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Abstract

This paper is concerned with the switching game of a one-dimensional backward

stochastic differential equation (BSDE). The associated Bellman-Isaacs equation is a

system of matrix-valued BSDEs living in a special unbounded convex domain with

reflection on the boundary along an oblique direction. In this paper, we show the

existence of an adapted solution to this system of BSDEs with oblique reflection by

the penalization method, the monotone convergence, and the a priori estimates.
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1 Introduction

In this paper, we study the system of reflected BSDEs along an oblique direction

arising naturally from the problem of switching game of a scalar-valued BSDE. Let us

first describe precisely the switching game problem by introducing some notations and

hypotheses.

Let us fix a nonnegative real number T > 0. First of all, W = {Wt}t≥0 is a

standard Brownian motion with values in Rd defined on some complete probability

space (Ω,F , P ). {Ft}t≥0 is the natural filtration of the Brownian motionW augmented

by the P -null sets of F . All the measurability notions will refer to this filtration. In

particular, the sigma-field of predictable subsets of [0, T ] × Ω is denoted by P. Define

Λ := {1, · · · ,m1} and Π := {1, · · · ,m2}.

We denote by S2(Rm1×m2) or simply by S2 the set of Rm1×m2-valued, adapted and

càdlàg processes {Y (t)}t∈[0,T ] such that

||Y ||S2 := E

[
sup

t∈[0,T ]
|Y (t)|2

]1/2

< +∞.

(S2, || · ||S2) is then a Banach space.

We denote by M2((Rm1×m2)d) or simply by M2 the set of (equivalent classes of)

predictable processes {Z(t)}t∈[0,T ] with values in (Rm1×m2)d such that

||Z||M2 := E

[∫ T

0
|Z(s)|2ds

]1/2
< +∞.

M2 is then a Banach space endowed with this norm.

We define also

N2(Rm1×m2) : = {K = (Kij) ∈ S2 : for any (i, j) ∈ Λ×Π,Kij(0) = 0,

and Kij(·) is increasing },

which is abbreviated as N2. (N2, || · ||S2) is then a Banach space.

Let ψ be a random function ψ : [0, T ]×Ω×R×Rd×Λ×Π → R whose component

ψ(·, i, j) is measurable with respect to P ⊗ B(R)⊗ B(Rd) for each pair (i, j) ∈ Λ× Π,

and satisfies the following Lipschitz condition.

Hypothesis 1.1. (i) The generator ψ(·, 0, 0) := (ψ(·, 0, 0, i, j))i∈Λ,j∈Π ∈M2.

(ii) There exists a constant C > 0 such that, for each (t, y, y′, z, z′, i, j) ∈ [0, T ] ×

R×R×Rd ×Rd × Λ×Π,

|ψ(t, y, z, i, j) − ψ(t, y′, z′, i, j)| ≤ C(|y − y′|+ |z − z′|), a.s.

The functions k and l are defined on Λ × Λ and Π × Π, respectively; their values

are both positive. We make the following assumption on the functions k and l, which

is standard in the literature.
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Hypothesis 1.2. (i) For i ∈ Λ, k(i, i) = 0. For (i, i′) ∈ Λ × Λ such that i 6= i′,

k(i, i′) > 0.

(ii) For j ∈ Π, l(j, j) = 0. For (j, j′) ∈ Π×Π such that j 6= j′, l(j, j′) > 0.

(iii) For any (i, i′, i′′) ∈ Λ× Λ× Λ such that i 6= i′ and i′ 6= i′′,

k(i, i′) + k(i′, i′′) > k(i, i′′).

(iv) For any (j, j′, j′′) ∈ Π×Π×Π such that j 6= j′ and j′ 6= j′′,

l(j, j′) + l(j′, j′′) > l(j, j′′).

Definition 1.1. An admissible switching process for Player I ( resp. II ) on [t, T ] with

initial value a0 ∈ Λ ( resp. b0 ∈ Π ) is defined to be a pair of sequences {ai, θi}i≥0

(resp. {bi, τi}i≥0 ), such that each θi ( resp. τi ) is an F.-stopping time with

t = θ0 ≤ θ1 ≤ · · · ≤ T, a.s.

( resp. t = τ0 ≤ τ1 ≤ · · · ≤ T, a.s. ),

each ai ( resp. bi ) is Fθi ( resp. Fτi ) measurable with values in Λ ( resp. Π ), and

there is an integer-valued random variable N(·) satisfying

θN = T (resp. τN = T ) P -a.s. and N ∈ L2(FT ).

Denote by Aa[t, t̂] ( resp. Bb[t, t̂] ) the totality of the admissible switchings for Player

I (resp. II) on [t, t̂] with the initial value a ∈ Λ ( resp. b ∈ Π ). Define the following

abbreviations for t ∈ [0, T ]:

Aa
t := Aa[t, T ], a ∈ Λ; At :=

⋃

a∈Λ

Aa
t

and

Bb
t := Bb[t, T ], b ∈ Π; Bt :=

⋃

b∈Π

Bb
t .

We shall identify {ai, θi}i≥0 ∈ Aa[t, T ] with

a(s) = a0χ{θ0}(s) +

N∑

i=1

ai−1χ(θi−1,θi](s), s ∈ [t, T ]. (1.1)

For any a(·) ∈ At, we define the associated (cost) process Aa(·) on [t, T ] as follows:

Aa(·)(s) =

N−1∑

j=1

k(aj−1, aj)χ[θj ,T ](s), s ∈ [t, T ]. (1.2)

Obviously, Aa(·)(·) is a càdlàg process. In an identical way, we define Bb(·) on [t, T ] for

b(·) ∈ Bt.
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Definition 1.2. For t ∈ [0, T ] and a ∈ Λ( resp. b ∈ Π ), an admissible strategy αa,t (

resp. βb,t ) with the initial value a ∈ Λ (resp. b ∈ Π) for player I (resp. II) on [t, T ]

is a mapping αa,t : ∪b∈BB
b[t, T ] → Aa[t, T ] (resp. βb,t : ∪a∈AA

a[t, T ] → Bb[t, T ]) such

that

b(s) = b̂(s) (resp. a(s) = â(s)) a.s. ∀s ∈ [t, t̂],

implies

αa,t[b(·)](s) = αa,t [̂b(·)](s) (resp. βb,t[a(·)](s) = βb,t[â(·)](s))

for s ∈ [t, t̂].

