q(t) +ep(t + <),
p(t+¢) = p(t) + esin (g(t)).

which can be considered as a discretization of the system

{q/:p’ (1.3)

p’ =sin(q).

The latter system has two saddle points at A = (0,0), B = (27, 0) and there exist
stable and unstable manifolds. For the discretized equation (1.2) and sufficiently
small € > 0, these manifolds still exist.

The system (1.3) has (qo(t),qé)(t)), where ¢o(t) = 4arctan ('), as a hetero-
clinic orbit connecting the stationary points B and A; it is a parametrisation of
the curve p = —2sin(g/2) and contains the stable manifold of (1.3) at the point
A as well as its unstable manifold at B. This curve, together with p = 2sin(q/2),
separates regions with periodic orbits from regions with non-periodic orbits and
is therefore often called a separatriz. Our purpose is study the behavior of this
separatrix under discretization of the equation — it turns out that there is no longer
a heteroclinic orbit for system (1.2) and its the stable manifold at A and the un-
stable manifold at B no longer coincide. More precisely, we want to estimate the
distance between the stable manifold W of (1.2) at A and the unstable manifold
W, of (1.2) at B as a function of the parameter e.

Lazutkin et. al. [9], Gelfreich [4], (see also Lazutkin [7][8]) had given an asymp-
totic estimate of the splitting angle between the manifolds. Starting from a hetero-
clinic solution of the differential equation, they study the behavior of analytic so-
lutions of the difference equation in the neighbourhood of its singularities t = £751.

We show that the distance between these two manifolds is exponentially small
but not zero and we give an asymptotic estimate of this distance. This result
is similar to that of Lazutkin et. al. [9]; our method of proof, however, is quite
different.

We use a method adapted from the article of Schifke-Volkmer [10] using a for-
mal power series solution and accurate estimates of the coefficients. This method
was adapted for the logistic equation in Sellama[l1]|. It turns out that the adap-
tation of this method for the pendulum equation is more difficult than in the case
of the logistic equation.

We will show

(1.2)

Theorem 1.1. Given any positive tg, it is known that for sufficiently smal g > 0
and all t €] — 00, to] there is exactly one one point w, (t) = (qo(t), . (t)) on the
stable unstable manifold having first coordinate qo(t). There exist constants o # 0,
such that for any positive tg

4 27t 2 1 _ =2
)= gcosh(t) sin (i)e*T + O<gef>, as € \, 0,

dist, (w_(t), W, .

s PWse



uniformly for —tg < t < ty, where dist, (P7 WJE) denotes the vertical distance of a
point P from the unstable manifolds W, ..

This result corresponds to the result of Lazutkin et. al. [9] as the angle between
the manifolds at an intersection point is asymptotically equivalent to
@% dist, (w;fa(t), W, E), but we do not want to give any detail here.

Our proof uses the following steps. First, we construct a formal solution for
the difference equation (1.1) in the form of a power series in d = 2arsinh(e/2),
whose coefficients are polynomials in v = tanh(dt/e). This is done in section 2;
the introduction of d is necessary because polynomials are desired as coefficients.
Then, we give asymptotic approximations of these coefficients using appropriate
norms on spaces of polynomials. To that purpose we introduce operators on poly-
nomials series. In section 6 we use the truncated Laplace transform to construct
a function which satisfies (1.1) except for an exponentially small error. The next
and last step is to give an asymptotic estimate for the distance of some point of the
stable manifold from the unstable manifold. A calculation shows that o = 89.0334
and therefore 4ra = 1118.8267 (See Remark 5.4); the corresponding constants of
Lazutkin have already been calculated with high precision (See Lazutkin et. al.
[9]). A proof that « # 0 as in [10] or [11] would be possible. Y.B. Suris [12] had
shown that o # 0.

2 Formal solutions

The purpose of this section is to find a convenient formal solution for equation
(1.1). First, we need some preparations. We put

d
u: = tanh (—t),
€
d
qod(t) : = 4arctan (exp < — —t>>,
€

qa(t) = V1—u2A4(u) + qoalt), Aq(u) = An(u)d"
n=1

for a formal solution of (1.1), where d = e + > ° 5 dne" is a formal powers series
in € to be determined.

Remark. The linearization of equation (1.1) at the point A gives the following
equation

Z(t+e)+Z(t—e)—2Z(t) = 2Z(t).

The parameter d is such that Z(t) = e~% is a solution of this equation, therefore
e and d are coupled by the relation d = 2arcsinh(e/2).



By Taylor expansion, we obtain

qoa(t +€) + qoa(t — &) — 2qoa(t) _22 I Od ) e, (2.1)
2
where o) q(()fln)( t)e?™ /d?" is an odd polynomial Iy, 1(u) multiplied by v/1 — u?2;

we find IZn—l( ) = 4/(277,)'
Using cos(qoq) = 2u® — 1, sin(qoq) = 2uv/1 — u?, we can express our equation
(1.1) in the form

AﬂTﬂM%z;)z +A \/ —2A4(u) = f(g,u, Ag(u)) (2.2)

or equivalently

Aa(T) Aa(T7)
cosh(d) + usinh(d) = cosh(d) — usinh(d)

—2A4(u) = f(g,u, Ag(u)) (2.3)

where
fle,u, Ag(u)) = & <2ucos (A (u)V1— u2) + M sin <A (u)vV1— u2))
s Uy £14g - d m d
+oo
- Z Ton—1(u) d*",
n=1
B _u-+tanh(d) d
T = TT(d,u) = 1T atanh(d) tanh <g(t —i—e)),
- _u—tanh(d) d
o= T = o s —tanh<g(t—e)>.

As u — 1, the expressions " and T~ reduce to 1, the denominators in (2.3)
simplify to e*? and hence equation (2.3) reduces to

(7% +e? —2)Ag(1) = £2(2 4+ Ag(1)) — 4(cosh(d) — 1).

This is equivalent to (2cosh(d) — 2 — €2)(2 + A4(1)) = 0 and hence we have
necessarily ¢ = 2sinh(d/2) if we want a formal solution such that the coefficients
have limits as u — 1.

Theorem 2.1. (On the formal solution) If ¢ = 2sinh(d/2), then equation
(2.2) has a unique formal solution of the form

Ag(u) =Y Agn_1(u)d®", (2.4)

where Aap—1(u) are odd polynomials of degree < 2n — 1.



Remark: A similar formal solution was found using another method in [12].
Proof. We will use the Induction Principle to show that there exist unique odd
polynomials Ay, A3, As...As,_1 such that

Zn(dyu) = Aggy (u)d? (2.5)
k=1
satisfy
Ry (d,u) = O(d*"*?) (2.6)
where
1—(T+)2 1= (T7)?
— +
Rn(d’ u) - Zn,d (T ) 1 _ 2 + Zn,d (T ) 1— w2
- 2Zn,d(u) - f(€7 u, Zn,d(u)) (27)
For n = 1, a short calculation shows that we must have A (u) = —iu and hence
Zy,4(u) = —tud?. We obtain
91 5 137 50 230 4 s
Ry(d,u) = ( TR 24)d +O(d®).
Suppose now that there exists Ay, Az, As...As,_1 such that
Zn(d,u) = Ay (u)d™ (2.8)
k=1

satisfies (2.6), (2.7). We show that there is a unique polynomial Ag,y;(u) such
that
Zni1(d,u) = Zy(d,u) + Aoy (u)d? 2 (2.9)

satisfies (2.6). We put
Ry, (d,u) = Ronys(u)d® ™ + O(d**) (2.10)

where Rgy,+3(u) is odd and deg(Rant3(u)) < 2n+ 3.
We substitute Z,11(d,u) in equation (2.7). Using Taylor expansion, (2.9),
(2.10) and e = 2sinh(d/2), we obtain

1-— (T"’)2
1 —u?

1-(T7)

Zp1,4(TT) T

— Znt1,4(T7) —2Zp11,4(u) —
f(&, u, Zn-l—l,d) = |:(u4 - 2u2 + 1)A/2/n+1 (u) + (4u3 - 4u)A/2n+1(u) +

R2n+3 (u)] d2n+4 +0 (d2n+6)



We notice that (2.10) is satisfied if only if

(1= w2451 (w)] + Ronsa(u) =0 (2.11)

This differential equation has a unique solution vanishing at v = 0 without
singularity at u = 1, namely

Aot (u / i }?"”2 dt. (2.12)
—t

We now show that this solution is an odd polynomial of u. It is clear that

flt Roy+3(s)ds vanishes for ¢ = 1 and as Ra,13(s) is odd, it also vanishes for

t = —1. It suffices to show that Ra,+3(s) also vanishes at t = £1. Indeed, taking

the limit of (2.7) as u — 1 as we did for (2.3) and using

imf(e,u,Z(d,u)) = £27(d,1)

we obtain

Ronys(1)d* = <ed +ed—92— 62> Z(d,1) + O(d*" ).

By our choice of ¢ = 2sinh(d/2), we obtain Rg,3(1)d*"** = O(d***%). Conse-
quently Roy,4+3(1) = 0. As Rop,43(u) is odd, we also have Rgy,43(—1) = —Rap43(1) =
0. This proves that Ag,4+1(u) is an odd polynomial of degree (A2n+1(u)) <2n-+1
and A2n+1(0) =0.

