
HAL Id: hal-00287630
https://hal.science/hal-00287630

Submitted on 12 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a High Order Finite Volume Scheme for the
Vlasov-Poisson System

Roland Duclous, Bruno Dubroca, Francis Filbet

To cite this version:
Roland Duclous, Bruno Dubroca, Francis Filbet. Analysis of a High Order Finite Volume Scheme
for the Vlasov-Poisson System. Discrete and Continuous Dynamical Systems - Series S, 2012, 5,
pp.283-305. �hal-00287630�

https://hal.science/hal-00287630
https://hal.archives-ouvertes.fr


ANALYSIS OF A HIGH ORDER FINITE VOLUME SCHEME FOR THE

VLASOV-POISSON SYSTEM

ROLAND DUCLOUS, BRUNO DUBROCA AND FRANCIS FILBET

Abstract. We propose a second order finite volume scheme to discretize the one-dimensional
Vlasov-Poisson system with boundary conditions. For this problem, a rather general initial and
boundary data lead to a unique solution with bounded variations but such a solution becomes dis-
continuous when the external voltage is large enough. We prove that the numerical approximation
converges to the weak solution and show the efficiency of the scheme to simulate beam propagation
with several particle species.
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1. Introduction

The Vlasov-Poisson system is a model for the motion of a collisionless plasma and describes the
evolution of the distribution function of particles, solution of the Vlasov equation, under the effects
of free transport and self-consistent electric fields given by the Poisson equation. Here, we consider
a dilute electron gas emitted at position x = 0 and absorbed at x = L. It gives rise to a nonlinear
system of equations with boundary conditions. Under an external voltage, the dynamics of such a
problem is modeled by the following system [15, 17]

(1)



































∂f

∂t
+ v

∂f

∂x
+ E(t, x)

∂f

∂v
= 0, t ≥ 0, (x, v) ∈ Q ;

−∂2φ

∂x2
(t, x) = ρ(t, x), E(t, x) = −∂φ

∂x
(t, x); t ≥ 0, x ∈ Ω ;

f(0, x, v) = f0(x, v), (x, v) ∈ Q ;
1
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where Q := Ω × R with Ω := (0, L). We define the macroscopic charged density ρ(t, x) and the
related current density j(t, x) by

(2) ρ(t, x) =

∫ ∞

−∞
f(t, x, v)dv, j(t, x) =

∫ ∞

−∞
vf(t, x, v)dv, (t, x) ∈ R

+ × Ω.

Here, the boundary conditions for the electron distribution f(t, x, v) ≥ 0 are given at x = 0

(3) f(t, 0, v) = g(t, v) ≥ 0, v > 0;

and at x = L

(4) f(t, L, v) = 0, v < 0;

and external voltages are given at x = 0 and x = L:

(5) φ(t, 0) = 0, φ(t, L) = −λ(t) ≤ 0, t ≥ 0.

Mathematical study of such nonlinear boundary value problem was initiated in the pioneering
work of C. Greengard and P.-A. Raviart [15], in which stationary solutions are constructed. A
higher dimensional generalization was given in [19] and [8]. On the other hand, for the dynamical
problem of plane diode (1)-(5), weak solutions can be constructed as in [7]. Finally, recently Y.
Guo et al. give a complete existence and uniqueness proof for the present model (1)-(5) [17] and
for the Vlasov-Maxwell system [14].

The aim of this paper is to propose a high order finite volume scheme for the one-dimensional
Vlasov-Poisson equation over an interval and to analyze its convergence. In one or two dimension,
the numerical resolution of the Vlasov equation is often performed using eulerian methods. These
methods are strongly inspired by the discretization of conservation laws in fluid mechanics [4,
23]. They consist in a discretization of the phase space (x, v), which is done by following the
characteristic curves at each time step and interpolating the value at the origin of the characteristics
by polynomial [12, 13]. This interpolation method works well for simple geometries of the physical
space but does not seem to be well suited to more complex geometries. We refer to [13, 1] for a
review of the literature on this topic and notice that more recently, J.A Carrillo et al [5] propose
new schemes based on WENO reconstructions, which are particularly well suited and efficient for
the study of discontinuities propagation.

Another type of schemes for the Vlasov equation is the finite volume type method (or flux
balance method), where the discrete unknowns are averages of the distribution function on volumes
paving the phase space. These unknowns are updated by considering incoming and outgoing fluxes
leading to mass conservation. A high order scheme of this type was introduced by J.P. Boris and
D.L. Book [4] for transport equations and later F. Filbet et al. proposed an improved version of
this scheme, called the Positive and Flux Conservative method (PFC) [12, 13], which is not only
conservative, but also preserves the positivity and the maximum value of the distribution function.
The scheme was implemented up to third order accuracy. Let us also mention related papers where
the convergence of a numerical scheme for the Vlasov-Poisson system is investigated. On the one
hand, J. Schaeffer [20] proves the convergence of a finite difference scheme for the Vlasov-Poisson-
Fokker-Planck system : transport terms are approximated by a characteristic method whereas
diffusive term are treated by a classical finite difference operator. On the other hand, N. Besse
studies the convergence of semi-lagrangian methods for smooth solutions to the Vlasov-Poisson
[2] but it seems difficult to adapt this methodology for discontinuous solutions. Thus, F. Filbet
performs a convergence analysis and gets error estimates on a finite volume scheme [10, 11] for
weak BV solutions allowing discontinuities to occur, but this scheme is only first order and is not
enough accurate to get a good approximation of the distribution function. Here, we extend the
analysis to second order finite volume schemes and investigate the case where the solution may be
discontinuous. More precisely, the purpose of this work is to prove the convergence of a second order
finite volume scheme for the dynamic of plane diode model problem in plasma physics, namely,
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the one-dimensional Vlasov-Poisson system with boundary conditions with respect to the space
variable.

We first present a second order upwind finite volume scheme computing the fluxes on the
boundary of each cell of the mesh. Thus, from an L∞ estimate on the velocity moments of fh, we
obtain a bound on the discrete electric field in W 1,∞. We next give a weak BV inequality which
will be useful for the convergence of the approximation to the weak solution to the Vlasov-Poisson
system.

2. Numerical scheme and main results

In order to compute a numerical approximation of the solution of the Vlasov-Poisson system,
let us define a Cartesian mesh of the phase space Mh consisting of cells, denoted by Ci,j , i ∈ I =
{0, . . . , nx − 1}, where nx is the number of subcells of (0, L) and j ∈ Z. The mesh Mh is given by
an increasing sequence (xi−1/2)i∈{0,...,nx} of the interval (0, L) and by a second increasing sequence
(vj−1/2)j∈Z of R for the velocity space.

Let ∆xi = xi+1/2 − xi−1/2 be the physical space step and ∆vj = vj+1/2 − vj−1/2 be the velocity
space step. The parameter h indicates

h = max
i,j

{∆xi,∆vj}.

We assume the mesh satisfies the following condition : there exists α ∈ (0, 1) such that for all h > 0
and (i, j) ∈ I × Z,

(6) α h ≤ ∆xi ≤ h, and α h ≤ ∆vj ≤ h.