We denote by Γa
t (resp. ∆b

t) all admissible strategies with the initial value a ∈ Λ

(resp. b ∈ Π) for player I (resp. II) on [t, T ] . We adopt the convention that

Aa
T = {a}, Γa

T = {a}

and

Bb
T = {b}, ∆b

T = {b}.

Let ξ be an Rm1×m2-valued FT -measurable random variable. Now we are in position

to introduce the switched BSDEs for both players. For t ∈ [0, T ], a(·) ∈ At and

b(·) ∈ Bt, consider the following BSDE:

U(s) = ξa(T )b(T ) +
(
Aa(·)(T )−Aa(·)(s)

)
−

(
Bb(·)(T )−B(·)(s)

)

+

∫ T

s
ψ(r, U(r), V (r), a(r), b(r)) dr −

∫ T

s
V (r) dW (r), s ∈ [t, T ].

(1.3)

This is a (slightly) generalized BSDE: it is equivalent to the following standard BSDE:

Ū(s) = ξa(T )b(T ) +Aa(·)(T )−Bb(·)(T )

+

∫ T

s
ψ(r, Ū (r)−Aa(·)(r) +Bb(·)(r), V̄ (r), a(r)) dr

−

∫ T

s
V̄ (r) dW (r), s ∈ [t, T ]

(1.4)

via the simple change of variable:

Ū(s) = U(s) +Aa(·)(s)−Bb(·)(s), V̄ (s) = V (s).

Hence, for each pair (a(·), b(·)) ∈ At × Bt, BSDE (1.3) has a unique solution in

S2 × M2, which will be denoted by
(
Ua(·),b(·), V a(·),b(·)

)
. We note that U is only a

càdlàg process.

The upper and lower switching game problems with the initial scheme (i, j) ∈ Λ×Π

are defined as follows:

ess sup
β∈∆j

t

ess inf
a(·)∈Ai

t

Ua(·),β(a(·))(t)

and

ess inf
α∈Γi

t

ess sup
b(·)∈Bj

t

Uα(b(·)),b(·)(t),

4



respectively. If

Y ij(t) := ess sup
β∈∆j

t

ess inf
a(·)∈Ai

t

Ua(·),β(a(·))(t) = ess inf
α∈Γi

t

ess sup
b(·)∈Bj

t

Uα(b(·)),b(·)(t)

for some (i, j) ∈ Λ×Π, we say that the switching game with the initial scheme (i, j) ∈

Λ×Π has a value Y ij(t).

The above switching game (see, e.g. [17]) is associated to the following Bellman-

Isaacs equation, which is a new type of reflected backward stochastic differential equa-

tion (RBSDE for short) with oblique reflection: for (i, j) ∈ Λ×Π and t ∈ [0, T ],




Yij(t) = ξij +

∫ T

t
ψ(s, Yij(s), Zij(s), i, j) ds

−

∫ T

t
dKij(s) +

∫ T

t
dLij(s)−

∫ T

t
Zij(s) dW (s),

Yij(t) ≤ min
i′ 6=i

{Yi′j(t) + k(i, i′)},

Yij(t) ≥ max
j′ 6=j

{Yij′(t)− l(j, j′)},

∫ T

0

(
Yij(s)−min

i′ 6=i
{Yi′j(s) + k(i, i′)}

)
dKij(s) = 0,

∫ T

0

(
Yij(s)−max

j′ 6=j
{Yij′(s)− l(j, j′)}

)
dLij(s) = 0.

(1.5)

Here, the unknowns are the processes {Y (t)}t∈[0,T ], {Z(t)}t∈[0,T ], {K(t)}t∈[0,T ], and

{L(t)}t∈[0,T ], which are required to be adapted with respect to the natural completed

filtration of the Brownian motionW . Moreover, K and L are componentwisely increas-

ing processes. The last two relations in (1.5) are called the upper and lower minimal

boundary conditions.

One-dimensional RBSDEs were first studied by El Karoui et al. [7] in the case of

one obstacle, and then by Cvitanic and Karatzas [4] in the case of two obstacles. In

both papers, it is recognized that one-dimensional reflected BSDEs, with one obstacle

and with two obstacles, are generalizations of optimal stopping and Dynkin games,

respectively. Nowadays, the literature on one-dimensional reflected BSDEs is very

rich. The reader is referred to Peng and Xu [14] and Buckdahn and Li [2], among

others, for the one-dimensional reflected BSDEs with two obstacles.

Multi-dimensional RBSDEs were studied by Gegout-Petit and Pardoux [8], but

their BSDE is reflected on the boundary of a convex domain along the inward normal

direction, and their method depends heavily on the properties of this inward normal

reflection (see (1)-(3) in [8]). We note that in a very special case (e.g., ψ is independent

of z), Ramasubramanian [16] studied a BSDE in an orthant with oblique reflection.

Multi-dimensional BSDEs reflected along an oblique direction rather than a normal

direction, still remains to be open in general, even in a convex domain, let alone in a

nonconvex domain. Note that there are some papers dealing with SDEs with oblique

reflection (see, e.g. [12, 5]).

In our previous work [11], we studied the optimal switching problem for

one-dimensional BSDEs, and the associated following type of obliquely reflected
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multi-dimensional BSDEs: for i ∈ Λ,




Yi(t) = ξi +

∫ T

t
ψ(s, Yi(s), Zi(s), i) ds

−

∫ T

t
dKi(s)−

∫ T

t
Zi(s) dW (s),

Yi(t) ≤ min
i′ 6=i

{Yi′(t) + k(i, i′)},

∫ T

0

(
Yi(s)−min

i′ 6=i
{Yi′(s) + k(i, i′)}

)
dKi(s) = 0.

(1.6)

It should be added that a less general form of RBSDE (1.6) (where the generator ψ

does not depend on (y, z)) is suggested by [3]. But they did not discuss the existence

and uniqueness of solution, which is considered to be difficult. See Remark 3 in [3].