The first polynomials Ag,_1(u) with n > 0 can be calculated using Maple.

n 1 2 3
1 91 3 47 _ 319 5 . 1853 3703
Agp—1(u) g <864u 576“) ( 98304 T 1152 69120“)

Now, we ntroduce the operators Co,C,Ss2,S defined by

C(Z)(du) = §(2(d, T*2) + 2(d, T72))

S(Z)(d,u) = 5(Z(d, T*%) - 2(d, T7%))
(2.13)
Ci(Z)(d,u) = 3(Z(d, TT)+ Z(d,T7))

S1(Z)(d,u) = 5(Z(d,TT) — Z(d,T™))

D=

where 772 = T+ (4, ), T = T=(4,u) and Z(d, u) is a formal power series in d

whose coefficients are polynomials. We can show that

C, =28%+1d

S = 28¢C (2.14)



and

C1(Q - G) = C1(Q)C1(G) + S1(Q)S1(G)

S1(Q - G) = C1(Q)S1(G) + S1(Q)C1(G))

(2.15)
C(Q-G) =C(Q)(G) +S(Q)S(G)
S(Q-G)=C(Q)S(G) +S(Q)C(G)

if @, G are formal power series in d whose coefficients are polynomials of .

3 Norms for polynomials and basis

In this section we recall some definitions and results of [10]. Using a certain
suquence of polynomials. we define convenient norms on spaces of polynomials
which satisfies some useful proprieties. We denote by

e P the set of all polynomial whose coefficents are complex
e P, the spaces of all polynomials of degree less than or equal to n

Proposition 3.1. [10]. We define the sequence of polynomials T,(u) by

1
70(u) =1, 11(u) = u, Th41(u) = —=D7y(u) for n > 1,
n
where the operator D is defined by

D:=(1- u2)§
u

Then we have
1. TH(d,u) =300 o g1 (w)d™,
2. Tp(u) has exactly degree n and hence to(u), ..., 7o (u) form a basis of Py,

3. mp(tanh(z)) = ﬁ(d%)nfl(tanh(z))

Definition 3.2. Let p € P,,. As 19(u), ..., 7 (u) form a basis of P, we can write
p € Py as

n
p=_ axTi(u).
k=0

Then we define the norms

n

ol =" lail (5)" (31)

1=0



Theorem 3.3. [10]. Let n,m be positive integers and p € Py, q € Pp,. The norms
(8.1) have the following properties:

~

M DPpllntr < nllplla-

2. If the constant term of p in the basis {79, T1.., 7} 1s zero, we have
1Plln < [1Dplln1-

3. There exists a constant My such that ||pql|n+m < Mal||pllnllg||m-

4. There is a constant M such that that for alln > 1, |p(u)| < M3z (2)" |[p|ln
(-1<u<).

5. There is a constant My such that for all n > 1 with p(1) = p(—1) =0

p
||, < Malpln
T2 lIn—2

4 Operators

In this section we will use some definitions of Schéifke-Volkmer[10] and adapt their
results on operators on polynomial series to our context. Let

Q= {Q(d, u) = ZQn(u)d”, where Qp(u) € P, for all n € N} )
n=0

By abuse of notation, let ||Q||, = |[|@n]|» for a polynomial series

Q(d,u) = Qu(u)d".
n=0

Definition 4.1. Let f be formal power series of z whose coefficients are complez.
We define a linear operator f(dD) on Q by

F@D)Q(d,u) = > (D fiD'Qu-i(w) )" (4.1)
n=0  i=0
where f(z) =322, fiz" and Q € Q.
By the above Definition and (1) of Proposition 3.1 we can show that

Q(d, T* (6d,u)) = (exp(8dD)Q)(d,u) for Q € Q and all § € C

8



Thus with (2.14) and (1) of Proposition 3.1 we obtain

C(Q) = cosh($D)Q, S(Q) =sinh(§D)Q
C1(Q) = cosh(dD)Q, &1(Q) = sinh(dD)Q

for polynomial series ) in Q.
Remark. According to the definition of norms in (3.1), we have

If QcQ, then dQeQ and [|dQ||, = gHQHn_l forall n>1. (4.3)

Theorem 4.2. [10] Let f(z) be formal power series having a radius of convergence
greater than 2w and let k be a positve integer. There is a constant K such that: If
Q is a polynomial series having the following property

0 forn <k
TR O PPN

where M is independent of n and Q@ € Q then the polynomial series f(dD)Q
satisfies

0 forn <k
IF(dD)@Qlln < { MK(n—k)!(27)™™ forn >k

Now we define on @Q the following operator

S
J== (4.4)

1
where the notation % means simply F(dD) with F(z) = 2 sinh(3).

Lemma 4.3. For each integer k there exist a positive constant K such that: If Q
is a polynomial series with odd Q of degree at most n, ||Q|ln = 0 for n < k in
case of positive k and

ldDQ|ln < M(n —k)!(27)™™ for n > max(0, k),
where M is independent of n, then the polynomial series J1(Q) satisfies
(n—k+1)! fork <1

17 Q) |l < MK (27)™™ < (n—1)!log(n) for k=2
(n—1)! for k>3



Proof. We can see easily that 71 = 7C~! + g(dD), where C = cosh(1dD) and
g(z) is analytic for |z| < 47, and use the proof of [10].

We have § = dD J = JdD, but using this relation for the inversion of S
would give an insufficient result. Using of the formula

2
1=- sinh(g) + F(2)z, where F(z2) = 27 %(z — 2sinh(§))
z
is an entire function, we obtain the relation
Q=2JQ+ F(dD)dDQ (4.5)

for polynomial series Q € Q. This will be essential in the proof of

Theorem 4.4. For each integer k there exist a positive constant K such that: If
Q is a polynomial series with odd Q,, of degree at most n, ||Q|l, =0 for n < k in
case of positive k, and

IS@)||n < M(n—k)!(2n)™" for n > max(0, k),
where M is independent of n, then the polynomial series QQ satisfies
(mn—k+1)!  fork<1

(n—1)!log(n) fork=2
(n—1)! for k>3

1Qlln < MK (2m)™"

Proof. By the preceding theorem, we have the wanted inequalities for dDQ =
J18Q in the place of Q. Here we used again ||[dDZ||, < (n — 1)||Z||,,_1 for any
polynomial series Z € Q. Using theorem 4.2 implies the same for F'(dD)dDQ with
the entire function F' of (4.5) As ||Z||,, < ||[dDZ||,+1 by theorem 3.3, we find the
wanted inequalities (and even something better in the cases k > 2) also for JQ
because dDJ = S. Thus formula (4.5) yields the result O

In order to obtain an asymptotic approximation for the coefficients of the formal
solution, we will need to reverse some operators. This is not possible for the
operators S and dD on the set Q, but we can define a subset Q@* of Q on which
these operators have a right inverses.

If we define

Q" = {Q(d, u) = Z:Pn(u)d"7 where P, (u) € P;,, for all n > 1} .
n=1
where P is the subspace of P, defined by

’P; ::{ZaiTiGPn,| ag=20 }
=0

10



Then, the restrictions of the operators dD,S to QF, denoted here by the same
symbols

dD : Q" — (1 —u?d*Q
S 1 Q9 —(1-u?)d?Q
are bijective. We denote by 7 the inverse of the restriction of S to Q*, , and we

have
78 =1d on QOF

Theorem 4.5. [10] We consider a polynomial series
© i \n—1
a\l, = n(n —1 '<_> n "
Quidh) = Lt =1(5)" o
where o, = O(n™%) as n — oo with some integer k > 2. Let
4 o
o = ; Z [07°%
n=1
then the coefficients {T (Qa)},, of T(Qa) satisfy

- o((n k) !(Qﬂ)*")

n

2

H {T(Qa)}, —a(n—1) !<i)"_17n

as n — oo for n.
Proof. The proof of this theorem is completely analogous to that of [10].

Theorem 4.6. [10] Let k,l,p,q be integer with p > k and q > 1. Define m as the
minimum of k+q and l+p. then there is a constant K with the following property:

If P and Q are polynomial series such that ||P|, =0 for n <p, |Q|l, =0 for
n < q and

1P|l < Mi(n—Fk)!(2m)™™ forn>p
1Qlln < Ma(n—1)1(2m)™"  forn >gq

then

I1PQ|ln < KM;My(n—m)!(27)™" forn>p-+q.

Remark 4.7. Observe that the results of this section can also be applied, if the
constants M are replaced by any increasing sequence (Mp,)nen. In theorems 4.2
and 4.6 the first n terms of the resulting polynomial series only depend of the first
n terms of the given series, so the "M" in the result simply has to be replaced by
"M,". In lemma 4.3 and theorem 4.4, the first n terms of the result depend of the
first n + 1 given terms, so "M" in the result has to be replaced by "M, ,".

11



5 Asymptotic approximation of the coefficients of the
formal solution

In this section we will estimate the coefficients of the formal solution obtained
previously (section 2). The idea is to write equation (2.2) essentially in the form

V(d,u)S(Q18(Q2 A))(d,u) = g(d, u, A(d, u)), (5.1)

where V, ()1 and @2 are known polynomials of d and w and g is a certain function
of d,u and A involving the operators S§,C and J multiplied by sufficiently high
powers of d.

Thanks to this equation, we will estimate the coefficients of the formal solution
using the results of the previous section. We show that the coefficients of this
formal solution is Gevrey-1, more precisely ||A, = O(n!(27)™").