Finally, we obtain a Cartesian mesh of the phase space constituted of control volumes

Ci,j = (xi−1/2, xi+1/2) × (vj−1/2, vj+1/2) for i ∈ I and j ∈ Z.

In order to work with a bounded domain, we will truncate at |v| = vh (vh sufficiently large
which will go to +∞ as h → 0) and we denote by J the following set

J := {j ∈ Z, |vj | ≤ vh}.
Let ∆t be the time step and tn = n ∆t and xi (resp. vj) represents the middle of [xi−1/2, xi+1/2]

(resp. [vj−1/2, vj+1/2]). We set the discrete initial datum as

f0
i,j =

1

∆xi ∆vj

∫

Ci,j

f0(x, v)dxdv.

For n ≥ 0, we define a sequence (fn+1
i,j )i,j , which is assumed to approximate the average of the

Vlasov equation solution (1)-(5) on the control volume Ci,j . It is given by

fn+1
i,j = fn

i,j − ∆t

∆xi
[Fi+1/2,j −Fi−1/2,j ] −

∆t

∆vj
[Gi,j+1/2 − Gi,j−1/2],(7)

with






Fi+1/2,j = v+
j f l

i+1/2,j − v−j f r
i+1/2,j ,

Gi,j+1/2 = En+
i f l

i,j+1/2 − En−
i f r

i,j+1/2,
(8)

where f l
i+1/2,j and f r

i+1/2,j are second order reconstructions with respect to the space variable

x ∈ (0, L) of the distribution function

(9)







f l
i+1/2,j = fn

i,j + σi+1/2,j

[

fn
i+1,j − fn

i,j

]

,

f r
i+1/2,j = fn

i+1,j − σi+3/2,j

[

fn
i+2,j − fn

i+1,j

]

,
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with the slope σi+1/2,j given by the minmod limiter

(10) σi+1/2,j =







































0, if (fn
i+1,j − fn

i,j) (fn
i,j − fn

i−1,j) ≤ 0,

|fn
i,j − fn

i−1,j |
|fn

i+1,j − fn
i,j |

∆xi

∆xi + ∆xi−1
if

|fn
i,j − fn

i−1,j |
∆xi + ∆xi−1

≤
|fn

i+1,j − fn
i,j |

∆xi + ∆xi+1
,

∆xi

∆xi + ∆xi+1
, else.

Also f l
i,j+1/2 and f r

i,j+1/2 are built using the same type of reconstruction with respect to the velocity

space v ∈ R for the flux Gi,j+1/2

(11)







f l
i,j+1/2 = fn

i,j + σi,j+1/2,j

[

fn
i,j+1 − fn

i,j

]

,

f r
i+1/2,j = fn

i,j+1 − σi,j+3/2

[

fn
i,j+2 − fn

i,j+1

]

,

with the slope σi,j+1/2 given by the minmod limiter

(12) σi,j+1/2 =







































0, if (fn
i,j+1 − fn

i,j) (fn
i,j − fn

i,j−1) ≤ 0,

|fn
i,j − fn

i,j−1|
|fn

i,j+1 − fn
i,j |

∆vj

∆vj + ∆vj−1
if

|fn
i,j − fn

i,j−1|
∆vj + ∆vj−1

≤
|fn

i,j+1 − fn
i,j |

∆vj+1 + ∆vj
,

∆vj

∆vj + ∆vj+1
, , else.

Let us notice that in this paper, we only consider the case of minmod limiters but we can easily
apply the present analysis to classical limiters as superbee, etc. These conditions are sufficent to
compute some approximations but we add some limiters useful to prove an error estimate result :
there exist K1,K2 > 0 and β ∈ (1, 2) such that

σi+1/2,j(f
n
i,j − fn

i−1,j)
2 + σi,j+1/2(f

n
i,j − fn

i,j−1)
2 ≤ K hβ, ∀(i, j) ∈ I × Z.(13)

This conditions are used in section 3.3 only, for the consistency result.
The value En

i is an approximation of the electric field on [xi−1/2, xi+1/2] given below by computing
an approximate solution of the Poisson equation. To complete the scheme for the approximation of
the Vlasov equation, we impose boundary conditions on x. To do this, we define two approximations
fn
−1,j and fn

nx,j on “virtual cells”, given by

(14)







fn
−1,j = gn

j := g(tn, vj), if vj > 0, j ∈ J,

fn
nx,j = 0, if vj < 0, j ∈ J,

and to define slope limiters in the neighborhood of the boundary we also impose zero slope condition,
that is, f−2,j = f−1,j and fnx+1,j = fnx,j . We also set

Gi,j+1/2 = 0, for (i, j) ∈ I × Z \ J.

Thus, we are able to define the numerical solution approximating the solution of the Vlasov
equation on QT := ΩT × R by

fh(t, x, v) =







fn
i,j , if (t, x, v) ∈ [tn, tn+1) × Ci,j and (i, j) ∈ I × J,

0, if |v| > vh.
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Computing moments in v of the distribution function fh, we define the discrete charge and current
densities for (t, x) ∈ [tn, tn+1) × [xi−1/2, xi+1/2):

ρh(t, x) =

∫

R

fh(t, x, v)dv =
∑

j∈Z

∆vj fn
i,j = ρn

i ,

jh(t, x) =

∫

R

v fh(t, x, v)dv =
∑

j∈Z

∆vj vj fn
i,j = jn

i .

Now, to complete the scheme we apply a finite volume scheme to the electric field’s equation.
Let us denote En

i an approximation of the electric field in (xi−1/2, xi+1/2) given by

(15) En
i+1 − En

i = ∆xi ρ
n
i , for i = 0, . . . , nx − 2,

and is supplemented by the following condition, which comes from the discrete potential

(16)

nx−1
∑

i=0

∆xi E
n
i = λ(tn) − 0 = λ(tn).

We compute a continuous approximation of the discrete field such that

(17)







Eh(tn, xi) = En
i ,

Eh ∈ Q1([t
n, tn+1] × [xi−1/2, xi+1/2]),

where Q1([t
n, tn+1]× [xi−1/2, xi+1/2]) represents the space of polynomial of degree one in [tn, tn+1]×

[xi−1/2, xi+1/2] such that Eh ∈ W 1,∞(ΩT ) and Ẽh is a piecewise constant approximation given by

Ẽh(t, x) = En
i , for (t, x) ∈ [tn, tn+1) × [xi−1/2, xi+1/2).

We introduce the space

BV (Q) = {u ∈ L1(Q), TVQ(u) < ∞}
where

TVQ(u) = sup

{∫

Q
u(x, v) div(x,v)ϕ(x, v)dxdv, ϕ ∈ C∞

c (Q), |ϕ(x, v)| ≤ 1, ∀(x, v) ∈ Q

}

.

We shall now prove the following theorem of convergence for the numerical approximation.

Theorem 2.1. Assume for some p > 2, f0(x, v) and g(t, v) satisfy: for all T > 0

(18) TVQ(f0) +

∫ T

0

∫

v≥0
[1 + v]g(s, v)dvds + ‖|v|p f0‖∞ + ‖|v|p g‖∞ < ∞.