Recently, Tang, Zhong and Koo [19] discussed the mixed switching and stopping

problem for one-dimensional BSDEs, and obtained the existence and uniqueness result

for the associated following type of multi-dimensional obliquely reflected BSDEs: for

i ∈ Λ and t ∈ [0, T ],




Yi(t) = ξi +

∫ T

t
ψ(s, Yi(s), Zi(s), i) ds

−

∫ T

t
dKi(s) +

∫ T

t
dLi(s)−

∫ T

t
Zi(s) dW (s),

Yi(t) ≤ min
i′ 6=i

{Yi′(t) + k(i, i′)}, Yi(t) ≥ S(t),

∫ T

0

(
Yi(s)−min

i′ 6=i
{Yi′(s) + k(i, i′)}

)
dKi(s) = 0,

∫ T

0
(Yi(t)− S(t)) dLi(t) = 0.

(1.7)

Here, S is a given {Ft, 0 ≤ t ≤ T}-adapted process with some suitable regularity.

RBSDE (1.5) is more complicated than that of RBSDE (1.6) arising from the op-

timal switching problem for BSDEs. For each fixed j ∈ Π, if we do not impose the

following constraint:

Yij(t) ≥ max
j′ 6=j

{Yij′(t)− l(j, j′)}, t ∈ [0, T ], (1.8)

and its related boundary condition:
∫ T

0

(
Yij(s)−max

j′ 6=j
{Yij′(s)− l(j, j′)}

)
dLij(s) = 0, (1.9)

then we can take L ≡ 0, and RBSDE (1.5) is reduced to RBSDE (1.6).

RBSDE (1.5) evolves in the closure Q of domain Q:

Q :=

{
(yij) ∈ Rm1×m2 : yij < yi′j + k(i, i′)

for any i, i′ ∈ Λ such that i′ 6= i and j ∈ Π;

yij > yij′ − l(j, j′)

for any j, j′ ∈ Π such that j′ 6= j and i ∈ Λ

}
,

(1.10)
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which is convex and unbounded. The boundary ∂Q of domain Q consists of the bound-

aries ∂D−
ij and ∂D+

ij , (i, j) ∈ Λ×Π, with

D−
ij := {(yij) ∈ Rm1×m2 : yij < yi′j + k(i, i′), for any i′ ∈ Λ such that i′ 6= i}

and

D+
ij := {(yij) ∈ Rm1×m2 : yij > yij′ − l(j, j′), for any j′ ∈ Π such that j′ 6= j}

for (i, j) ∈ Λ×Π. That is,

∂Q =
m1

∪
i=1

m2

∪
j=1

(
∂D−

ij ∪ ∂D
+
ij

)
.

In the interior of Q, each equation in (1.5) is independent of others. On the boundary,

say ∂D−
ij (resp. ∂D+

ij), the (i, j)-th equation is switched to another one (i′, j) (resp.

(i, j′)), and the solution is reflected along the oblique direction −eij (resp. eij), which

is the negative (resp. positive) direction of the (i, j)-th coordinate axis.

The existence of solution for RBSDE (1.5) constitutes a main contribution of this

paper. We prove the existence by a penalization method. Proving the existence of solu-

tion of RBSDE (1.5) presents new difficulties when one follows our previous work [11]

using the penalization method. In fact, in order to establish the a priori estimates

which are essential for the proof of the existence, we have to use the representation of

solutions to obliquely reflected BSDEs proved in [11], and we have to impose the ad-

ditional technical condition that the generator ψ is uniformly bounded. The question

of uniqueness is still an open problem.

The rest of the paper is organized as follows: in Section 2, we prove the existence

of solution for RBSDE (1.5) by a penalization method. The last section is devoted to

discussions on some possible extensions.

2 Existence of an adapted solution to the asso-

ciated RBSDE

In this section, we state and prove our existence result for RBSDE (1.5).

We need the following additional technical assumption.

Hypothesis 2.1. The generator ψ is uniformly bounded with respect to all its argu-

ments.

we shall use
∣∣∣ψ

∣∣∣
∞

to denote the least upper bound of |ψ|.

Definition 2.1. An adapted solution to RBSDE (1.5) is defined to be a set (Y,Z,K,L) =

{Y (t), Z(t),K(t), L(t)}t∈[0,T ] of predictable processes with values in (Rm1×m2)
1+d+1+1

such that P -a.s., t 7→ Y (t) is continuous, t 7→ K(t) and t 7→ L(t) are continu-

ous and componentwisely increasing, t 7→ Z(t) belongs to L2(0, T ; (Rm1×m2)d), t 7→

ψ(t, Yij(t), Zij(t), i, j) belongs to L1(0, T ;Rm1×m2) and P -a.s., RBSDE (1.5) holds for

each t ∈ [0, T ].
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The main result of this paper is the following existence of an adapted solution to

RBSDE (1.5).

Theorem 2.1. Let Hypotheses 1.1, 1.2 and 2.1 be satisfied. Assume that

ξ ∈ L2(Ω,FT , P ;R
m1×m2)

takes values in Q̄. Then RBSDE (1.5) has an adapted solution (Y,Z,K,L) in S2 ×

M2 × (N2)2.

We first sketch the proof.

Sketch of the Proof: The proof is divided into five subsections. In Subsection 3.1,

we introduce the penalized RBSDEs whose existence of solution follows from a slightly

generalized result in [11]. In Subsection 3.2, we give the (implicit) representation of

these solutions. In Subsection 3.3, we state a fundamental lemma and some (uniform)

a priori estimates for these solutions. In Subsection 3.4, we prove the (monotone)

convergence of these solutions. And the last subsection is devoted to checking out the

boundary conditions.

2.1 The penalized RBSDEs

We shall use a penalization method to construct a solution to RBSDE (1.5). We observe

(as mentioned in the introduction) that RBSDE (1.5) consists of the m2 systems of

m1-dimensional obliquely reflected BSDEs of the form like (1.6):





Yij(t) = ξij +

∫ T

t
ψ(s, Yij(s), Zij(s), i, j) ds

−

∫ T

t
dKij(s) +

∫ T

t
dLij(s)−

∫ T

t
Zij(s) dW (s),

Yij(t) ≤ min
i′ 6=i

{Yi′j(t) + k(i, i′)},

∫ T

0

(
Yij(s)−min

i′ 6=i
{Yi′j(s) + k(i, i′)}

)
dKij(s) = 0; i ∈ Λ,

(2.1)

with the unknown processes being

(Yij, Zij ,Kij ; i = 1, 2, . . . ,m1)