5.1 Rewriting of equation (2.2)

Consider the decomposition

A(d,u) = U(d,w) + F(d, u) (5.2)

where U is the initial part of A calculated before

1 91 a7 319 185 3703
Uld —_ _ d2 I d4 o 5 3 d6.
(du) = —qud”+ (864u 576“) T\ "m0 T 12" T 69120

We insert this into (2.3), with (2.14) and (2.15), and obtain

2 cosh(d) - C1(F) — 2u sinh(d) - Sy (F) = Wo - F + f, <d, u, F(d, u)) (5.3)

12



where
Wy = <COSh2(d) —u? Sinhz(d)) [2 + (2u? — 1)e? cos (U V11— u2>
- 2ue2sin<U-\/1—u2)-\/1—u2]

<\2/qi2_;u12sin <U- \/1—u2)

+ 2ucos(U m>>cos( )ﬂ)-i-

(317_;1 (U VI=?) — 2usin (U m)) .

(sin (F(d,u)v1=w?) = F(d,u) MM

f1 (d, u, F(d, u)) = ¢? ( cosh?(d) — u? sinhQ(d))

— (cosh2 (d) — u? sinh?( Z Iop—1(u)d* — 2 cosh(d)C1(U)

— 2u sinh(d)S1(U) — 2(cosh2(d) —u sinhz(d)) -U.

Observ that f; has the form

fl(d’u’F(dau)) = (du + Y1 d,u) 2—1_u nF(d u)?ﬂ
oo M1 ) (5.4)
d — (1= nF d 2n+1
where y,(d,u),n = 1,2,3 are convergent polynomial series.
Now, we let
J(d,u) = Q1(d,u)-S(G), ’
where G is a formal power series whose the first term contains d® and
Qldu) = 1+3(1—-u?)d®+ <432u4 — B’y 216>d4
319 1079 937 287
+ ( ge0u’ + Trzu’ — g’ + 864O>d6’
5 (5.6)
Q1(du) = (w?—-1)d*+ (1 —ut)d* - E(l —u?) (%u‘l +u? + 1> d®
997
367 185
+ (1—u2)<— mu6+ 432 4 4320u2>d8

13



The choice of Q1(d,u) and Q(d,u) depends in a precise way of the form of the
equation (5.1) and has been determined using Maple.
Using (5.5), (5.6) and (2.15), we can rewrite equation (5.3) in the form

WoQ + f1 <d, u, Fd(u)) = {2 cosh(d)C1(Q) — 2u sinh(d)Sl(Q)}Cl(G)
+ {2 cosh(d)S1(Q) — 2u sinh(d)Cl(Q)}Sl(G).

Using (2.14), we obtain

V-SXG) + W -SC(G) = WiG + fa (d, u, Fd(u)) (5.7)
where fo <d, u, Fd(u)> = ifl (d, u, Fd(u)>

V(d,u) = cosh(d)C1(Q) — u sinh(d)S1(Q)
W(d,u) = cosh(d)S1(Q)— u sinh(d)C;(Q) (5.8)
Wi(d,u) = i( —2cosh(d)C1(Q) + 2u sinh(d)S1(Q) + WOQ)

The calculation of the first terms of the series Wi by Maple shows that the con-
vergent polynomial series W7 (d, u) begins with a term containing d'°.
Using (5.5) and (2.15), we find

() = S(QiS(G)) = CQ)S*(G) + S(Q1)SC(G). (5.9)
Using
71 1, 107
_ 22\ g2 o4 -2 i 4
Vildyu) = 1+ (1 —u”)d +< 32t T gt +432>d
1351 ¢ 193 , 49 , 11\ ¢
<2160 " T 108>
we obtain

Vi-C(Q1) = QV+W,
Vi-8(@1) = QW +Ws
where Wa(d, u) and W3(d,u) are convergent polynomials series beginning with d'°.

With (5.7) and (5.9), this implies

S(le(G)) — Wy - SX(G) + W3SC(G) + QWiG + Q1 fo (d, u, Q1G(d, u)).
(5.10)
This allows us to prove the following theorem
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Theorem 5.1.

Gld,u) = (%+(6+%))% (8d+ ) Ha(d,u)

+ SdH(d,u) + S(d, ) (5.11)

where a, 8,0 are constants and the polynomial series Hyo, H1, Ho,S are defined by

Ho(d,u): = i (n—l)!<2—>n7'n(u)d"
Hy(du): = Z(n—l)!(—)nﬂm(u)dn

Hy(du): = in!(—)nﬂm(u)dn (5.12)

and S(d,u) is a polynomial series satisfying

11l = O((n = 3)!(2m)" ).

To prove this theorem we need to make some overvaluations on the coefficients
of the polynomial series S(Q18 (G)) This will be the subject of the following
paragraph.

Remark: Observe that the series F,G are odd in u, even in d and beginning
with d®. The series .J is even in u, odd in d and beginning with d'! . In the series
F,G, A, J, the degree of the polynomial that is the coefficient of d"* is at most n—1
- thus the results of section 4 can still be applied and d~'F,d"'G,d 1A, d"'J € Q

5.2 Upper bounds for the coefficients of S(Q:S(G))

In this paragraph, we will use equation (5.10), together with the definitions of V;
and @1, J and G, W;,i = 1,2, 3, to prove

Lemma 5.2.

H_ (QlS )H :(’)((n—S)!(er)_”) as n — oo.

Proof. We set
2m)"|S(J
ey = M for n > 12 (5.13)

(n—28)!

15



We must show that e, = O(n~1). In the sequel, we will use the following conven-

tion: if an,n = 0,1, .... is any sequence of positve real numbers, then
a} := max(ag, a1, ...a,) for all n > 0
We have
HS(J)Hn <en(n—38)!1(2m) ™ for n > 12. (5.14)

Using Theorem 4.4 and Remark 4.7, we obtain

[7]],, < Kiegq(n = 1)2m)™",  for n>11. (5.15)

where K7 denotes the constant associated with the operator & in Theorem 4.4, it
is independent of the present context. In this proof K;,i = 1,..9 will always denote
constants independent of n and the sequence e,,.

Using (5.5), we obtain

1Q:18(G)|,, < Kie) 1 (n—1)!(2m)™" for n>11 (5.16)
. Ql(d’u) . .
We use (5) of Theorem 3.3 and 4.6. Since w is a convergent power series
T2(U

beginning with 1, there is a constant Ky such that
HS(G)Hn < Ksyel s(n+1)1(2m)7", for n>9. (5.17)

Using again Theorem 4.4 (and remark 4.7) and the fact that F = G/Q where Q
is given in (5.6), we obtain

HGHn < K3e:+4(” +2)1(2m)™™ for n > 8,

5.18
HFHn < ng;:H(n +2)1(2m)™™ for n > 8, ( )

where K3 is a constant independent of n.
This together with theorem 4.6 implies that there are constants Ky, L such
that for all k > 2

|F*|| < KLk 18 (n - 5)12m) " for n > 8k (5.19)

where

n—=8 . .

(2) _ Lo (t+2)!(n—i4+2)!

" = 2528 € 4Cn _ita (n—5)1 , forn > 16,
n—8k . .

(k+1) v k) (@+2)(n—i-=5)!

n = ;8 CRIY i (n—5)1 , forn >8(k+1),

with f,(Lk) =0 for n < 8k.
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Using Theorems 4.2 and 4.6 and W; = O(d'?),i = 1,2,3, we obtain

HW2 .82(@)||,, < Ksef_g(n—9)!(2m)™ forn > 20 (5.20)
HW?,SC(G)H < Kgel_g(n—9)1(2m)™"  for n > 19, (5.21)
< K7e;:_8(n —10)!(2m)™™ for n > 20, (5.22)

HQ1f2<d w, Fy(u )H < Ky 1+Z 2D m-9)1em ™ forn 212, (523)

Now, let us take the equation (5.10)

HVl-S(J)

< |wasr @), +|wascie)

n+HQ1f2 <d, u, Fd(u))

n

Using (5.20), (5.21), (5.22) and (5.23), we obtain
Lk & Y
V-S|, < Ko (1 tel oty k—?f,ﬁjj) (n—9)! (27) (5.24)
k>2

Since, V1 is a convergent polynomial series begins with 1 , we also have
(k)+ .
IS, < Ko (1+ €+ Z = 2 0 )(n—9)!(2m) (5.25)
Using (5.13), we obtain
K
<1+e 6+Z fn4) for n > 12 (5.26)
k>2
lem5.2
Lemma 5.3. Under the condition (5.26), we have e, = O(n™') as n — oo.

Proof. Let K7 > 10 !e;r2 an arbitrary number. We assume that

B Kl(n—i—p—l)
" (n—2)(p+11)!

with some p > —1, N > 16. This gives for 16 <n < N

for12<n<N-4 (5.27)

(z+p+3) (n+p—z+3)
zz:; ((p+11)1)°

The first and last term of the above sum are the largest, so we can easily estimate

(n-5)1fY <K

n—=_8§
D i+p+3)nt+p—i+3)! <(p+1)!n+p—4)!
=8

17



We obtain

_ |
2 < g2 (n+tp—4)!
I s Lip+11)!(n —5)!

for 16 <n < N.

In a similar way, we can prove by induction that

£ < (n+p—4)! < ik (n+p-—1!

for 8« <n < N.
n =SG5S e (n 2 o orEnT=
Using the assumption of the lemma, we obtain
— |
en < Ee(HLQ)K1 (ntp-1)! for 16 < n < N.
n (p+11)!(n —2)!