Let Mh be a Cartesian mesh of the phase space and ∆t be the time step satisfying the CFL condition
: there exists ξ ∈ (0, 1) such that

(19)
3 ∆t

2

( |vj |
∆xi

+
Cλ

∆vj

)

≤ 1 − ξ ∀(i, j) ∈ I × J,

with

Cλ =
‖λ‖L∞

L
+ 2

(

‖f0‖L1 +

∫ T

0

∫

v≥0
v gh(t, v)dvdt

)

.

We consider the numerical solution given by the scheme (7)-(12), denoted by fh(t, x, v), and the
discrete self-consistent field Eh(t, x) given by (15)-(17). Then we have

fh(t, x, v) ⇀ f(t, x, v) weak-⋆ in L∞(QT ) as h → 0,

Eh(t, x) → E(t, x) in C(ΩT ) as h → 0,
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where (f,E) is the unique solution to the Vlasov-Poisson system (1)–(5), that is for all test functions
which belong to

T := {ϕ ∈ C1
c ([0,∞) × (0, L) × R), ϕ(t, 0, v) = ϕ(t, L,−v) = 0, ∀v ≤ 0},

we have
∫

QT

f(t, x, v)

[

∂ϕ

∂t
+ v

∂ϕ

∂x
(t, x, v) + E(t, x)

∂ϕ

∂v
(t, x, v)

]

dxdvdt +

∫

ΩT

f0(x, v)ϕ(0, x, v) dv dx +

∫ T

0

∫

v≥0
v [g(t, v)ϕ(t, 0, v)] dv dt = 0

and for the electric field
∂E

∂x
= ρ(t, x), ∀(t, x) ∈ [0, T ] × Ω,

supplemented with boundary conditions.

3. A priori estimates

In this section, we will give some properties satisfied by the numerical approximation as well
as by the solution of the continuous problem. We will first prove some properties on the discrete
distribution function fh. From these estimates, we will also give an L∞ estimate on the electric
field Eh. Then, in Proposition 3.2, we will obtain a uniform bound on |v|p fh in order to obtain an
L∞ estimate on the moments in velocity of fh and finally a W 1,∞ estimate on the discrete electric
field Eh.

3.1. Basic estimates.

Proposition 3.1. Assume that f0(x, v) ≥ 0 and g(t, v) ≥ 0 satisfy : for all T > 0
∫ T

0

∫

v≥0
[1 + v]g(s, v)dvds + ‖ f0‖L∞ + ‖g‖L∞ + ‖f0‖L1 < +∞.

Let Mh be a Cartesian mesh of the phase space and ∆t be the time step satisfying the CFL condition:
there exists ξ ∈ (0, 1) such that for all k ∈ {0, . . . , n}

(20)
∆t

∆xi ∆vj

(

∆vj |vj | + ∆xi |Ek
i |

)

≤ 1 − ξ ∀(i, j) ∈ I × J.

Then, we have

(i) the discrete distribution function at time tn+1 satisties the following maximum principle

(21) 0 ≤ fn+1
i,j ≤ max (‖f0‖L∞ , ‖g‖L∞) ; ∀(i, j) ∈ I × Z ;

(ii) the discrete density function ρh(tn+1) satisfies

(22) 0 ≤
∑

i∈I

∆xi ρ
n+1
i ≤ ‖f0‖L1 +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j ;

(iii) the discrete electric field is bounded

(23) |En+1
i | ≤ λ(tn+1)

L
+ 2



‖f0‖L1 +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j



 ;

(iv) the CFL condition (20) at iteration n + 1 is satisfied.
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Proof : We start from the scheme (9)-(10) and first introduce the following limiters : for (i, j) ∈
I × J

f l
i+1/2,j = fn

i,j + σi+1/2,j [fn
i+1,j − fn

i,j ],

= fn
i,j + si+1/2,j [fn

i,j − fn
i−1,j ],

with

(24) si+1/2,j =







































0, if (fn
i+1,j − fn

i,j) (fn
i,j − fn

i−1,j) ≤ 0,

|fn
i+1,j − fn

i,j |
|fn

i,j − fn
i−1,j |

∆xi

∆xi + ∆xi+1
if

|fn
i+1,j − fn

i,j |
∆xi + ∆xi+1

≤
|fn

i,j − fn
i−1,j |

∆xi + ∆xi−1
,

∆xi

∆xi + ∆xi−1
, else

and

f r
i+1/2,j = fn

i+1,j − σi+3/2,j [fn
i+2,j − fn

i+1,j ],

= fn
i+1,j − si+3/2,j [fn

i+1,j − fn
i,j ].

Also, f l
i,j+1/2 and f r

i,j+1/2 can be re-written in a similar way

f l
i,j+1/2 = fn

i,j + si,j+1/2 [fn
i,j − fn

i,j−1],

f r
i,j+1/2 = fn

i,j+1 − si,j+3/2 [fn
i,j+1 − fn

i,j ],

with

(25) si,j+1/2 =







































0, if (fn
i,j+1 − fn

i,j) (fn
i,j − fn

i,j−1) ≤ 0,

|fn
i,j+1 − fn

i,j |
|fn

i,j − fn
i,j−1|

∆vj

∆vj + ∆vj+1
, if

|fn
i,j+1 − fn

i,j |
∆vj + ∆vj+1

≤
|fn

i,j − fn
i,j−1|

∆vj + ∆vj−1
,

∆vj

∆vj + ∆vj−1
, else,

where we observe that 0 ≤ si,j+1/2, si+1/2,j < 1. Using the scheme (7)-(12), we explicitly write
the value of the numerical solution at iteration n + 1, in terms of the values at time tn in a better
way,

fn+1
i,j = fn

i,j −
v+
j ∆t

∆xi

[

1 + si+1/2,j − σi−1/2,j

]

(fn
i,j − fn

i−1,j)

+
v−j ∆t

∆xi

[

1 − si+3/2,j + σi+1/2,j

]

(fn
i+1,j − fn

i,j)

− En+
i ∆t

∆vj

[

1 + si,j+1/2 − σi,j−1/2

]

(fn
i,j − fn

i,j−1)

+
En−

i ∆t

∆vj

[

1 − si,j+3/2 + σi,j+1/2

]

(fn
i,j+1 − fn

i,j).

Under the stability condition (20), the discrete distribution function fn+1
i,j could be written as a

convex combination of fn
i,j , f

n
i−1,j , f

n
i+1,j , f

n
i,j−1, f

n
i,j+1; it yields the nonnegativity of fn+1

i,j for all

(i, j) ∈ I × Z. Thus we get the result

0 ≤ fn+1
i,j ≤ max (‖f0‖L∞ , ‖g‖L∞) .
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Now, we give an estimate of total mass evolution : for k ∈ {0, . . . , n} we multiply (7)-(12) by
∆xi ∆vj and sum over (i, j) ∈ I × Z. It gives,

∑

(i,j)∈I×Z

∆xi ∆vj fk+1
i,j + ∆t

∑

j∈Z

∆vj

[

v−j f r
−1/2,j + v+

j f l
nx+1/2,j

]

=
∑

(i,j)∈I×Z

∆xi ∆vj fk
i,j + ∆t

∑

j∈Z

∆vj

[

v+
j f r

−1/2,j + v−j f l
nx+1/2,j

]

.