(the process (L1j , . . . , Lm1j) is taken to be previously given) for j = 1, 2, . . . ,m2. These

m2 systems have been well studied by Hu and Tang [11]. In RBSDE (1.5), they are

coupled together by the processes (L1j , . . . , Lm1j) through the constraint

Yij(t) ≥ max
j′ 6=j

{Yij′(t)− l(j, j′)}, (i, j) ∈ Λ×Π (2.2)

and the minimal boundary condition:

∫ T

0

(
Yij(s)−max

j′ 6=j
{Yij′(s)− l(j, j′)}

)
dLij(s) = 0, (i, j) ∈ Λ×Π. (2.3)
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Therefore, it is natural to consider the following penalized system of RBSDEs (the

unknown processes are (Yij, Zij ,Kij ; i ∈ Λ, j ∈ Π):





Yij(t) = ξij +

∫ T

t
ψ(s, Yij(s), Zij(s), i, j) ds

+n

m2∑

j′=1

∫ T

t

(
Yij(s)− Yij′(s) + l(j, j′)

)−
ds

−

∫ T

t
dKij(s)−

∫ T

t
Zij(s) dW (s);

Yij(t) ≤ min
i′ 6=i

{Yi′j(t) + k(i, i′)};

∫ T

0

(
Yij(s)−min

i′ 6=i
{Yi′j(s) + k(i, i′)}

)
dKij(s) = 0; (i, j) ∈ Λ×Π.

(2.4)

Note that when j′ = j, we have, in view of Hypothesis 1.2 (ii),

(Yij(s)− Yij′(s) + l(j, j′))− = 0. (2.5)

Note also that for any integer n, the ij-th component of the generator of (2.4)

depends also on yij′, j
′ 6= j. Hence we cannot apply directly the existence result

in [11]. However, by slightly adapting the relevant arguments in [11], we have the

following assertion.

Proposition 2.1. For any integer n, RBSDE (2.4) has an adapted solution (Y n, Zn,Kn)

in the space S2 ×M2 ×N2.

Proof. Let the integer n be fixed. For an integerm, consider the following penalized

BSDE whose solution is denoted by (Y n,m, Zn,m):





Yij(t) = ξij +

∫ T

t
ψ(s, Yij(s), Zij(s), i, j) ds

+n

m2∑

j′=1

∫ T

t

(
Yij(s)− Yij′(s) + l(j, j′)

)−
ds

−m
m1∑

i′=1

∫ T

t

(
Yij(s)− Yi′j(s)− k(i, i′)

)+
ds

−

∫ T

t
Zij(s) dW (s); (i, j) ∈ Λ×Π.

(2.6)

From the comparison theorem for multi-dimensional BSDEs in [10], {Y n,m
ij (t)}m is

decreasing. Following the relevant arguments in [11], we prove that there exists an

adapted solution (Y n, Zn,Kn) in the space S2 ×M2 ×N2, and moreover

Y n
ij (t) = lim

m→∞
Y

n,m
ij (t).
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2.2 Representation and uniqueness of solution to the pe-

nalized RBSDE

Note again that for any integer n, the ij-th component of the generator of (2.4) depends

also on yij′, j
′ 6= j. Hence we cannot apply directly the Representation Theorem 3.1 in

[11].

Nevertheless, by defining a new generator

ψ̃(r, y, z, i, j;n) := ψ(r, y, z, i, j) + n
∑

j′ 6=j

(
y − Y n

ij′(r) + l(j, j′)
)−

(2.7)

for (r, y, z) ∈ [t, T ] × R × Rd, and (i, j) ∈ Λ × Π to include Y n
ij′, j

′ 6= j in it, we have

for each j ∈ Π, the triplet (Y n
ij , Z

n
ij ,K

n
ij ; i ∈ Λ) is an adapted solution of the following

m1-dimensional RBSDE:





Yij(t) = ξij +

∫ T

t
ψ̃(s, Yij(s), Zij(s), i, j;n) ds

−

∫ T

t
dKij(s)−

∫ T

t
Zij(s) dW (s);

Yij(t) ≤ min
i′ 6=i

{Yi′j(t) + k(i, i′)};

∫ T

0

(
Yij(s)−min

i′ 6=i
{Yi′j(s) + k(i, i′)}

)
dKij(s) = 0; i ∈ Λ.

(2.8)

Then we can apply the Representation Theorem 3.1 in [11].

In order to state this representation theorem, first we introduce some notations.

Let {θj}
∞
j=0 be an increasing sequence of stopping times with values in [t, T ] and

∀j, αj is an Fθj -measurable random variable with values in Λ, and χ is the indicator

function. We define

a(s) := α0χ{θ0}(s) +
∞∑

j=1

αj−1χ(θj−1,θj ](s), s ∈ [t, T ].

The sequence {θj , αj}
∞
j=0 or a(·) is said to be an admissible switching strategy starting

from the mode α0, if there exists an integer-valued random variable N such that θN =

T , P -a.s. and N ∈ L2(FT ).

We denote by At the set of all these admissible switching strategies and by Ai
t the

subset of A consisting of admissible switching strategies starting from the mode i.

For any a(·) ∈ At, we define the associated (cost) process Aa(·) as follows:

Aa(·)(s) =

N−1∑

j=1

k(αj−1, αj)χ[θj ,T ](s), s ∈ [t, T ].

Obviously, Aa(·)(·) is an adapted increasing càdlàg process, and Aa(·)(T ) ∈ L2(FT )

thanks to the fact that N ∈ L2(FT ).
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Now we are in position to introduce the switched BSDE. For (t, i, j) ∈ [0, T )×Λ×Π

and a(·) ∈ Ai
t, (U

a(·),n
j , V

a(·),n
j ) is the unique solution to the following BSDE:

Uj(s) = ξa(T )j + [Aa(·)(T )−Aa(·)(s)] +

∫ T

s
ψ̃(r, Uj(r), Vj(r), a(r), j;n) dr

−

∫ T

s
Vj(r) dW (r), s ∈ [t, T ].