Now we choose Ny > 16 so large that M < K and then p so large

that (5.27) holds for N = Ny. In a first step, our considerations imply by induction
over N that (5.27) holds for all N and hence

for this possibly large value of p.
As K is arbitrary in (5.27), we have also shown for any p > —1 that

o — <(n+p—1)!

o a0

implies that

B (n+p—2)!
n = < (n—2)!

) as n — oo .
Consequently the last assertion is proved for p = —1 and we have shown
en = (’)(n_l) as n — oo
Finally we have proved that
HS(J)Hn =0((n—9)!(2m)™") as n — oo
and hence that
1 _
HES(J)Hn =0((n—8)!(2m)™") as n — oo

which completes the proof of the lemma. [

18



5.3 Proof of theorem 5.1

1
Let £ := ES(J) = S(d~'J). The polynomial series E is odd in d and its coefficients

are odd in u. We partition it

Eo(u) = an(n—1) !(%)"‘1%(@ + Bua(n—3) !(%)"‘3%_2@) +
tn-aln =) (o) Tuaw) + Buolw) (5.28)

for odd n > 11, where o, , B, and 7, are real numbers and also E,, have at most
degree n for all n. For the whole series E' this is equivalent to

S(d'J)=FE=E +d*Ey+d*'E; + d°E (5.29)
where
= i \n—1
= E -1 —= n
Ey 2 ap(n—1) .<2ﬂ_> Tn(u)d

= i \n—1

By = Zﬁn(n—l)!<%> T () d"
n=9

E3 = +Zoo’yn(n—1)'<i>nl7'n(u)d"
n="7

+o0o
E = Zﬁn(u)d”
n=>5
Lemma 5.2 implies that
an =07, By =0n""), = 0n"?) and [|Eyl, = O((n - 2)!(2m)7").
Applying 7 to (5.29) we obtain

%J =T (F) + d*T (E) + d*T (E3) + d°T (E) (5.30)

To the first three summands we apply Theorem 4.5. Thus we obtain

(T(E)}n —a(n—1) !(%)"Tn(u) = O -7
(T(E)}n— 8- 1)}(=) 'malw)]| = O((n-5)12m)™")
(TE)n == D1(52) m@] = O((n=3)12m)™)

where



To the last part of (5.30) we apply Theorem 4.4 and obtain

7@ = o(m-11en " sm),

n

thus altogether

Using (4.3) we obtain

H{J}n ~ (-2 !(%)"‘1%_1 ~ B(n—4) !(i)"_?’m_g

2

— =61 (2)" s

s

- 0<(n —8)1(2m) ™" log(n))

Remark 5.4. The asymptotic of J, gives a good approximation of «; its suffice
to calculate , using a formal calculation software (for example: Pari), the first
40 terms of A(d,u) by the recurrence of Section 2 and to evaluate the highest
coefficients of Jy, to get the approximation o = 89.0334.

Next we observe that J = Q1S(G), where @ is given in (5.6) Using part 5. of
Theorem 3.3, we obtain

EA
1

+ (8 — apa(u)) (n — 2) !(_)nﬂTn_l

2w T

i

H{S(G)}n + an!(5-)

= Bpau) — apa(w) (n - )1 ()"

2

72

T2 n
- o((n—ﬁ)!(zw)*nlog(n)) (5.31)
where
(u) = w1
PR = Ty T T Ty
1w Tt 1 55 7
pa(u) = —— ===t o+ o

24 48 432 216 1296 432
Remark: Observe that the approximation (5.31) of the coefficients {S(G)},
is polynomial. Indeed; the polynomials 7,,(u),n > 2 are divisible by 7 (u).

In order to find an asymptotic estimation for the coefficients of the formal
solution, we need to apply the inverse of operator S . To this purpose, we show
the following lemma
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Lemma 5.5. If Hy, Hy, Hy are the polynomial series defined in (5.12). Then

dD
o [ If we define the operator C1 = cosh (T)’ then the polynomial series
4
C1(Hy),C1(Hy) are converging.
4 4

e 2. the polynomial series S(Hy),S(H;) are converging.
e 3. C(Hy) = —Ho + p1(d,u), where py(d,u) is a convergent series.
1 d
o 4. S(H) = §H0 + pa(d, w), where Hy = d%Hl and pe(d,w) is a convergent
series .
H H
o ). S( 0 > = —usinh(d) 0 + us(d,u), where pus(d,w) is a convergent
Tz(u) TZ(U)
series .
UHQ 1 9 . HQ .
6. S| —— | = —3 1) sinh(d)—— d,u), wh d,
. (TQ(U)) 5(u® 4 1) sinh( )TQ(U) + pa(d,u), where py(d,u) is a
convergent series .
H H
. S<sinh?d%_}[2> = —?Z)%—,%(d, w), where us(d,u) is a convergent
series .
Proof. (1)- We have
— m ym _ 1 m
C: (Ho) Z:O d"D < ;‘0 (n 1).<2W) T(w) d >

using the definition of the operator D in Proposition 3.1, we obtain

1 7 \"
Ci (Ho) = Z4mm!(n+m—1)!<%> T (1) AT
m,n
o .
= yk(k—1)!(i)k7kdk (5.32)
27
k=10
k even
where i
—-10
1 2T\ m
Tk = Z 4mm!(7) :
m=0
m even
Hence
[oe) o
1 2T m 1 2T \m
w= D 4mm!(7) -2 4mm!(7) '
m=0 m=k—8
m even m even
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Using

> 1 2mm = (=1 7\
mz ot (7) :l; @ (3) = eos(3) =0
we find
> 1 7mvm
Ve = — Z W(Q_z)
m=k—8

which implies

A

1 T\NE8 o= 1 Tym
o< Gmmila) X w3

cosh(m/2) (E) k—n; o

S RCEDIRY

This with (5.32) imply that C% (Ho) = p(d,u) is convergent. For C% (Hy), we can
use the same method. D
(2)- As § = 281C1, where S1 = sinh (T)’ we obtain using (1),
4 4 4

S(Ho) = 28 (c (H0)> — 281 (1)

1
4 4

This implies that S(Hy) is convergent. For S(H1), we can use the same method.
(3)- We have C(Hy) = (2C2 — Id)Hy = —Hy + 2C% (Hy). This with (1) imply
4 4

C(Ho) = —Ho + pa(d,u)

where 1 (d, u) is a convergent series.
(4)- We differentiate the equation S(H;) = C} with respect to d. As

d . z
i (smh(z/2)> =3 cosh(z/2),
we obtain
aCy

1

Using (3) of this lemma, we obtain
1 1
S(HQ) = §dDH1 + Mg(d, u) = §H0 + ,ug(d, u),

where po(d,u) is a convergent series.
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(5)- Using (2.15) and (2), (3) of this lemma we obtain

If—j) +C(72(u))8<i1—20)

S(Ho):S<7-2(u) Ho > = S(TQ(U))C<

TQ(U)

= :U’3(dau),
i) =¢(nt=% ) = c(nt)e( )+ strtys(22)
— —H().
This implis
Ho) _ S(r2(u))
S( T2 > - ( u))Q ( ) HO +:U’4(da u)
= —u smh(d)ﬁ + pa(d, ),

where ps(d,u), pa(d,u) are converging series.
(6)- The proof of (6) is similar to that of (5).
(7)- Using (4) and (6), we obtain

S(m—ffz> = (_§(u2+1)—§TQ(U))W};)+N5(d7u)
__ Ho "
- TQ(U,) +:U’5(da )a

where ps(d, u) is a convergent series. This completes the proof of Lemma.

1
Using the definition of Hy in (5.12) and (5.31), we can rewrite ES(G) in the

form

1 _
0 | “aHy+ X, (5.33)
u

where

IX], = o(tn-3)12m™).

Using (2) and (5) of the previous Lemma and applying also the inverse of the
operator S in (5.33), we obtain
RE34

1.1 1 Nf 1 wH, 1 —
“G= - “Hy| + caH, +6H, + X1 (5.34
-G d2(0‘+(6+20‘)d)[sinh(d)m(u) 2| + JaHs +6H1 + X1 (5.34)
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where, § is a constant and

Hy(du) = d%(d,u): 3 n!(%)nﬂm(u)d" (5.35)
n=9
n odd
X, = 0((?%—2)!(277)‘") (5.36)
o = %ién, (5.37)
n=1

with 6, = O(n™2). In the expression of éG, the term 0 H; comes from the fact that
the series X can be written

X (d,u) = Dy(d,u) + d>Dy(d, u)
where
Di(d,u) = 72571(71 - 1! <%) Tn(u)d"

D], = O(tm—-1tem™)

if we apply theorem 4.5 on the series Di(d,u) and Theorem 4.4 on Di(d,u), the
term dH; appears in the expression of éG.

Since b (d) =d!- g + O(d?), we obtain
[« a\ uHy(d,u) a
G(d,u) = (@—F(ﬁ‘i‘g))w - (ﬁd-ﬁ- E)Hg(d,u)
+ 6dHy(d,u) + S(d,u) (5.38)

where ||]l, = O((n - 3)}(2m)") O
UHO
2 (u)’
This is due to the fact that the expressions uT’;—;Q — Tpt1 etc., which are of degree
n — 1, were split.

It is not necessary (but would not be difficult) to write down asymptotic ap-
proximations for the coefficients of F', because equations (5.5) and (5.3) can be
used. This completes the proof of the theorem 5.1 [J

Observe that in d—2 d~'H, the degree of the coefficients of d" exceeds n.