Then, using boundary conditions (14), it yields
∑

(i,j)∈I×Z

∆xi ∆vj fk+1
i,j + ∆t

∑

j∈Z

∆vj

[

v−j fk
0,j + v+

j fk
nx−1,j

]

=
∑

(i,j)∈I×Z

∆xi ∆vj fk
i,j + ∆t

∑

j∈Z

∆vj v+
j gk

j

and summing over k ∈ {0, . . . , n} we get

∑

(i,j)∈I×Z

∆xi ∆vj fn+1
i,j +

n
∑

k=0

∑

j∈Z

∆t ∆vj

[

v−j fk
0,j + v+

j fk
nx−1,j

]

=
∑

(i,j)∈I×Z

∆xi ∆vj f0
i,j +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j ,

which gives the result

∑

i∈I

∆xi ρ
n+1
i ≤ ‖f0‖L1 +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j .

Now, let us prove that the discrete electric field is bounded at iteration n + 1. The argument
is the same as in the continuous case: using the scheme (15)-(16), we have En+1

0 = Cn+1 and for
i = {1, . . . , nx − 1}

|En+1
i | =

∣

∣

∣

∣

∣

Cn+1 +

i−1
∑

k=0

∆xk ρn+1
k

∣

∣

∣

∣

∣

,

≤ Cn+1 + ‖f0‖L1 +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j ,

where Cn+1 is such that the relation (16) is satisfied at iteration n + 1, so that

Cn+1 =

λ(tn+1) +
∑

i∈I

∆xi(L − xi−1/2) ρn+1
i

L
,

which proves (23)

|En+1
i | ≤ λ(tn+1)

L
+ 2



‖f0‖L1 +

n
∑

k=0

∑

j∈Z

∆t ∆vj v+
j gk

j



 .

Finally, from this latter bound we check that the CFL condition (19) is satistied at time n + 1.
✷
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3.2. Estimates on the electric field. Now, let us give a uniform bound on |v|p fh for p > 2,
which will lead to a uniform bound on the and an estimate on first moments ρh and jh throughout
an energy estimate.

Proposition 3.2. Assume that for p > 2 and for all (t, x, v) ∈ QT

|v|p f0(x, v) + |v|p g(t, v) < ∞
and ‖λ‖W 1,∞ < ∞. Then, there exists CT > 0, ony depending on f0, g, λ and α, such that

(26) 0 ≤ max
i,j

{|vj−1/2|p fn
i,j} ≤ CT .

Moreover, there exists CT > 0, for all (n, i) ∈ {0, . . . , NT } × I,

(27)

∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

+

∣

∣

∣

∣

En
i+1 − En

i

∆xi

∣

∣

∣

∣

≤ CT .

Proof : For p > 2, we multiply the scheme (7)-(12) by |vj−1/2|p and using the reconstruction
proposed in (24)-(25), we have

|vj−1/2|p fn+1
i,j = |vj−1/2|p fn

i,j

−
v+
j ∆t

∆xi

[

1 + si+1/2,j − σi−1/2,j

]

(|vj−1/2|p fn
i,j − |vj−1/2|p fn

i−1,j)

+
v−j ∆t

∆xi

[

1 − si+3/2,j + σi+1/2,j

]

(|vj−1/2|p fn
i+1,j − |vj−1/2|p fn

i,j)

− En+
i ∆t

∆vj

[

1 + si,j+1/2 − σi,j−1/2

]

(|vj−1/2|p fn
i,j − |vj−3/2|p fn

i,j−1)

+
En−

i ∆t

∆vj

[

1 − si,j+3/2 + σi,j+1/2

]

(|vj+1/2|p fn
i,j+1 − |vj−1/2|p fn

i,j).

− En+
i ∆t

∆vj

[

1 + si,j+1/2 − σi,j−1/2

]

(|vj−3/2|p − |vj−1/2|p) fn
i,j−1

+
En−

i ∆t

∆vj

[

1 − si,j+3/2 + σi,j+1/2

]

(|vj−1/2|p − |vj+1/2|p) fn
i,j+1.

Then, using that
∣

∣|vj+1/2|p − |vj−1/2|p
∣

∣ ≤ p (1 + |vj−1/2|p) ∆vj and from the CFL condition (20),
we get

max
i,j

{|vj−1/2|p fn+1
i,j } ≤ max

i,j
{|vj−1/2|p fn

i,j}

+ ∆t
3 p ‖Eh‖L∞

2 α

(

max
i,j

{|vj−1/2|p fn
i,j} + ‖fh‖L∞

)

.

It finally yields using a discrete version of Gronwall’s lemma and taking into account boundary
conditions

max
i,j

{|vj−1/2|p fn
i,j} ≤

(

max
i,j

{|vj−1/2|p [gn
j + f0

i,j ]} + ‖fh(0)‖L∞ + ‖gh‖L∞

)

exp

(

3 p ‖Eh‖L∞

2 α
tn

)

.

We remind that in Proposition 3.1, we have already seen that Eh is bounded in L∞. On the one
hand from the latter estimate, we can prove a uniform upper bound on the discrete density

ρn
i =

∑

j∈Z

∆vj fn
i,j ≤ ‖fh(tn)‖L∞ + max

i,j
{|vj−1/2|p fn

i,j}
∑

|vj−1/2|≥1

∆vj

|vj−1/2|p
≤ CT .
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Therefore, from the finite volume scheme for En
i we get

∣

∣

∣

∣

En
i+1 − En

i

∆xi

∣

∣

∣

∣

= ρn
i ≤ CT .

On the other hand, we give a uniform upper bound on the jump
∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

.

Using the finite volume scheme for En
i (15)-(16) and the scheme for the distribution function fn

i,j

(7)-(12), we get a new formulation

En+1
i − En

i

∆t
=

Cn+1 − Cn

∆t
+

i
∑

k=0

ρn+1
k − ρn

k

∆t

=
Cn+1 − Cn

∆t
− jn

i+1/2 + jn
−1/2,

with

jn
i+1/2 =

∑

j∈Z

∆vj [v+
j f l

i+1/2,j − v−j f r
i+1/2,j ],

or

En+1
i − En

i

∆t
=

λ(tn+1) − λ(tn)

L∆t
− jn

i+1/2 − 1

L

∑

k∈I

∆xk jn
k+1/2.

It remains to get an upper bound of jn
i+1/2, which can be done from (26). We have for h ≤ 1

|jn
i+1/2| ≤

∑

j∈Z

∆vj [v+
j f l

i+1/2,j + v−j f r
i+1/2,j ],

≤ 4
∑

j∈Z

∆vj

(

1 + |vj−1/2|
)

fn
i,j ≤ CT .