(2.9)

On the other hand, for a(·) ∈ Ai
t of the following form:

a(s) = iχt(s) +
N∑

p=1

αp−1χ(θp−1,θp](s), s ∈ [t, T ], (2.10)

we define for s ∈ [t, T ] and j ∈ Π,

Ỹ
a(·),n
j (s) :=

N∑

p=1

Y n
αp−1,j(s)χ[θp−1,θp)(s) + ξa(T )χ{T}(s), (2.11)

Z̃
a(·),n
j (s) :=

N∑

p=1

Zn
αp−1,j(s)χ[θp−1,θp)(s),

K̃
a(·),n
j (s) :=

N∑

p=1

∫ θp∧s

θp−1∧s
dKn

αp−1,j(r),

and

Ã
a(·),n
j (s) =

N−1∑

p=1

[Y n
αp,j(θp) + k(αp−1, αp)− Y n

αp−1,j(θp)]χ[θp,T ](s), s ∈ [t, T ]. (2.12)

Ã
a(·),n
j is an increasing process due to the fact that Y n(s) satisfies the boundary con-

dition in (2.4), ∀s ∈ [t, T ]. Then, for each j ∈ Π, the triplet (Ỹ
a(·),n
j , Z̃

a(·),n
j , K̃

a(·),n
j ) is

a solution to the following BSDE:

Ỹ
a(·),n
j (s) (2.13)

= ξa(T )j − [(K̃
a(·),n
j (T ) + Ã

a(·),n
j (T ))− (K̃

a(·),n
j (s) + Ã

a(·),n
j (s))] +Aa(·)(T )−Aa(·)(s)

+

∫ T

s
ψ̃(r, Ỹ

a(·),n
j (r), Z̃

a(·),n
j (r), a(r), j;n) dr −

∫ T

s
Z̃

a(·),n
j (r) dW (r).

As

Y n
a(s)j′(s) = Ỹ

a(·),n
j′ (s), a.e. s ∈ [t, T ],

BSDE (2.9) can be rewritten as the following equation:

Uj(s) = ξa(T )j + [Aa(·)(T )−Aa(·)(s)] +

∫ T

s
ψ(r, Uj(r), Vj(r), a(r), j) dr

+n
∑

j′ 6=j

∫ T

s
(Uj(r)− Ỹ

a(·),n
j′ (r) + l(j, j′))− dr −

∫ T

s
Vj(r) dW (r),

s ∈ [t, T ].

(2.14)

We are now ready to state the representation formula which is taken from Theorem

3.1 in [11].
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Proposition 2.2. Assume that a(·) ∈ Ai
t. Then we have

ess sup
a(·)∈Ai

t

(
Ỹ

a(·),n
j (s)− U

a(·),n
j (s)

)
= 0, s ∈ [t, T ], j ∈ Π, (2.15)

which, putting in particular s = t, implies

Y n
ij (t) = essinf

a(·)∈Ai
t

U
a(·),n
j (t), j ∈ Π.

It is crucial to observe that the above representation formula is implicit since U
a(·),n
j

still depends on Y n. However, it is sufficient for us to deduce the a priori estimates.

Also, it is sufficient for us to deduce the uniqueness of the solution to the penalized

RBSDE (2.4). In fact, if we have two solutions (Y k,n
ij , Z

k,n
ij ,K

k,n
ij ; i ∈ Λ) with k = 1, 2,

we can define (U
k,a(·),n
j , V

k,a(·),n
j ), k = 1, 2, for (t, i, j) ∈ [0, T ) × Λ × Π and a(·) ∈ Ai

t,

as the unique solution to BSDE (2.9) with Y n
ij being replaced with Y

1,n
ij and Y

2,n
ij ,

respectively. We have the estimate for U
1,a(·),n
j − U

2,a(·),n
j :

|U
1,a(·),n
j (t)− U

2,a(·),n
j (t)|2 ≤ CnE[

∫ T

t
|Y 1,n(s)− Y 2,n(s)|2ds|Ft]

for some constant Cn. Then applying the above representation and Gronwall inequality,

we obtain that Y 1,n = Y 2,n, which gives the uniqueness.

2.3 A basic lemma and a priori estimates

For each integer n, let (Y n, Zn,Kn) ∈ S2×M2×N2 be the adapted solution of RBSDE

(2.4). Intuitively, as n tends to +∞, we expect that the sequence of solutions

{(Y n, Zn,Kn)}∞n=1

together with the penalty term

Ln
ij(t) := n

m2∑

j′=1

∫ t

0

(
Yij(s)− Yij′(s) + l(j, j′)

)−
ds, (t, i, j) ∈ [0, T ] × Λ×Π

will have a limit (Y,Z,K,L), which solves RBSDE (1.5).

For this purpose, it is crucial to prove that the penalty term is bounded in some

suitable sense. Then we are naturally led to compute

(
Yij(t)− Yij′(t) + l(j, j′)

)−
,

using Itô-Meyer’s formula, as done in [11]. However, in our present situation, the

additional term Kn appears in RBSDE (2.4), which gives rise to a serious difficulty to

derive the bound of Ln in the preceding procedure. In what follows, we shall use the

representation result for Y n of Proposition 2.2 to get around the difficulty.

We have the following basic lemma.
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Lemma 2.1. For j, j′ ∈ Π and a(·) ∈ Ai
t, we have

n
(
U

a(·),n
j (s)− Ỹ

a(·),n
j′ (s) + l(j, j′)

)−
≤ 2

∣∣∣ψ
∣∣∣
∞
, s ∈ [t, T ]. (2.16)

Here, U
a(·),n
j and Ỹ

a(·),n
j′ are defined by (2.9) and (2.11), respectively.

Proof. We suppress the superscripts (a(·), n) of U
a(·),n
j , U

a(·),n
j′ , V

a(·),n
j , V

a(·),n
j′ ,

Ỹ
a(·),n
j , Ỹ

a(·),n
j′ , Ỹ

a(·),n
j′′ and Z̃

a(·),n
j′ for simplicity. The whole proof consists of the fol-

lowing two steps.

Step 1. Calculation of the process U jj′(s)
−, where U jj′(s) := Uj(s)− Ỹj′(s)+

l(j, j′), s ∈ [t, T ] using Itô-Meyer’s formula.

In view of (2.14) and (2.13), the process U jj′(s), s ∈ [t, T ] satisfies the following

BSDE:

U jj′(s)

= U jj′(T ) +

∫ T

s

[
ψ(r, Uj(r), Vj(r), a(r), j) − ψ(r, Ỹj′(r), Z̃j′(r), a(r), j

′)
]
dr

+n
∑

j′′ 6=j

∫ T

s
(Uj − Ỹj′′ + l(j, j

′′

))(r)− dr − n
∑

j′′ 6=j′

∫ T

s
(Ỹj′ − Ỹj′′ + l(j′, j′′))(r)− dr

+

∫ T

s
d
(
K̃

a(·),n
j (r) + Ã

a(·),n
j (r)

)
−

∫ T

s
(Vj(r)− Z̃j′(r)) dW (r), s ∈ [t, T ].