6 Functions and quasi-solutions

So far, we have shown that equation (2.2) has a formal solution and we have found
an asymptotic approximation of the coefficients of the formal solution. We will use
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this to construct a quasi-solution, i.e. a function that satisfies equation (2.2) except
for some exponentially small error. To that purpose, we define the functions

7\
Ho(u): = (n—l)!(%) (W) (6.1)
and
0 tn_l
n=10
n even
i n—1
hy(t D= — H —_— 6.3
n odd
i -1
ho(t = — H _— 6.4
n odd
This means that
7 7 \" t t t
ho(tu) = — (—) t"—(Ht Hy— + Hg = H—)
olt, ) 27”; o) Tor1(¥) bt Hagy + Ho gy + s o
n odd
N 7 \"M 7 t t t
hi(tu) = (— <—) t”——(H Hs— + Hs “7H (}
1t w) (37) nzzo o) Trort (Wt = o (Hy o Hyop + Hs 3 7Hz £0.5)
n even

o 2 (52) e = 50 52 8 (5 (1)

n odd

This is obviously the difference of two Taylor expansion and thus we can write

) ” ”
holt,u) = % [tanh (€+ QZ_W) ~ tanh (£ ;ﬂ)]
3 0 t7

Similarly,

N — 52 L (a)" e (tann ()
e

t t
(1 + Hagg + H 3787 )

1

2
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or equivalently

—1 it it
hi(t,u) = Fy) [tanh (§ + %) + tanh (5 _ %)]
) t2 t4 t6

The functional equations for the trigonometric and hyperbolic functions imply
that

ho(t, ) 1 (1 —wu?) sin (%) cos (%)
olt,u) = —o=
21 cos ()" + u?sin (%)
T2 T4 3 T6 .5 8 7
—t— t t° —
+ 472 1674 + 6476 25671'8t
ha (£ ) 1 (u—ug)sin(%)2
1L, u = T 5
412 cog (%)2 + u? sin (%)2
T1 T3 9 T5 L4 T 6
—_— — t t — t 6.8
+ 47?2 1674 +647T6 25678 (6:8)

For fixed real u the functions hx(.,u),k = 0,1,2 are analytic in || < p, where
p = 2. In the subsequent definition, we consider real values of u, 0 < u < 1, here
hi,k =0,1,2 are also analytic with respect to ¢ on the positive real axis.

We define the functions Hy(d,u), k = 0..3, by

+oo
Ho(d,u) : = / efého(t,u)dt forO<u<1
0
+0o0 :
Hi(d,u) : = / e dhy(t,u)dt for 0 <u <1
0
+o0 ‘
Ho(d,u) : = / e dhy(t,u)dt for 0 < u < 1. (6.9)
0

OH1

We have Ha(d,u) = d—(d,

od

oM, B

u). Indeed

/(:oo Ge*%)t-hl(z&,u)dt
—/+Oo %(e—ﬁ) t - hy(tu)dt
0

ot

oo, 0
/ e d(hy(t,u) +t- =—hi(t,u))dt
0

400 .
/ e dhg(t,u)dt
0

The functions Hy(d,.) are real analytic; they can be continued analytically
to the interval —1 < u < 1 in the following way. Choose some positive number
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M and let I'y the path consisting of the segment from 0 to M+¢ and of the ray
t—t+ Mi,t > 0. Let I's the symmetric path that could also be obtained using
—M instead of M. Recalling (6.6), we can also define

{ _t it _t it
Ho(d,u) : = E[/me dtanh(f—i—%)dt—/rle dtanh(g_%)dt
+  po(d, u), (6.10)
where
1 > 3 g, 15 ¢ 315 ¢
pold,u) = 5 (u)d” — cogn(u)d” + g Te(u)d” — 75 s(u)d,

for —tanh(2M) < u < 1, where ¢ = artanh(u), because the singularities of tanh
are i(5 +nm), n integer. As M is arbitrary, this defines the analytic continuation of
Ho(d,.) for —1 < u < 1. Similarly, the real analytic continuations of Hy, k = 1,2
are defined.

In the sequel, we use the operator C,S also for functions.

Lemma 6.1. Consider the functions Hp(d,u),k = 0..2, defined in (6.9). Then,
for -1 <u<1

o | Fork=0,1,
+1\ _ +
Hi(d, T*) = —Hy(d,u) + pE(d, ), (6.11)

where T+%,T7% are defined in (2.13) and the functions ,uj(d, u),k = 0,1,
are analytic, beginning with d'°, resp d°

e 2. Fork =0,1, S(Hi) = p(d,u) , where the functions up(d,u),k = 0,1,
are analytic, beginning with d*', resp d'0 .
e 3. Fork = 0,1, C(Hr) = —Hr(d,u) + M\e(d,u) , where the functions

Ae(d,u), k = 0,1, are analytic, beginning with d*°, resp d°.

1
4. S(Ha) = §H0(d, u) + po(d,u), where po(d,u) is a analytic function,

beginnings with d'° .

UHO 1/.9 . HO .
. = -3 1) sinh(d)—— d here th t
5 S<T2(u)> 5(u® + 1) sinh( )7_2(u) + py(d,w), where the function
pa(d, u) is analytic, beginnings with d*' .

Proof. (1)- For k = 0 we replace u by 772 in (6.6). Using (6.10) and £(T2) =
&(u) + 1d we obtain for 0 < u <1

+o0 ;
Ho(d, TT2) = / e~ aho(t,TT2)dt = 4iz+ +u(d, TT2) (6.12)
0 T
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where

—+00 d it +00 d i+
I+=/ eztanh(£+—+l—)dt—/ efﬁtanh(g——+ ! )dt
0 2 27 0

2 " or
If we substitute ¢t 4+ 7id in the first part, ¢ — ¢ d in the second part we obtain
+oco—mid : Zt “+oco+mid ‘ Zt
I+:—/ e~ d tanh (§+—)dt+/ e~ d tanh ({——)dt .
—mid 27 id ™
Now, we apply Cauchy’s theorem
it

It = —/+OoeZ(tanh(f—l—;—i)—tanh(g—%))dt
0

—mid . it mid . it
+ /0 e~ d tanh(f%—%)dt—/o e_Etanh(é—%)dt :
Substituting ¢ = —i ds in the second part, ¢ = ids in the third part, we obtain
oo it it
It = /0 efﬁ(tanh (f—}—%) —tanh(&—%))dt

- 22'd/07r cos(s) tanh (€ + d%)ds.

With (6.12) this implies for 0 < u <1
Ho(d, TT) = —Ho(d,u) + pg (d, w) (6.13)

where

d [T s 1
pg (dyu) = Dy /0 cos(s) tanh (£ + d%)ds + u(d, TH2).

By real analytic continuatilon, this fornllula is valid for —1 < u < 1. We use the
same method for Ho(d, T~ 2), H1(d,T*2) and obtain for —1 < u < 1

HO(dv T_%) = _HO(d7 ’LL) + IU'O_ (d7 ’LL)
Hi(d, TH3) = —Ha(d,u) + pf(du)
Hi(d, T73) = —Ha(d,u) + py (d,u) (6.14)
where
o (dyu) = a 7rcos(s) tanh (£ — @)ds + po(d T_%)
Ho (@, - o 0 2 Hola,
ui(d,u) = N 7rSin(s) tanh (¢ + @)ds + pi(d T+%)
LA 472 J, 27 ’
_ d [T . ds _1
py (d,u) = 12 sin(s) tanh (€ — g)ds + p1(d, T 2)
1 1 s 3 s 45 .
pldu) = mud = ogm(u)d’ + ogs(u)d” — 7gmr(u)d
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(2)- Using the definition of the operator S in (2.13) and (1) of this Lemma, the
result is immediate.

(3)- The proof of (3) is similar to that of (2).
(4)- For k = 1, we differentiate (6.11) with respect to d. Because

ort: 1 e
ad _i§<1_(T ) )
then
d 1.9\ OH 1
Ha(dw) £ 5 (1 - (Tiz)2> (. T52) = ~Hy(dw) + dii (d,u)
implies
_ d 2 OH1 I+ /—
S(Ha) = —5¢((1—u) %) +d(u* (dow) — i (d,w)
d OH
= (- UQ)a—ul + p2(d, u)

1
= §H0(da u) + p2(d, w)

where po(d,u) is analytic function beginings with d'°.
(5)- Using (2.15) and (2), (3) of previous lemma , we obtain

S(%Ho) = S<%)C(Ho)+c<%>8(7{o)
= —%(u2 +1) sinh(d)% + pua(d, u),

where the function ju4(d, ) is analytic, beginnings with d''. This completes proof
of the Lemma.

In the sequel we consider ug €] — 1,0].
Proposition 6.2. We have

1. Uniformly for ug <u <1,

7 \"
Ho(d,u) ~ Z(n—l)! — ) T (u)d™ as d\, 0
= <27T>
Ha(d, ) i(n 1)v<i>"+1 (W)d" as d\, 0
1 ) ~ - ‘\5_ Tn
— 2
n odd
Ha(d S () @) as d 0 6.15
2(d,u) ~ z;n.(%) ma(w)d" as d N\, (6.15)
n odd
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ohi(d,u)| < Kd o for ug<u<1 (d>0)

Proof. The proof of this proposition is similar to that of [11].