Thus under the assumption λ ∈ W 1,∞(0, T ), it yields
∣

∣

∣

∣

En+1
i − En

i

∆t

∣

∣

∣

∣

≤ CT .

✷

3.3. Weak BV estimate for fh. The following lemma will be useful to obtain the convergence
of (Eh, fh) to the Vlasov equation solution.

Lemma 3.3. Under the stability condition (20) on the time step and the condition on the mesh
(6), assume the initial data belong to L1(Q) ∩ L∞(Q). Consider R > 0 and T > 0 with h < R and
∆t < T . Let j0, j1 ∈ Z and NT ∈ N be such that −R ∈ (vj0−1/2, vj0+1/2), R ∈ (vj1−1/2, vj1+1/2),
and T ∈ ((NT − 1)∆t, NT ∆t). We define

EF1h = ∆t

NT
∑

n=0

∑

i∈I

j1
∑

j=j0

∆xi ∆vj

[

v+
j |fn

i,j − fn
i−1,j | + v−j |fn

i,j − fn
i+1,j |

+En+
i |fn

i,j − fn
i,j−1| + En−

i |fn
i,j − fn

i,j+1|
]

(28)
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and

EF2h = ∆t

NT
∑

n=0

∑

i∈I

j1
∑

j=j0

∆xi ∆vj

∣

∣

∣
fn+1

i,j − fn
i,j

∣

∣

∣
.(29)

Then, there exists C > 0 depending only on T,R, f0, α, ξ such that

EF1h ≤ C h1/2 and EF2h ≤ C ∆t1/2.(30)

Proof : Multiplying the scheme (7)-(12) by ∆xi ∆vj fn
i,j and summing over i ∈

{

0, . . . , nx − 1
}

,

j ∈
{

j0, . . . , j1

}

, and n ∈
{

0, . . . , NT

}

, it follows that

B1 + B2 = 0,

where

B1 =
∑

n,i,j

∆xi∆vj [f
n+1
i,j − fn

i,j ] f
n
i,j .

B2 = ∆t
∑

n,i,j

∆vj [Fi+1/2,j −Fi−1/2,j ] f
n
i,j + ∆xi [Gi,j+1/2 − Gi,j−1/2] f

n
i,j

Noting that

[fn+1
i,j − fn

i,j ] f
n
i,j = −1

2
[fn+1

i,j − fn
i,j ]

2 − 1

2
(fn

i,j)
2 +

1

2
(fn+1

i,j )2,

then

B1 = −1

2

∑

n,i,j

∆xi∆vj [f
n+1
i,j − fn

i,j ]
2 − 1

2

∑

i,j

∆xi∆vj(f
0
i,j)

2 +
1

2

∑

i,j

∆xi∆vj(f
NT +1
i,j )2.

By scheme (7)-(12), we have
∑

n,i,j

∆xi∆vj [f
n+1
i,j − fn

i,j ]
2

=
∑

n,i,j

∆t2

∆xi∆vj

[

∆vj v+
j

(

1 + si+1/2,j − σi−1/2,j

)

(fn
i,j − fn

i−1,j) +

∆vj v−j
(

1 − si+3/2,j + σi+1/2,j

)

(fn
i,j − fn

i+1,j) +

∆xi E
n+
i

(

1 + si,j+1/2 − σi,j−1/2

)

(fn
i,j − fn

i,j−1) +

∆xi E
n−
i

(

1 − si,j+3/2 + σi,j+1/2

)

(fn
i,j − fn

i,j+1)

]2

.

Using the Cauchy-Schwarz inequality and the stability condition (20), there exists C0 > 0, only
depending on f0, such that

B1 ≥ −∆t

2
(1 − ξ)

∑

n,i,j

[

∆vj v+
j

(

1 + si+1/2,j − σi−1/2,j

)

(fn
i,j − fn

i−1,j)
2

+∆vj v−j
(

1 − si+3/2,j + σi+1/2,j

)

(fn
i,j − fn

i+1,j)
2

+∆xi E
n+
i

(

1 + si,j+1/2 − σi,j−1/2

)

(fn
i,j − fn

i,j−1)
2

+∆xi E
n−
i

(

1 − si,j+3/2 + σi,j+1/2

)

(fn
i,j − fn

i,j+1)
2

]

− C0.
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Now, we study the term B2, which may be rewritten as B2 = B21+B22 where B21 is the contribution
of the first order approximation

B21 =
∆t

2

∑

n,i,j

[

∆vj v+
j [fn

i,j − fn
i−1,j ]

2 + ∆vj v−j [fn
i,j − fn

i+1,j ]
2 +

∆xi E
n+
i [fn

i,j − fn
i,j−1]

2 + ∆xi E
n−
i [fn

i,j − fn
i,j+1]

2

]

+
∆t

2

∑

n,i

[

∆xi E
n+
i [(fn

i,j1)
2 − (fn

i,j0−1)
2] + ∆xi E

n−
i [(fn

i,j0)
2 − (fn

i,j1+1)
2]

]

+
∆t

2

∑

n,j

[

∆vj v+
j [(fn

i1,j)
2 − (fn

i0−1,j)
2] + ∆vj v−j [(fn

i0,,j)
2 − (fn

i1+1,j)
2]

]

and B22 the contribution of the second order term

B22 = ∆t
∑

n,i,j

∆vj

[

v+
j [si+1/2,j − σi−1/2,j ][f

n
i,j − fn

i−1,j ] + v−j [si+3/2,j − σi+1/2,j ] [f
n
i+1,j − fn

i,j ]
]

fn
i,j +

∆xi

[

En+
i [si,j+1/2 − σi,j−1/2] [f

n
i,j − fn

i,j−1] + En−
i [si,j+3/2 − σi,j+1/2] [f

n
i,j+1 − fn

i,j ]
]

fn
i,j .

On the one hand, from the estimates on velocity moments in Proposition 3.2, we get that there
exists a constant C1 > 0, only depending on T and f0, such that

B21 ≥ ∆t

2

∑

n,i,j

[

∆vj v+
j [fn

i,j − fn
i−1,j ]

2 + ∆vj v−j [fn
i,j − fn

i+1,j ]
2 +

∆xi E
n+
i [fn

i,j − fn
i,j−1]

2 + ∆xi E
n−
i [fn

i,j − fn
i,j+1]

2

]

− C1.

On the other hand, using that

si+1/2,j(f
n
i,j − fn

i−1,j) = σi+1/2,j(f
n
i+1,j − fn

i,j),

and
si,j+1/2(f

n
i,j − fn

i,j−1) = σi,j+1/2(f
n
i,j+1 − fn

i,j),

we prove that there exists a constant C2, only depending on T and f0, such that

B22 ≥ −∆t
∑

n,i,j

[

∆vj

(

v+
j σi−1/2,j [fn

i,j − fn
i−1,j ]

2 + v−j si+3/2,j [fn
i,j − fn

i+1,j ]
2
)

+

∆xi

(

En+
i σi,j−1/2 [fn

i,j − fn
i,j−1]

2 + En−
i si,j+3/2 [fn

i,j − fn
i,j+1]

2
)

]

− C2.