(2.17)

Applying Itô-Meyer’s formula (see, e.g. Meyer [13]), we have

U jj′(s)
− + n

∑

j′′ 6=j

∫ T

s
χL−

jj′
(r)(Uj − Ỹj′′ + l(j, j

′′

))(r)− dr

−n
∑

j′′ 6=j′

∫ T

s
χL−

jj′
(r)(Ỹj′ − Ỹj′′ + l(j′, j′′))(r)− dr +

∫ T

s
dL̂jj′(r)

= −

∫ T

s
χL−

jj′
(r)

[
ψ(r, Uj(r), Vj(r), a(r), j) − ψ(r, Ỹj′(r), Z̃j′(r), a(r), j

′)
]
dr

−

∫ T

s
χL−

jj′
(r−) d

(
K̃

a(·),n
j (r) + Ã

a(·),n
j (r)

)

+

∫ T

s
χL−

jj′
(r−)(Vj(r)− Z̃j′(r)) dW (r), s ∈ [t, T ]

(2.18)

where

L−
jj′ := {(s, ω) ∈ [t, T ]× Ω : U jj′(s) < 0}, (2.19)
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and L̂jj′ is a càdlàg increasing process. The above equation can be rewritten as

U jj′(s)
− + n

∫ T

s
χL−

jj′
(Uj − Ỹj′ + l(j, j

′

))(r)− dr +

∫ T

s
dL̂jj′(r)

= −

∫ T

s
χL−

jj′
(r)

[
ψ(r, Uj(r), Vj(r), a(r), j) − ψ(r, Ỹj′(r), Z̃j′(r), a(r), j

′)
]
dr

−

∫ T

s
χL−

jj′
(r−) d(K̃

a(·),n
j (r) + Ã

a(·),n
j (r))

+

∫ T

s
χL−

jj′
(r−)

(
Vj(r)− Z̃j′(r)

)
dW (r)

+n

∫ T

s
I1,jj′(r) dr + n

∑

j′′ 6=j,j′′ 6=j′

∫ T

s
I2,jj′j′′(r) dr

(2.20)

where the two integrands I1,jj′ and I2,jj′j′′ are defined as follows

I1,jj′(r) := χL−

jj′
(r)(Ỹj′ − Ỹj + l(j′, j))−, r ∈ [t, T ] (2.21)

and

I2,jj′j′′(r) := χL−

jj′
(r)[(Ỹj′ − Ỹj′′ + l(j′, j

′′

))(r)− − (Uj − Ỹj′′ + l(j, j′′))(r)−], r ∈ [t, T ].

(2.22)

Step 2. The BSDE for the process {(Uj(s)− Ỹj′(s) + l(j, j′))−, s ∈ [t, T ]}.

In view of Proposition 2.2,

Ỹj ≤ Uj ,

we have

I1,jj′ ≤ χL−

jj′
(Ỹj′ − Uj + l(j′, j))− = 0, j, j′ ∈ Π, (2.23)

thanks to the fact that

l(j, j′) + l(j′, j) > l(j, j) = 0.

Hence,

I1,jj′(r) = 0.

Now we can rewrite (2.20) as the following equation:

(Uj(s)− Ỹj′(s) + l(j, j′))−

= n
∑

j′′ 6=j,j′′ 6=j′

∫ T

s
I2,jj′j′′(r) dr +

∫ T

s
I3,jj′(r) dr

−

∫ T

s
dL̂jj′(r)−

∫ T

s
χL−

jj′
(r−) d(K̃

a(·),n
j (r) + Ã

a(·),n
j (r))

−n

∫ T

s
(Uj(r)− Ỹj′(r) + l(j, j

′

))− dr

+

∫ T

s
χL−

jj′
(r−)

(
Vj(r)− Z̃j′(r)

)
dW (r), (2.24)
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where

I3,jj′(r) := χL−

jj′
(r)

[
ψ(r, Ỹj′(r), Z̃j′(r), a(r), j

′)− ψ(r, Uj(r), Vj(r), a(r), j)
]

(2.25)

for r ∈ [t, T ].

We now show that

I2,jj′j′′ ≤ 0. (2.26)

In fact, for j, j′, j′′ ∈ Π, taking into consideration the elementary inequality that x−1 −

x−2 ≤ (x1 − x2)
−, for any two real numbers x1 and x2, we have

I2,jj′j′′ = χL−

jj′
[(Ỹj′ − Ỹj′′ + l(j′, j

′′

))(r)− − (Uj − Ỹj′′ + l(j, j′′))(r)−]

≤ χL−

jj′

(
Ỹj′ − Uj + l(j′, j′′)− l(j, j′′)

)−
= 0.

(2.27)

The last equality holds in the last relations, since

{y ∈ Rm : yj − yj′ + l(j, j′) < 0} ∩ {y ∈ Rm : yj′ − yj + l(j′, j′′)− l(j, j′′) < 0} = ∅,

thanks to Hypothesis 1.2 (iv), i.e.,

l(j, j′) + l(j′, j′′) > l(j, j′′).

Define for r ∈ [t, T ],

Ijj′(r) := n
∑

j′′ 6=j,j′′ 6=j′

∫ r

t
I2,jj′j′′(s) ds

−

∫ r

t
dL̂jj′(s)−

∫ r

t
χL−

jj′
(s−) d(K̃

a(·),n
j (s) + Ã

a(·),n
j (s)).

Obviously, the process Ijj′(·) is a càdlàg decreasing process for any (j, j′) ∈ Π × Π.

BSDE (2.24) is finally written as the following equation:

(Uj(s)− Ỹj′(s) + l(j, j′))−

=

∫ T

t
dIjj′(r) +

∫ T

s
I3,jj′(r) dr − n

∫ T

s
(Uj(r)− Ỹj′(r) + l(j, j

′

))− dr

+

∫ T

s
χL−

jj′
(r−)

(
Vj(r)− Z̃j′(r)

)
dW (r), s ∈ [t, T ]. (2.28)

Then, we have the following formula

(Uj(s)− Ỹj′(s) + l(j, j′))− = E

[∫ T

s
I3,jj′(r) exp [−n(r − s)] dr

∣∣∣∣ Fs

]

+E

[∫ T

s
exp [−n(r − s)] dIjj′(r)

∣∣∣∣ Fs

]

≤ 2
∣∣∣ψ

∣∣∣
∞

∫ T

s
exp [−n(r − s)] dr. (2.29)

Therefore, we have

n
(
U

a(·),n
j (s)− Ỹ

a(·),n
j′ (s) + l(j, j′)

)−
≤ 2

∣∣∣ψ
∣∣∣
∞
, s ∈ [t, T ].