With the aim of applying the results of [10], we consider S,_2(u) = Ry, (u),
where S, (u) is the remainder term in (5.38). Then R,(u),n is a sequence of
polynomials of degree at most n and

|Ralln = O((n = 5)!(2m) " log(n) )

Lemma 6.3. [10] If we define

r(tu): = ZR )' (teC, |t <mup <u<l)
n=10
or
r(t,u): = r(71'2,u) + (t —7T2)a(772,u) (t>n%uy <u<l)
R(d,u): = / e~ r(t,u)dt
0

then

1. r is continuously differentiable function on the set B of all (t,u) such that
u satisfies ug < u < 1 and t is a compler number and satisfies |t| < 7% or
t > w2. The restriction of m toug < u <1t < w2 is twice continuously
differentiable. for fized ug < u < 1 the function r(t,u) is analytic in |t| < 72

2. R(d,u) is continuous, partially differentiable with respect to u, has continuous
partial derivative and

u) ~ i Ry (u)d" as d\, 0 (6.16)

n=10
3. |R(d,u)| < Kd®, ‘%—E(d,u)‘ < Kd® for ug<u<1 (d>0)

The importance of our definition of R lies in a certain compatibility with
insertion of the functions 77, T~ for u. First let

i R (u)d" = i R, (TT)d"
n=10 n=11
Y Ry(wd = > Ry(T7)d"
n=10 n=11

We obtain a new sequences R; (u), R, (u) of polynomials of degree at most n. This
follows from the relation

1
p(T™"(d, = i 6.17
W) =3 50" (6.17)
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Theorem 4.2 implies

17w,

O<(n -5 12m)™ log(n)>
HR;(u)Hn = O<(n -5 12m)™ log(n)>

Therefore we can use the previous lemma for R (u), R,, (u) and obtain functions
RT(d,u), R™(d,u).

Theorem 6.4. There is a positive constant K independent of d,u such that

)

™

IRT(d,u) —R(d,TT)| < Kd’e 7, for(d>0,ug<u<1),

7\,2
IR™(d,u) —R(d,T7)| < Kd* @ for(d>0,up<u<l).

Proof. The proof is exactly the one of [10] .
Definition 6.5. Let D(d,u) be a function defined for 0 < d < dy and ug < u < 1.
We say that D(d,u) has property G if
o0 t
D(d,u) = / e dq(t,u)dt (0<d<dy, up<u<l)
0

is the Laplace transform of some function q(t,w) that has the following properties

1. q(t,u) is defined if ug < u < 1 and either t is complex and |t| < 7 or t is
real and t > 0,

2. q(t,u) is analytic in |t| < 72 for up < u < 1,

3. q(t,u) restricted to 0 < t < 72 ort > 7% is continuous and the lim,_, > q(t, u)
exists for every up < u <1,

4. there is a positve constant K such that
lg(d,u)] < Ket for t>0,(0 <d<dy, up<u<1)
Lemma 6.6. For ug < u <1, we have

1. If Hi(d,u),i =0,1,2 are the functions of (6.9) then

™

PH(d,w) = (1~ Y (d,u) + O((1 - u2)e—§), k=01

and

PHo(d,w) = (1 = o) + O((1 )T ),

where H;(d,u),i = 1,2,3 have property G.

31



2. Let k be a psitive integer. If D1, Dy have property G and their first terms in
the Taylor development at d = 0, begin with d* then

7\,2
Dy (d, u)Da(d, u) = d*D(d, u) + O(dke*T),

where D(d,u) has property G

3. Any function D(d,u) analytic in a neighborhood of d = 0 has property G if
D(0,u) =0 for all u,

1
4. If R(d,u) is defined by lemma 6.3 then ﬁR(d’ u) has property G

5. If D1, Dy have property G then so do D1 + Dy, D1 — Do and Dy - Do

6. If D(d,u) has property G then

|D(d,u)| < Kd (0<d< %) (6.18)

with some constant K > 0 independent of u.

Proof

1. For i =0,
(i)-If w > 0, we have

d*Ho = (1 - uz)/ e_%gg(t,u)dt (6.19)
0

where .
1 T
g2 (t, u) = m A /0 hO(S, u)ds dr

2
go(t,u) has a logarithmic singularity at ti(s) = (2k + 1)72 + d=225 for
5
(k > 0,s > 0). it is analytic in [t| < 72 and lim,_, > g2(¢, u) exists.
If we put
Ho(d,u) :/ e dgo(t,u)dt
0

where

~ gg(t,U), if ¢ < 772
gz(t7u) = 2 . 2
ga(m*,u), ift>nw

then Ho(d, ) has property G and

N

d?Ho(d,u) = (1 — u?)Ho(d, u) + (’)((1 — uz)e_%>.
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(ii)- For —ug < u < 1, where 0 < ug < 1,, we have

ooet®
Ho(d,u) = / e_%ho(t,u)dt+2772'2Res(e_gho(t,u),tk(s))
0 k>0

coet? L ) a2
= / e dho(t,u)dt—i—(’)((l—u)e d)
0

where g << % For 0 < u < g, this formula coincides with the formula

/ efého(t, u)dt
0

and extends it by real analytic continuation for —ug < u < 0.

This implis
ocoet? . 2
PHo(d,u) = (1 —u?) / e dgo(t,u)dt + O<(1 - u2)d2677)
0

we obtain

dPHo(d,u) — (1 —u)Ho(d,u) = (1 —UQ)Ae_%gg(t,u)dF

7\,2
+ O((l - u2)677),
where T is the path following the real line from infinity to (72, 0), then along
the vertical line from (72,0) to (712,712 tan(cp)) and finally along the line
y = tan(yp)z from <772, w2 tan(<p)) to infinity.

Since ga(.,u) is bounded on T, then

N

™

(dzﬂo(d, w) — (1 — u?)Ho(d, u)‘ < K(1—u?)e T,

where K is positive constant. Finally

w2

d*Ho(d,u) = (1 — u?)Ho(d, u) + (’)((1 — u2)e_7) for (0<up<u<l)

For i = 1 we can use the same method.

For ¢ = 2, we use the same method with

BHy = (1 - u2)/ e_ggg(t,u)dt (6.20)
0

= [ [ [ anisao i

33

where



2. We assume that D (d,u), Da(d,u) have property G and their first terms in
the Taylor development at d = 0 begin with d¥. Then

Dlz/ eiéf(t,u)dt

0

DQZ/ efég(t,u)dt
0

where f(t,u),g(t,u) are analytic in |t| < 72 and f(t,u) = O(tF~1), g(t,u) =
o(tF=1).

Di(d,u)Da(d,u) = /OOO e‘é(f * g)(t,u)dt (6.21)
Since

Wtu) = (f*g)(tu) = /0 T F(t gt — s u)ds

= /t flt—s,u)g(s,u)ds
0

t

= [ i gt —suds+ [ (- s, wgls,wyds.
t/2 t/2

For t < w2, the function h(t,u) is k times differentiable with respect to ¢ and

t t

h/(t7u) - f(t7u)g(07u) + f(07u)g(t7u) - f(§7u)g(§7u)

¢ ¢
+ f(s,u)g (t — s,u)ds + 't —s,u)g(s,u)ds
t/2 £/2

= f(s)g'(t — s)ds + f'(t —s,u)g(s,u)ds

t/2 t/2
t t
- f(§7u)g(§7u)
t t
Ot u) = [ fls)g® Dt —s)ds+ [ fFE( — s,u)g(s,u)ds
t/2 t/2
k_1
t t
— (n)(Z (k=1-n) Z
G G

Observe that h¥)(,u) is contninuous on [0, 27%[, it is analytic for |t| < 72
If we put

Rt ) h(t,u), if t < 72
u) =
’ (t—n2)k. ift>x?

then .
/ e~ ah® (t,u)dt,
0
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has property G and
o0 t o0 t~ a2
(D1 -D2)(d,u) = / e dh(t,u)dt = / e dh(t,u)dt + (’)(dke*T)
0 0
0o B 2
= dk/ eféh(k)(t,u)dt—i-(’)(dke*T)
0
,"2
- de(d,u)+(9<dke_T>

where D(d, u) has property G.

For 0 < u < 1, the proof of (3), (4), (5) and (6) is exactly the one of [10]. This
proof is valid for ug < u < 1.

Now we have a formal solution of the equation (2.2) and an asymptotic estimate
for its coefficients. With the results on the functions in the beginning of this section
we have enough information to be able to give a precise function which satisfies
the equation (2.2) with an exponentially small error as d — 0.