Then, since B1 + B21 + B22 = 0 the following inequality holds:

ξ ∆t

2

∑

n,i,j

[

∆vj v+
j [fn

i,j − fn
i−1,j ]

2 + ∆vj v−j [fn
i,j − fn

i+1,j ]
2

+∆xi E
n+
i [fn

i,j − fn
i,j−1]

2 + ∆xi E
n−
i [fn

i,j − fn
i,j+1]

2

]

≤ ∆t
∑

n,i,j

∆vj |vj | [si+1/2,j + σi−1/2,j ] [f
n
i,j − fn

i−1,j ]
2 + ∆xi |En

i | [si,j+1/2 + σi,j−1/2] [f
n
i,j − fn

i,j−1]
2

+ C0 + C1 + C2.
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Therefore, using hypothesis on the limiters (13), there exists a constant C > 0, only depending on
f0, T , R and ξ, such that

∆t

2

∑

n,i,j

[

∆vj v+
j [fn

i,j − fn
i−1,j ]

2 + ∆vj v−j [fn
i,j − fn

i+1,j ]
2 +

∆xi E
n+
i [fn

i,j − fn
i,j−1]

2 + ∆xi E
n−
i [fn

i,j − fn
i,j+1]

2

]

,

≤ C

ξ

(

1 + K hβ−1
)

.

Finally, the previous inequality and the Cauchy–Schwarz inequality lead to

EF1h ≤
[

∆t
∑

n,i,j

∆vj v+
j [fn

i,j − fn
i−1,j ]

2 + ∆vj v−j [fn
i,j − fn

i+1,j ]
2

+∆xi E
n+
i [fn

i,j − fn
i,j−1]

2 + ∆xi E
n−
i [fn

i,j − fn
i,j+1]

2

]1/2

×
[

∆t
∑

n,i,j

∆x2
i (∆vj |vj | + ∆xi |En

i |)
]1/2

,

≤ h1/2

(

C

ξ

(

1 + K hβ−1
)

)1/2
[

2 T LR (1 − ξ)

]1/2

.

Now, we prove the second estimate on EF2h, using the scheme (7)-(12):

EF2h = ∆t
∑

n,i,j

∆xi∆vj

∣

∣

∣fn+1
i,j − fn

i,j

∣

∣

∣,

≤ ∆t2
∑

n,i,j

[

∆vj v+
j |fn

i,j − fn
i−1,j | + ∆vj v−j |fn

i,j − fn
i+1,j |

+∆xi E
n+
i |fn

i,j − fn
i,j−1| + ∆xi E

n−
i |fn

i,j − fn
i,j+1|

]

.

As in the previous case, we use the Cauchy–Schwarz inequality and the stability condition (20).
We also recall that the discrete electric field is uniformly bounded:

EF2h ≤ ∆t1/2

[

2 T LR (1 − ξ)
C

ξ

(

1 + K hβ−1
)

]1/2

.

✷

4. Proof of Theorem 2.1

In a first part, we prove that there are subsequences which converge to a limit (f,E) and in a
second step we identify this limit as the unique solution to the Vlasov-Poisson system (1)-(5).
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4.1. Compactness of the sequence (fh, Eh). We consider a sequence of a mesh of the phase
space defined as in the beginning of the paper satisfying the condition (6), and we define a time
step ∆t such that the stability condition (20) is true. This sequence is denoted by (Mh)h>0.

For a given mesh, we are able to construct, by the finite volume scheme (7)-(12), a unique pair
(fh, Eh). Thus, we set

A =
{

Eh ∈ W 1,∞(ΩT ) ; Eh given by (17) for a mesh Mh

}

.

On the one hand, in Proposition 3.1 and Proposition 3.2 we have proved there exists a constant
independent on the mesh Mh such that

‖Eh‖L∞ +

∥

∥

∥

∥

∂Eh

∂t

∥

∥

∥

∥

L∞

+

∥

∥

∥

∥

∂Eh

∂x

∥

∥

∥

∥

L∞

≤ CT .

Moreover, from the same estimates, we also have

‖Eh − Ẽh‖L∞ ≤ CT (h + ∆t)

On the other hand, using the fact that the injection from W 1,∞(ΩT ) to C0(ΩT ) is compact, there
exists a subsequence of (Eh)h>0 and a function E belonging to C0(ΩT ) such that

Eh ⇀ E in L∞(ΩT ) weak-⋆ as h → 0,

and

Eh → E in C0(ΩT ) strong as h → 0 ;

Ẽh → E in C0(ΩT ) strong as h → 0.

Moreover, we also know by Proposition 3.1 that the discrete distribution function fh is bounded
in L∞(QT ). Therefore, there exists a subsequence and a function f ∈ L∞(QT ) such that

fh(t, x, v) ⇀ f(t, x, v) in L∞(QT ) weak-⋆ as h → 0.

The discrete charge ρh is bounded in L∞(ΩT ); then up to the extraction of a subsequence, we
also have

ρh(t, x) ⇀ ρ(t, x) in L∞(ΩT ) weak-⋆ as h → 0.

4.2. Convergence to the weak solution of the Vlasov equation. Let ϕ ∈ C∞
c (QT ), R > 0,

and j0, j1 ∈ Z be such that

Supp

(

ϕ(t, x, .)

)

⊂ [−R,R]

and

−R ∈ (vj0−1/2, vj0+1/2) and R ∈ (vj1−1/2, vj1+1/2).

Moreover ϕ(t, 0, v) = 0 for all v ≤ 0 and ϕ(t, L, v) = 0 for all v ≥ 0.

We set ϕn
i,j such that

ϕn
i,j :=

1

∆t ∆xi ∆vj

∫ tn+1

tn

∫

Ci,j

ϕ(t, x, v)dxdvdt

and multiply the finite volume scheme (7)-(12) by ϕn
i,j , sum over i ∈

{

0, . . . , nx−1
}

, j ∈
{

j0, . . . , j1

}

,

and n ∈
{

0, . . . , NT = T
∆t

}

,

E1 + E2 + E3 = 0,

with

E1 =
∑

n,i,j

(fn+1
i,j − fn

i,j)∆xi ∆vj ϕn
i,j ,
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E2 =
∑

n,i,j

[

∆vj v+
j (fn

i,j − fn
i−1,j) + ∆vj v−j (fn

i,j − fn
i+1,j) + ∆xi E

n+
i (fn

i,j − fn
i,j−1)

+ ∆xi E
n−
i (fn

i,j − fn
i,j+1)

]

∆t ϕn
i,j

and

E3 =
∑

n,i,j

[

∆vj v+
j

[

si+1/2,j − σi−1/2,j

]

(fn
i,j − fn

i−1,j)

+ ∆vj v−j
[

σi+1/2,j − si+3/2,j

]

(fn
i,j − fn

i+1,j)

+ ∆xi E
n+
i

[

si,j+1/2 − σi,j−1/2

]

(fn
i,j − fn

i,j−1)

+ ∆xi E
n−
i

[

σi,j+1/2 − si,j+3/2

]

(fn
i,j − fn

i,j+1)

]

∆t ϕn
i,j .