This ends the proof.

Thanks to this basic lemma, we deduce easily the following a priori estimates.
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Proposition 2.3. (i) The sequence {Y n
ij (t)}

∞
n=1 is increasing. Moreover,

−E [|ξ||Ft]− |ψ|∞T ≤ Y n
ij (t) ≤ E [|ξ||Ft] + 3|ψ|∞T ; E

[
sup
t

|Y n
ij (t)|

2

]
≤ C, (2.30)

where C > 0 is a constant.

(ii) We have

n
(
Y n
ij (t)− Y n

ij′(t) + l(j, j′)
)−

≤ 2
∣∣∣ψ

∣∣∣
∞
. (2.31)

Proof. (i) According to the comparison theorem for multi-dimensional BSDEs in

[10],

Y
n,m
ij (t) ≤ Y

n+1,m
ij (t),

where Y n,m
ij is defined via (2.6). Hence, the sequence {Y n

ij (t)}
∞
n=1 is increasing by taking

the limit when m tends to ∞.

We have the following two facts in view of (2.14):

(1) U
a(·),n
j (s) ≥ −E [|ξ||Fs]− |ψ|∞T.

(2) Taking ā(·) ≡ i, we have, from Lemma 2.1,

U
ā(·),n
j (s) ≤ E [|ξ||Fs] + |ψ|∞T + 2|ψ|∞T. (2.32)

In view of the representation formula in Proposition 2.2, we conclude the proof.

(ii) Putting s = t in (2.16), we obtain

n
(
U

a(·),n
j (t)− Y n

ij′(t) + l(j, j′)
)
≥ −2

∣∣∣ψ
∣∣∣
∞
.

From Proposition 2.2, we deduce that

n
(
Y n
ij (t)− Y n

ij′(t) + l(j, j′)
)
≥ −2

∣∣∣ψ
∣∣∣
∞
,

and the proof is complete.

2.4 Convergence of solutions

We first prove that (Zn,Kn) is bounded.

Lemma 2.2. The pair of processes (Zn
ij ,K

n
ij) are uniformly bounded in M2 ×N2 for

(i, j) ∈ Λ×Π.
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Proof. From the RBSDE for Y n
ij , in view of Hypothesis 2.1, using Itô’s formula

and Proposition 2.3, we have

E|Y n
ij (0)|

2 + E

∫ T

0
|Zn

ij(s)|
2 ds

≤ E|ξij |
2 + 2

m2∑

j′=1

E

∫ T

0
|Y n

ij (s)|n
(
Y n
ij (s)− Y n

ij′(s) + l(j, j′)
)−

ds

+2E

∫ T

0
|Y n

ij (s)| · |ψ(s, Y
n
ij (s), Z

n
ij(s), i, j)| ds

+2E

∫ T

0
|Y n

ij (s)| dK
n
ij(s)

≤ C + CE

∫ T

0
|Y n

ij (s)| ds+ 2E

[
sup
t

|Y n
ij (t)|K

n
ij(T )

]

≤ Cǫ + ǫE[(Kn
ij(T ))

2]

(2.33)

and

E[(Kn
ij(T ))

2]

≤ CE|ξij|
2 + CE|Y n

ij (0)|
2

+C

m2∑

j′=1

E

∫ T

0

[
n
(
Y n
ij (s)− Y n

ij′(s) + l(j, j′)
)−]2

ds

+CE

∫ T

0
|ψ(s, Y n

ij (s), Z
n
ij(s), i, j)|

2 ds +CE

∫ T

0
|Zn

ij(s)|
2 ds

≤ C + CE

∫ T

0
|Zn

ij(s)|
2 ds.

(2.34)

Combining the above two inequalities by taking a sufficiently small ǫ > 0, we conclude

the proof.

Define

βnij(s) := n

m2∑

j′=1

(
Y n
ij (s)− Y n

ij′(s) + l(j, j′)
)−
. (2.35)

Then

Ln
ij(t) =

∫ t

0
βnij(s) ds. (2.36)

Next, we prove that Kn is absolutely continuous whose derivative is uniformly

bounded.

Lemma 2.3. For (i, j) ∈ Λ×Π and an integer n, there is a uniformly bounded process

αn
ij such that Kn

ij has the following form:

Kn
ij(t) =

∫ t

0
αn
ij(s) ds, t ∈ [0, T ]. (2.37)
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Proof. Fix the integer n. Consider the following penalized BSDEs:

Yij(t) = ξij +

∫ T

t

[
ψ(s, Y n

ij (s), Z
n
ij(s), i, j) + βnij(s)

]
ds

−m
m1∑

i′=1

∫ T

t

(
Yij − Yi′j − k(i, i′)

)+
ds

−

∫ T

t
Zij(s) dW (s),

(2.38)

with (i, j) ∈ Λ×Π and t ∈ [0, T ]. It has a unique solution, denoted by (Ȳ n,m
ij , Z̄

n,m
ij ).

Proceeding similarly (in fact, much more simpler) as in Lemma 2.1, we can prove

that for a constant C > 0,

α
n,m
ij := m

m1∑

i′=1

(
Ȳ

n,m
ij − Ȳ

n,m
i′j − k(i, i′)

)+
≤ C. (2.39)

Therefore, {αn,m
ij }∞m=1 has a weak limit in M2, denoted by αn

ij . Then αn
ij is also

uniformly bounded by the same constant C.

Define

K̄
n,m
ij (t) :=

∫ t

0
α
n,m
ij (s) ds, t ∈ [0, T ]. (2.40)

From [11], we have

lim
m→∞

Ȳ
n,m
ij (t) = Y n

ij (t),

lim
m→∞

Z̄
n,m
ij (t) = Zn

ij(t),

lim
m→∞

K̄
n,m
ij (t) =

∫ t

0
αn
ij(s) ds = Kn

ij(t).