In Theorem 2.1 we found that (2.2) has a uniquely determined formal power
series solution

A(d,w) = U(d,u) + Q(d, u)G(d, u) (6.22)

where U, Q) are defined in (5.2), (5.6) and G is given by (5.38). This suggest that
we put

G(d,u) = (% +(B+ %))W#(ud;“) — (Bd+ %)HQ(d, w)
+ 6dHi(d,u) +d *R(d,u)
A(d,u) = U(d,u) + Q(d,u)G(d,u) (6.23)

for d > 0,up < u < 1, where H;(d,u),i = 0..2 are defined in (6.9) and R(d, u) is
the function corresponding to R,,, n = 8.10.. according to lemma 6.3. Using (1)
of proposition 6.2 and (2) of lemma 6.3, we obtain

G(d,u) ~ G(d,u) asd\,0 for everyup < u < 1. (6.24)
Consequently
A(d,u) ~ A(d,u) asd™\, 0 for everyuy < u < 1. (6.25)

Theorem 6.7. The function G(d,u) satisfies (5.10) except for an exponentially
small error. More precisely

2

< Kd*(1-u?)e™ 7,

Vi-S(Q18(9)) ~Wa-5%(G)~WaSC(G) - QWi G~ Q1 o (d,u,G)

uniformly for (up < u < 1,0 < d < dy,), where K is a constant independent of d
and u.
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In the proof of this Theorem the functions D;(d, u),i = 1.2.. have property G.
Proof. We set

Fd,u) = Vi-S (le(g)) —Wo-S2(G)~W5SC(G)— Q1 W1G—Q1 f <d,u,g>. (6.26)

Using (2), (4), (5) of Lemma 6.1, and (6.23), we obtain

1
S(G) = — (a1 sinh(d) — — (% sinh(d) — %))Ho + (1 — u?)d®Dy(d, u) + d2S(R)
2
where D (d,u) has property G and
[0 [0
apr = H+(B+7)
i = = +0d

d
This with lemma 6.1 imply
S(QiS(9)) = dDa(d,ufHo + (1 - w)d" Dy(d,u) +d2VAS(Qu)CS(R)
+ dPViC(Q1)S(R),
where Dy (d,u), D3(d, u) have property G. Because

C(@Q) = (1—-u’)d*(1+0(d%),
@) = (1-u*)d(ut0O(d?)),
Vi = 14+0(d®)

it is sufficient to apply Theorem 6.4, (4) of Lemma 6.6 for R and (1) of Lemma
6.6 for Hy we obtain

2
NS(QiS(G)) = dDs(duwHo + (1 —u*)d*Da(d,u) + O((1 - u?)d’e ™ )
where Dy(d,u) has property G. With (1) of lemma 6.6 this implies
2
V18(Q18(g)) = (1—u?)d*Ds(d,u) + o((1 - u2)d3e*7) (6.27)

Using the same method for the terms W - S%(G), W3SC(G) and Q1W1G, we
obtain

Wo8%0) = (1—u)d*Do(d,u) +O((1 —u)d'% ),

WeSC(G) = (1—ud)dDr(d,u)+O((1 —u?)d e T ),

V]

QWG = (1 —u?)d*Ds(d,u) + O<(1 - u2)dloe_%). (6.28)
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To study the term Q1 fa <d, u, g), we first treat G2 and G3 .

u2

G2(d,u) = afT—QQHg + BPHE 4+ B2dPHE + dARE - 2a1ﬁ1T—Z;HoH2 + 2a15%H0H1
+ 2d*2a1T—7“;HOR — 28,6dH, Hy — 2428, R Hs + 2d~'6RH, (6.29)
Using (1), (2) and (4) of the lemme 6.6 we obtain
G(d, u)? = d>Dy(d, u) + O(d26_§> (6.30)
With (2) of lemma 6.6 this implies
G(d,w)® = G(d, u)G(d, w)? = d®Dio(d, u) + o(d%*%). (6.31)
We can rewrite
f2 (d, u, Q) = yo(d,u) + y1(d, u)g2f171 (d, u, G%) + y2(d, u)d2g3f172 (d, u, 92) (6.32)
where f11, f12 and y;,% = 0,1,2 are analytic .

Lemma 6.8. Fori=1,2,
(o¢] 7‘,2
fri(d,u,G?) = / efgfl-(t,u)dt + O(d2e*7> for(d > 0,up <u <1) (6.33)
0

where f;(.,u) is analytic in |t| < 72 and continuous in [0, 7%[ and [72%, oo|

Proof. Using (6.30), we can rewrite
o 7r2
G*(d,u) = / e_gg(t,u)dt + O(d26_7>
0

where g(.,u) is analytic in [t| < 72, it is continuous in [0, 7%[ and [72, 00|, twice
differentiable in |t| < 72. We obtain

fri(d,u,G?) = an,i(d, u)G>"
n=1

where

fml-(d,u):/ efggpn,i(t,u)dt
0

and ¢y, ;(t,u) are entire functions.
Using the proof of theorem 5.1 from [1], we find

fald6?) = [T et ndr s (e ) (6.34)
0
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where the series

Z@nz*g )), g™ =gx..%xg,n times

n=1

is uniformly convergent to a function f;(t,u) analytic in |t| < 72 and continuous
in [0,72] and [r2, oo|, satisfies also

|fi(t,u)| < Kexp(Kt) for t>0,up <u<1.
Then
7‘,2
Fra(d,u, G%) = Vi(d, u) + O(d2e’7> for(d > 0,up < u < 1),

where Y;(d,u),i = 1,2 have property G.
This lemma with (6.32) and (2) of lemma 6.6 imply

2

O1fo <d,u,g> = d%(1 — u?)Dio(d, u) + O(d6(1 - u2)e*%> (6.35)

Combining (6.27), (6.28) and (6.35), we find

Fldu) = d*(1 —u*)D(d,u) + K(d,u)
where D(d, u) has property G and
a2
|K(d,u)| < Kd*(1 —w?)de @ for (0<d<dp, up<u<1l). (6.36)

Hence o
Fldu) = (1-— uﬂ)dﬂ/ e aq(t,u)dt + K(d, )
0

where q(t,u) is analytic in |t| < 72, it is continuous on [0, 7%[ and |72, cc[, has a
limit as t — 72 for every ug < v < 1 and satisfies

lq(t,u)] < K e, (6.37)

with a constant K independent of u. If q(t,u) = > 2 ; gn(u)t" is the power series
of q(t,u) near t = 0, Watson’s lemma with (6.36) imply

Zn'l—u (uw)d™3  as d\, 0 for every ug <u <1 .

On the other hand because of its definition
Fdu) ~ Vi-S(QiS(G)) — W -S4(G) — WaSC(G)
— Q1W1Q—Q1f2<d,u,g>=0+0d+--- ,
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since the formal series G satisfies (5.10). This means that all ¢, = 0. Thus we
obtain for up < u < 1 with (6.37)

(1—u2)d2/ e~ a|q(t,u)|dt < (1—u2)d2/ e~ aKeKidt
0 w2
,"2
< K(l—u?)dPe™ 7 (0<d<dp)

and thus ,
|F(d,w)| < K(1—u?)d®e™ T (0<d<dp).

We have proved that

Vi -S<Q18(9)> — Wa-S8*G) — W3SC(G) — QiW1G — Q1 f2 <d,U,Q>'

2

< K —-u?)dPe T,

for 0 < d < dp, up < u < 1,ie. Q(d,u) is a quasi-solution of (5.10) on this interval.
This implies that the function A(d, u) defined in (6.23) is a quasi-solution of (2.2),

more precisely
T O
‘\/T AT + \/;A@T ) — 2A(du) — f (e, A(d. u)
< Kde T, (6.38)

7 Distance Between Points of Manifolds

Clearly, if ¢-(t) is an exact solution of the difference equation (1.1), then (g-(t), p<(t)),
where p.(t) = 1(g=(t) — ¢-(t — €)), is an exact solution of the the system (1.2). In
the introduction, we have mentioned that the stable manifold W of this system
at A = (0,0) is parametrized by ¢t — (¢ (¢),p (t)) and the unstable manifold W,
of (1.2) at B = (2m,0) is parametrized by ¢t — (¢ (¢),pZ (t)), where (¢z (¢),p- (t))
is an exact solution of (1.2) and ¢t (t) = 27 — ¢Z (—t),pF (t) = pZ (—t + ¢).

In the previous section, we have constructed a quasi-solution A(d, u) for equa-
tion (2.2), i.e. it satisfies this equation with an exponentially small error. We
denote by Wy, W,, the manifolds close to W respectively W, parametrized by ¢ —

(§-(t), o (t)) respectively ¢ — (£1(2), o+ (175)), where £_(t) = /1 — u(t)214(d, u(t))+
qo0d(t) and &4 (t) = 2m — £ (1), o—(t) = g(ﬁ—(t) —E(t—e)), p+(t) = g(@r(t) -

E(t— s)) Here and in the sequel, we often omit to indicate the dependence with
respect to € for the sake of simplicity of notation.

We will first show that the vertical distance between some point (g1, p1) of the
stable manifold W, and the manifold W, is exponentially small. For this purpose,
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we consider the sequence Z,, = (g, pn) on the stable manifold W, defined by

Zn1 = <qn+1> = ¢<qn> = < n +€],9n+1 ), forn=1,2,3,.... (7.1)
DPn+1 Dn pn + €sin(qyp)

There is a sequence t, such that

E-(tn) = qn = \/1 — u(tn)” A(d, u(tn)) + qoaltn)- (7.2)

The vertical projection of the point (gy,,p,) on the manifold W, is the point
(Gn, bn), where b, = o_(tn) = g(qn) == p— (5:1(%)) forn=1,2,3,... . We denote
by A.(n) the vertical distance between the point (g,,p,) and the manifold Wi.
Then

Ae(n) = pp — by. (7.3)

For the ¢-image of the point (g, b,) on W, we find

() = o) = ()

( & (tn) + €l~)n+1 )
et (5—(tn) — & (tn — 5)) + esin (5—@"))
_ < 26 (tn) — & (tn —e) + €2 sin. (&-(tn)) >

e (& (tn) — & (tn —€)) +esin (E-(tn))

As the function £_ satisfies equation (1.1) except for an exponentially small error
because of (6.38) and (7.2), we have

(7.4)

Gnt1 = & (tn+e)+enti(e)

1
bn+1 = - (tn + 5) + gen+1(€)7 (75)

2
where |e,t1(e)] < Ksexp(—ﬂ—) with some K independent of ¢ and n. Since
€

9(5—(% + 8)) = p_(ty, +¢), we have

Bn+1 = g(f_(tn + 8)) + §6n+1(€)
= (1 — (@) + Zennr (@ (76)

On the other hand, using (7.3) and the definition of ¢, we obtain
<(jn+1> _ ¢< dn ) _ <qn + Epn + 52 sin(qn) — 6A€(n))
b1 Pn — De(n) Pn +esin(gn) — De(n) ’

- (?:1_—1&;(%))' (7.7)
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With (7.3) and (7.6) this implies

Ne(n+1) = ppg1 — b1 = pn+1 — 9(qnt1)
= Aa(n) + Bn-{-l - g(fjn-i-l + 5Aa(”)>

= 2en) + (1 — enin(©)) = 9 (s + Deln)) + Zenia o)

Using Taylor expansion we obtain

1
Acn+1) = (1—eg'(0nt1))De(n) + g(l — €9 (Ont1))entr(e)  (78)
where Gp+1 — ent1(8) < Onp1 < Gni1 +elc(n).
Now g is e-close to the curve p = —2sin(g/2), hence

¢ ) = —cos (") 1 0(a)

Thus given any positive p < m, there is a positive constant ¢ such that for all
q1 < i, all n and sufficiently small d,

1—eg (Ops1) > 1+ec .