Moreover, we denote E1,0 and E2,0 by

E1,0 =

∫

QT

fh(t, x, v)
∂ϕ

∂t
(t, x, v)dtdxdv +

∫

Q
f0(x, v)ϕ(0, x, v)dxdv

and

E2,0 =

∫

QT

fh(t, x, v)

[

v
∂ϕ

∂x
(t, x, v) + Eh(t, x)

∂ϕ

∂v
(t, x, v)

]

dxdvdt

+

∫ T

0

∫

v≥0
v [gh(t, 0, v)ϕ(t, 0, v)] dv dt.

In the sequel we will compare E1 with E1,0 and E2 with E2,0 to establish that E1,0 + E2,0 goes to
zero as h → 0. We first treat the terms E1 and E1,0 and remark that E1,0 can be rewritten as

E1,0 =
∑

n,i,j

fn
i,j

∫

Ci,j

[

ϕ(tn+1, x, v) − ϕ(tn, x, v)

]

dx dv +

∫

Q
f0(x, v) ϕ(0, x, v) dx dv.

By a discrete integration by parts, it follows that

E1,0 = −
∑

n,i,j

(

fn+1
i,j − fn

i,j

) ∫

Ci,j

ϕ(tn+1, x, v)dxdv

−
∫

Q

(

fh(0, x, v) − f0(x, v)
)

ϕ(0, x, v)dxdv.

Thus,

|E1 + E1,0| ≤
∑

n,i,j

|fn+1
i,j − fn

i,j |
∫ tn+1

tn

∫

Ci,j

∣

∣

∣

∣

∂ϕ

∂t
(t, x, v)

∣

∣

∣

∣

dtdxdv

+

∫

Q
|fh(0, x, v) − f0(x, v)| |ϕ(0, x, v)|dxdv,

with the discrete initial data defined, for example, by

fh(0, x, v) =
1

|Ci,j |

∫

Ci,j

f0(x, v)dxdv ∀(x, v) ∈ Ci,j .
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Using the assumption on the initial data f0 ∈ L1(Q) ∩ L∞(Q), we then have

lim
h→0

∫

Q
|fh(0, x, v) − f0(x, v)| |ϕ(0, x, v)|dxdv = 0.

Moreover, from the inequality on the term EF2h given by (30) in Lemma 3.3, we have

∑

n,i,j

|fn+1
i,j − fn

i,j |
∫ tn+1

tn

∫

Ci,j

∣

∣

∣

∣

∂ϕ

∂t
(t, x, v)

∣

∣

∣

∣

dtdxdv ≤ C‖∂ϕ

∂t
‖L∞ ∆t1/2.

Then,

(31) |E1 + E1,0| → 0 as h → 0.

Now we deal with the terms E2 and E2,0. Therefore, we first introduce the notation

E2,1 =
∑

n,i,j

[

v+
j (fn

i,j − fn
i−1,j)

∫ tn+1

tn

∫ vj+1/2

vj−1/2

ϕ(t, xi−1/2, v)dvdt

+ v−j (fn
i,j − fn

i+1,j)

∫ tn+1

tn

∫ vj+1/2

vj−1/2

ϕ(t, xi+1/2, v)dvdt

+En+
i (fn

i,j − fn
i,j−1)

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x, vj−1/2)dxdt

+En−
i (fn

i,j − fn
i,j+1)

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x, vj+1/2)dxdt

]

.

On the one hand, we compare E2 and E2,1:

|E2 − E2,1| =











∑

n,i,j

[

v+
j (fn

i,j − fn
i−1,j)

[

1

∆xi

∫ tn+1

tn

∫

Ci,j

ϕ(t, x, v) − ϕ(t, xi−1/2, v)dvdt

]

+ v−j (fn
i,j − fn

i+1,j)

[

1

∆xi

∫ tn+1

tn

∫

Ci,j

ϕ(t, x, v) − ϕ(t, xi+1/2, v)dvdt

]

+En+
i (fn

i,j − fn
i,j−1)

[

1

∆vj

∫ tn+1

tn

∫

Ci,j

ϕ(t, x, v) − ϕ(t, x, vj−1/2)dxdt

]

+En−
i (fn

i,j − fn
i,j+1)

[

1

∆vj

∫ tn+1

tn

∫

Ci,j

ϕ(t, x, v) − ϕ(t, x, vj−1/2)dxdt

]

]









.

Using the inequality on EF1h given by (30) in Lemma 3.3, there exists c > 0 depending only on T ,
R, L, f0, α, ξ such that the following inequality holds:

(32) |E2 − E2,1| ≤ c ‖∇(x,v)ϕ‖L∞ h1/2.

On the other hand, we estimate |E2,0 + E2,1|, rewriting the term E2,1 and using the boundary
conditions, it yields the following (we remind that ϕ is compactly supported in velocity):

E2,1 = −
∑

n,i,j

fn
i,j

∫ tn+1

tn

∫

Ci,j

vj
∂ϕ

∂x
(t, x, v) + En

i

∂ϕ

∂v
(t, x, v)dvdxdt

+
∑

n,j

v+
j gn

j

∫ tn+1

tn

∫ vj+1/2

vj−1/2

ϕ(t, 0, v)dvdt.
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Therefore,

|E2,0 + E2,1| ≤
∑

n,i,j

fn
i,j

[

∫ tn+1

tn

∫

Ci,j

∣

∣v − vj

∣

∣

∣

∣

∂ϕ

∂x
(t, x, v)

∣

∣ +
∣

∣Eh(t, x) − En
i

∣

∣

∣

∣

∂ϕ

∂v
(t, x, v)

∣

∣dxdvdt

]

≤ ‖∇ϕ‖L∞

∑

n,i,j

∆t ∆xi ∆vj fn
i,j [∆vj + sup |Eh(t, x) − En

i |]

and there exists C > 0, only depending on T , R, L, f0, α, ξ, such that

(33) |E2,0 + E2,1| ≤ C ‖∇ϕ‖L∞ h.

It remains to estimate the last term E3. Using the definition of si+1/2,j and si,j+1/2 and performing
a discrete integration by part, we get

E3 = ∆t
∑

n,i,j

∆vj

[

v+
j σi−1/2,j (fn

i,j − fn
i−1,j) − v−j σi+1/2,j (fn

i,j − fn
i+1,j)

]

[ϕn
i−1,j − ϕn

i,j ] +

∆xi

[

En+
i σi,j−1/2 (fn

i,j − fn
i,j−1) − En−

i σi,j+1/2 (fn
i,j − fn

i,j+1)
]

[ϕn
i,j−1 − ϕn

i,j ].

However, we know that

|ϕn
i−1,j − ϕn

i,j | ≤ ‖∂ϕ

∂x
‖L∞

(

∆xi−1 + ∆xi

2

)

.

and using the estimate on EF1H in Lemma 3.3, it yields there exists a constant C > 0 such that

(34) |E3| ≤ C ‖∇(x,v)ϕ‖L∞ h1/2.