(2.41)

Now we are able to state the convergence result.

Lemma 2.4. The sequence {Y n, Zn} has a strong limit (Y,Z) in S2 ×M2. The two

sequences {αn} and {βn} have subsequences which converge to α and β weakly in M2,

respectively.

Proof. Note that Y n
ij is increasing in n. In view of Proposition 2.3 and applying

the dominated convergence theorem, we deduce easily the strong convergence of {Y n}

in the space M2. Note that (Y n, Zn) solves the following BSDE:

Y n
ij (t) = ξij +

∫ T

t

[
ψ(s, Y n

ij (s), Z
n
ij(s), i, j) + βnij(s)− αn

ij(s)
]
ds

−

∫ T

t
Zn
ij(s) dW (s), t ∈ [0, T ], (i, j) ∈ Λ×Π,

(2.42)

with {αn} and {βn} being uniformly bounded.
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We now prove the strong convergence of Zn. Using Itô’s formula, we have

|Y n
ij (0) − Y m

ij (0)|
2 + E

∫ T

0
|Zn

ij(s)− Zm
ij (s)|

2 ds

= 2E

∫ T

0

(
Y n
ij (s)− Y m

ij (s)
) (
ψ(s, Y n

ij (s), Z
n
ij(s), i, j) − αn

ij(s) + βnij(s)
)
ds

−2E

∫ T

0

(
Y n
ij (s)− Y m

ij (s)
) (
ψ(s, Y m

ij (s), Z
m
ij (s), i, j) − αm

ij (s) + βmij (s)
)
ds,

(2.43)

from which we deduce immediately that

lim
n,m→∞

E

∫ T

0
|Zn(s)− Zm(s)|2 ds = 0. (2.44)

It is routine to show the strong convergence of {Y n} in the space S2.

Since {αn} and {βn} are uniformly bounded, the last assertion of the lemma is

obvious.

Define for (i, j, t) ∈ Λ×Π× [0, T ],

Kij(t) :=

∫ t

0
αij(s) ds, Lij(t) :=

∫ t

0
βij(s) ds (2.45)

and

K := (Kij), L := (Lij). (2.46)

Finally, we shall show that (Y,Z,K,L) solves RBSDE (1.5).

In fact, it suffices to take the weak limit in L2(FT ) in BSDE (2.42) along a suitable

subsequence to deduce that (Y,Z,K,L) solves the following BSDE:

Yij(t) = ξij +

∫ T

t
ψ(s, Yij(s), Zij(s), i, j) ds −

∫ T

t
dKij(s)

+

∫ T

t
dLij(s)−

∫ T

t
Zij(s) dW (s), (i, j) ∈ Λ×Π.

(2.47)

It remains to check out the boundary conditions, which will be given in the next

subsection.

2.5 Boundary conditions

Let us first prove that Y (t) ∈ Q̄.

On the one hand, as (Y n, Zn,Kn) satisfies (2.4), we have

Y n
ij (t) ≤ min

i′ 6=i
{Y n

i′j(t) + k(i, i′)},

from which we deduce, by taking limit when n tends to ∞, that

Yij(t) ≤ min
i′ 6=i

{Yi′j(t) + k(i, i′)}. (2.48)
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On the other hand, from Proposition 2.3,

(
Y n
ij (t)− Y n

ij′(t) + l(j, j′)
)−

≤
2
∣∣∣ψ

∣∣∣
∞

n
.

Sending n to ∞, we deduce that
(
Yij(t)− Yij′(t) + l(j, j′)

)−
= 0. (2.49)

(2.48) and (2.49) shows that Y (t) ∈ Q̄.

Now we check out the minimal boundary conditions.

From (2.4), we have

E

∫ T

0

(
Y n
ij (s)−min

i′ 6=i
{Y n

i′j(s) + k(i, i′)}

)−

αn
ij(s) ds = 0. (2.50)

Setting n→ ∞, we have

E

∫ T

0

(
Yij(s)−min

i′ 6=i
{Yi′j(s) + k(i, i′)}

)−

αij(s) ds = 0. (2.51)

On the other hand, from the construction, we have

E

∫ T

0

(
Y n
ij (s)−max

j′ 6=j
{Y n

ij′(s)− l(j, j′)}

)+

βnij(s) ds = 0. (2.52)

Setting n→ ∞, we have

E

∫ T

0

(
Yij(s)−max

j′ 6=j
{Yij′(s)− l(j, j′)}

)+

βij(s) ds = 0. (2.53)

The proof is then complete.

3 Concluding remarks

In this paper, we proved the existence of solution to RBSDE (1.5). But the question

of uniqueness remains open.

On the other hand, there exist different methods in the literature for the study of

switching control and game problems. For the classical method of quasi-variational

inequalities, the reader is referred to the book of Bensoussan and Lions [1]. See Tang

and Yong [18], Pham, Ly Vath and Zhou [15] and Tang and Hou [17] and the refer-

ences therein for the theory of variational inequalities and the dynamic programming

for optimal stochastic switching control and switching games. But these works are

restricted to the Markovian case. Recently, using the method of Snell envelope (see,

e.g. El Karoui [6]) combined with the theory of scalar valued RBSDEs, Hamadène

and Jeanblanc [9] studied the switching problem in the non-Markovian context. The

obliquely reflected BSDE approach, first fully developed in Hu and Tang [11] for op-

timal stochastic switching and taking the advantage of the theory and techniques of

BSDEs, permits to state and solve these problems in a rather general non-Markovian

framework. The link between the solution of RBSDE (1.5) and the problem of switch-

ing games constitutes another challenge.
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rétrogrades réfléchies dans un convexe. Stochastics Stochastic Rep. 57 (1996), 111–

128.

[9] S. Hamadène and M. Jeanblanc, On the starting and stopping problem: application

in reversible investments. Math. Oper. Res. 32 (2007), 182–192.

[10] Y. Hu and S. Peng, On the comparison theorem for multi-dimensional BSDEs. C.

R. Math. Acad. Sci. Paris 343 (2006), 135–140.

[11] Y. Hu and S. Tang, Multi-dimensional BSDE with oblique reflection and optimal

switching. Probab. Theory Related Fields 147 (2010), 89–121.

[12] P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting

boundary conditions. Comm. Pure Appl. Math. 37 (1984), 511–537.
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