It is now convenient to write (7.8) in the form

Aeln) = (1 - 9/ (nsn) " Beln+1) — Zenia (0

As A (n) — 0 as n — oo, this implies that that there is a positive constant K
such that

Consequently
1 72
Ne(n) = O<E exp ( - ?)> (7.9)

In particular

aisto((anp0). W) = 0 (Lo (- ) ) (710)

where (g1, p1) is any point on the stable manifold W, provided ¢; < p < 7; here
dist, denotes the vertical distance.

The estimate (7.10) can be extended to any p < 27 and a starting point (q1,p1)
with ¢ < p in the following way. The relation (7.8) remains valid, only now we
just have the existence of some constant ¢ > 0 such that 1 —e¢’(6,41) > 1 —ec
for all n. As system (1.2) can be regarded as a one-step numerical method for the
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system (1.3) of differential equations and the starting point is at a distance O(e)
of its solution (qo(t), g;(t)), results on the convergence of one-step methods can be
applied and yield that gx = qo(t1 + (K — 1)) + O(e), where go(t1) = ¢1, uniformly
for integer k, 1 < k < L/e, where L is any positive constant. We choose L such
qo(t1 + L) < /2 < . Repeated application of (7.8) now gives

(L] e
Ba(n) = De(n+ L) < Ke= 3 (1—ec) ™ < Kceg =
k=0

To the quantity Ac(n+ [L/e]), inequality (7.9) can be applied, because ;4 (1, /] <
/2 < mw. Thus (7.9) and hence also (7.10) remain valid also uniformly for 0 <
q1 < p, provided p < 27r.

The analogous reasoning applies to the vertical distance of a point (g1,p1) on
the unstable manifold W, from the manifold W, and yields

aista(@150) W) = O Lexp (- ”—)) (711)

Another method to obtain (7.11) consists in using (7.10) and symmetry.

_ Now we will estimate the vertical distance between the two manifolds Wy and
W,. As the quasi-solution A(d,u) is defined for —1 < u =: tanh(¢) < 1, we can
define

AT (d,u) = —A(d,—u),
&i(t) = V1I—u(t)2AY(d,u(t)) + 2 — goa(—t) = 21 — £ (1), (7.12)
Dot) = €0(8) —€_(£) for — g ct< % . (7.13)

Using (7.12) and the definition of £_(t) we find

Do) = —\/1—u(t) (A(du(®)) + A(d, ~u(t)) ) — goalt) — doa(~1) + 27

= 1=t (A(du(t) + A(d,—u(t)) ) (7.14)

With (5.5) and (6.23) this implies
D.(t) = —\/1—u(t)’Q(d,u) [al% <Ho(d, u) — Ho(d, —u)) —
B (Hald, w) + Ha(d, —u)) + 8d(H(d, ) + Ha (d, —u))]

where Q(d, ) is defined in (5.6), a1, 51 are defind in (6.27) and H;(d, u) are defined
in (6.9) and can be continued analytically to —1 < u <1 as in (6.10).
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Using the fact that the functions who(s,u), hi(s,u), ha(s,u) in (6.9) are odd,
we can apply the residue theorem and obtain for —1 < w < 1 that

Hi(d,u) + H;i(d, —u) = Z 27i Res (efghi(s,u), sk(t))

Im(sg(t))<0

- ¥ QmRes(efihi(s,u),sk(t)), i=0,1,2,
Im(sg(t))>0

where sy (t) = 72 & @ i+ 2kn? for k > 0. We obtain

(k+1)7%  2nti

_s 1 - +
Res(e dho(s,u), sk(t)> = 3¢ d e €
o (k+ )% 2nti
_s 1 - +
Res(e dhy(s,u), sk(t)> = iye d e ¢
, (k+1)7%  2nti
_s o 1 . - d +
Res(e dhg(s,u),sk(t)> = :I:M(Wez:Fth)e e €
and hence
1 7T2 =2
D.(t) = ﬁqﬁl(t,s) exp (— E) + O(e_T). (7.15)
where

. dt dt . (27t
o1(t,e) = 2na [smh (;) +t/ cosh (;)] sin <T)
g’ 2mt
+ {7} cos ( — (7.16)
cosh (%) ( € >
As a consequence of (7.15) and (7.12), we obtain immediately that

E0)=m+ 0> 2™/ | (7.17)

Now, let us take a point (£4(t), ¢4 (t)) on the manifold W,. We suppose that
the point (£_(t1), p—(t1)) is its vertical projection on the manifold W,. We will
evaluate the vertical distance between these two points

dist (1) = o4 () — - (t1) = @4 (8) — (€4 (1)), (7.18)
where g(z) = o_ (g:l(x)). Thus by (7.13)
dist, (t) = ¢+ (t) — g(§-(t) + D<(1)). (7.19)
Using Taylor expansion, we find
dist, (t) = ¢4 (1) — g(6-(1)) — D(t)g' (n(t)), (7.20)
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where {_(t) < n(t) < &-(t) + D.(t). Here

n(t) = qoa(t) + O(d), hence (7.21)
J(n() = —cos (t)) — _tanh (d )+o@.  (122)
As g(&-(t)) = ¢—(t), this yields
distu(t) = 4(t) — o (1) = Dol)g ((1).
= (6 — &4t 2) — 2 (1) —€-(t—2)) — Do(t)g (n(1),
= 2(Do(t) - Delt — ) ~ Do)/ ((1). (7.23)

Now formula (7.15) applies and we obtain

D.(t—2) — Da(t)—i-éqﬁg(t,a)exp(—

a3,
~__
+
Q
N
@
2t
~__
3
B
st

where

+ 7a [mm@t))] cos <@> . (7.25)

With (7.23) and (7.22) this implies

2

distv(t):%[—@(t,e)+tanh<%)¢1(t,e)} d+0<é %). (7.26)

W

4
Consequently, for —3 <t< -

w

4 27t 2 1 _ =2
dist,(t) = nga cosh(t) sin <%>6_T + O(Ee_?> as €\, 0. (7.27)

Combining this result with (7.10) and (7.11), we finally obtain our main result
theorem 1.1, because £4(t) = qo(t) + O(g?) uniformly with respect to t on any
finite interval.

References

[1] M. Canalis-Durand, J. P. Ramis, R. Schifke, Y. Sibuya, Gevrey solutions of
singularly perturbed differential equations, J. reine. Angew. Math. 518 (2000),
95-129.

44



2]

3]

[4]

[5]

[10]

[11]

[12]

W. Eckhaus, Asymptotic Analysis of Singular perturbations, North-Holland,
Amsterdam (1979).

A. Fruchard, R. Schifke, Exponentially small splitting of separatrices for dif-
ference equations with small step size, Journal of Dynamical and Control
Systems 2 (1996), no. 2, 193-238.

V. G. Gelfreich, A proof of the exponentially small transversality of the sepa-
ratrices for the standard map.Comm. Math. Phys. 201 (1999), no. 1, 155-216.

V. G. Gelfreich, V. F. Lazutkin, and N. V. Svanidze. A refined formula for
the separatrix splitting for the standard map.Physica D 71(2), 82-101 (1994)

V. Hakim, K. Mallick, Exponentially small splitting of separatrices, matching
in the complex plan and Borel summation, Nonlinearity 6 (1993) 57-70.

V.F. Lazutkin, Splitting of separatrices for the Chirikov’s standard map.
VINITI no. 6372/84, (1984), (Russian)

V.F. Lazutkin, Exponential Splitting of separatrices and an analytical inte-
gral for the semistandard map. Preprint, Université Paris VII, (1991) cf. MR
94a:58108.

V.F. Lazutkin, I.G. Schachmannski and M.B. Tabanov, Splitting of separatri-
ces for standard and semistandard mappings, Physica D, 40 235-248, (1989).

R. Schifke, H. Volkmer. Asymptotic analysis of the equichordal problem, J.
reine . Angew. Math. 425 (1992), 9-60.

H. Sellama, On the distance between separatrices for the dis-
cretized logistic differential equation, submitted. http://hal.archives-
ouvertes.fr/docs/00/28/75/86 /PDF /article-logistic.pdf.

Suris, Yuri B. On the complex separatrices of some standard-like maps. Non-
linearity 7 (1994), no. 4, 1225-1236.

45