Finally, recalling that E1 + E2 + E3 = 0, we obtain

ǫ(∆t, h) =

∫

QT

fh

(

∂ϕ

∂t
+ v

∂ϕ

∂x
+ Eh(t, x)

∂ϕ

∂v

)

dtdxdv +

∫

Q
f0(x, v)ϕ(0, x, v)dxdv

= E1,0 + E2,0

= E1,0 + E1 + E20 + E2,1 − E2,1 + E2 + E3,

and from the previous estimates, we proved there exists a constant C depending only on ϕ, f0, L,
T , α, ξ such that

|E1,0 + E1| ≤ C (‖f0 − fh(0)‖L1 + ∆t1/2),

|E2,0 − E2| ≤ C h1/2,

|E2,0 + E2,1| ≤ C h.

|E3| ≤ C h1/2.

Then, ǫ(∆t, h) → 0 as h → 0.
As we know

fh(t, x, v) ⇀ f(t, x, v) in L∞(QT ) weak-⋆

and
Eh(t, x) → E(t, x) in C0(ΩT ),

we have shown that the limit pair (f,E) of a subsequence (fh, Eh)h>0 is a solution of the Vlasov
equation (1). To conclude, we have to prove that this couple is also a solution of the Poisson
equation.

Remark 4.1. In practical calculation, we use a large but finite bound M for the velocity space.
In this paper, we assume that as h → 0, the support of the velocity space goes to infinity, and the
stability condition (20) imposes on us that

∃ ε ∈ (0, 1), vh ≃ 1

hǫ
, and ∆t ≃ h2

h1−ǫ + h
≃ h1+ǫ.
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4.3. Convergence to the solution of the Poisson equation. We have already proved that
there exists a subsequence of (Eh)h>0 and E ∈ C0(ΩT ) such that Eh converges to E and ‖Eh −
Ẽh‖L∞ goes to zero when h goes to zero. Hence, we know that up to a sub-sequence Ẽh converges
to E. Now let us prove that E is solution to the Poisson equation.

On the one hand, for all test functions which belong to C1
c ([0, T ) × (0, L)), we set ϕn

i such that

ϕn
i :=

1

∆t ∆xi

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ϕ(t, x)dxdt

and multiply the finite volume scheme (15) by ∆t ∆xi ϕ
n
i , sum over i ∈

{

0, . . . , nx − 1
}

and

n ∈
{

0, . . . , NT = T
∆t

}

, it gives T1 + T2 = 0 with

T1 = ∆t
∑

i,n

∆xi E
n
i

(

ϕn
i − ϕn

i−1

)

T2 =
∑

i,n

∫ tn+1

tn

∫ xi+1/2

xi−1/2

ρn
i ϕ(t, x)dxdt.

We also set T1,0 and T2,0

T1,0 =

∫

ΩT

Ẽh(t, x)
∂ϕ

∂x
(t, x) dxdt

T2,0 =

∫

ΩT

ρh(t, x) ϕ(t, x) dtdx,

and observe that T2 = T2,0 and

|T1 − T1,0| =

∣

∣

∣

∣

∣

∣

∑

i,n

∆xi E
n
i

∫ tn+1

tn

[

ϕn
i − ϕ(t, xi+1/2) − ϕn

i−1 + ϕ(t, xi+1/2)
]

dt

∣

∣

∣

∣

∣

∣

≤ CT ‖∂ϕ

∂x
‖L∞ h.

The weak formulation infers that the solution of the Vlasov-Poisson system belongs to C0([0, T [;D′),
but observing the electric field E is bounded in W 1,∞(ΩT ) and the initial data are continuous, we
see that the distribution function f is also continuous in (x, v). Let us recall that under our hy-
pothesis, the solution of the Vlasov-Poisson system (1)-(5) is unique; then any subsequence that
we considered converges to the same limit and the sequence (fh, Eh)h>0 converges to the unique
solution.

5. Numerical Simulations

In this section, we consider the two component Vlasov-Poisson system. Let fα be the distribution
function of species α ∈ {e, i}; it satisfies the Vlasov equation

(35)
∂fα

∂t
+ v

∂fα

∂x
+

qα

mα
E(t, x)

∂fα

∂v
= 0

coupled with the Poisson equation

(36) E(t, x) = −∇xφ(t, x), −∂2φ

∂x2
(t, x) =

ρ

ǫ0
,

where

ρ(t, x) =
∑

α∈{i,e}

ρα
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and

ρα = qα

∫

R

fα(t, x, v) dv, α ∈ {e, i}.

In the previous analysis we presented for clarity reasons the single component Vlasov-Poisson
system, but the result remains true for the multi-component case. We assume here that qe = −qi =
1 and ǫ0 = 1 and me/mi = 0.001, which means that ions are more heavy than electrons. We
perform numerical simulations for this model with a zero initial datum f0 = 0, λ(t) = 1 and

g(t, v) =
1√
2 π

exp(−v2/2).

In order to improve time discretization accuracy, the procedure is achieved by a second order
Runge-Kutta scheme. We performed numerical simulations for different meshes and only report
the results of a simulation using a number of cells nx = 128 in the x-direction, and nv = 128 in the
v-direction with vmax = 6, and the time step ∆t = 0.01 for the conservative finite volume scheme.
For these configurations, numerical results are no more sensitive to the mesh and are comparable in
term of accuracy. The evolution obtained by the finite volume scheme clearly appears to give a good
approximation with 128 × 128 points. Here, nonlinear effects are so important that it is necessary
to control spurious oscillation; the second order scheme is conservative and also preseves positivity
of the numerical solution. Moreover, the use of slope correctors in the finite volume scheme allows
to damp spurious osccillations. For the distribution function in the (x, v) space, some filaments
become smaller than the phase space grid size. Nevertheless, this smooth approximation seems
to give a good description of macroscopic values (physics quantities obtained by the integration
of moments of the distribution function with respect to v). Indeed, the evolution of the electric
energy is still accurate using the second order accuracy.

The processes that are at stake here are highly nonlinear and present discontinuities in phase
space. They consist in the excitation of a plasma wave by injected electrons. As the beam progresses
in plasma, the amplitude of the plasma wave grows and more electrons are trapped in this wave as
shown in Fig. 1. At the same time, the plasma electron are ejected through the right side of the
simulation box to neutralize the injected charge with electron beam. In Fig. 2, the modulations
of electron density are the result of large plasma frequency oscillations. An increase of either the
external potential or the simulation time would have resulted in another regime, related to breaking
of the plasma wave, where droplets of accelerated particles are generated in phase space.
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Figure 1. Formation of a phase space vortex : the electron’s distribution function
fh(t, x, v) at time t = 10, 30, 50, 80, 120 and 150 obtained with the second order
finite volume scheme with 128 × 128 points.
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Figure 2. Formation of a phase space vortex : the electron density n(t, x) at time
t = 10, 30, 50, 80, 120 and 150 obtained with the second order finite volume scheme
with 128 × 128 points.
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[12] F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative Numerical schemes for the Vlasov equation,

J. Comput. Phys. 172 (2001) pp. 166–187.
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