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2Équipe MATISSE-SAMOS CES CNRS-UMR 8173

75634 Paris cedex 13, France
vigneron@univ-paris1.fr

Abstract - The various scales of a signal maintain relations of dependence the ones with the others.
Those can vary in time and reveal speed changes in the studied phenomenon. In the goal to establish
these changes, one shall compute first the wavelet transform of a signal, on various scales. Then
one shall study the statistical dependences between these transforms thanks to an estimator of mutual
information. One shall then propose to summarize the resulting network of dependences by a graph
of dependences by thresholding the values of the mutual information or by quantifying its values.The
method can be applied to several types of signals, such as fluctuations of market indexes for instance
the S&P 500, or high frequency foreign exchange (FX) rates.
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1 Introduction

A growing interest is evident in investigating the dependence relationships between complex data such
as curves, spectra, time series or more generally signals. In these cases, each observation consists of
values of dependent variables which are usually function of time.
The paper presents an information analysis of statistical dependencies between wavelet coefficients ex-
tracted from segmented time series on a model-free basis. These intrascale and interscale dependencies
are measured using mutual information. Mutual informations depend strongly on the choice on the
wavelet filters. Such dependencies have been studied intensively in image compression literature[13].
Wavelet analysis, by means of selection of criteria, take contact with self-similar fractals and iter-
ative analysis, through other techniques of functional approximation, as radial basis functions, etc.
although we don’t want to enter in the arsenal of modern tools. The analysis of wavelets also allows
a connection with the p-adic analysis and ultrametric criteria in general: these are important when-
ever the possibility of hierarchic structure with layers or levels of information arises. In the study of
time series it is crucial to understand what is dependent and what independent of the temporal and
space scales. The wavelet transform (WT) nearly decorrelates many time series and can be viewed
as a Karhunen-Loève transform. Nevertheless, significant dependencies still exist between the wavelet
coefficients.
Most algorithms focus on a certain type of dependencies, which it attempts to capture using a rela-
tively simple and tractable model, such as the Karhunen-Loève transform (KLT), the discrete Fourier
transform (DFT), and the discrete wavelet transform (DWT). Among them KLT is the most effective
algorithm with minimal reconstruction error. The times series dataset is transformed into an orthog-
onal feature space in which each variable is orthogonal to the others. The time series dataset can be
approximated by a low-rank approximation matrix by discarding the variables with lower energy [1].
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DWT and DFT are powerful signal processing techniques and both of them have fast computational
algorithms. DFT maps the time series data fromthe time domain to the frequency domain, and the
fast Fourier transform algorithm (FFT) can compute the DFT coefficients in O(mn logn) time. Unlike
DFT which takes the original time series from the time domain and transforms it into the frequency
domain, DWT transforms the time series from time domain into time-frequency t− f domain.
The fact that the wavelet transform (WT) has the property of time-frequency localisation of the
time series means that most of the times series energy can be represented by only a few wavelet
coefficients. Chan and Fu used the Haar wavelet for time series representation and showed (classifi-
cation) performance improvement over DFT [5]. Popivanov and Miller proposed an algorithm using
the Daubechies wavelet for time series classification [17]. Lin et al. proposed an iterative clustering
algorithm exploring the multi-scale property of wavelets [12]. Numerous other techniques for time
series data reduction have been proposed such as regression tree [2], piecewise linear segmentation
[11], etc. These algorithms work well for time series with few dimensions because the high correlation
among time series data makes it possible to remove huge amount of redundant information. But for
clustering algorithms with unlabeled data, determining the dimensionality of the feature dimension-
ality becomes more difficult. To our personnal knowledge, the feature dimension needs to be decided
by the user.
The aim of this paper is to propose a time-series feature extraction algorithm using orthogonal wavelet
capable to test for the presence of a dependence structure. The problem of determining the feature di-
mensionality is circumvented by choosing the appropriate scale of the WT. An ideal feature extraction
technique has the ability to efficiently reduce the data while preserving the properties of the original
data. However, infomation is lost in dimension reduction. The proposed feature extraction algorithm
uses a information-theoretic approach for measuring dependence in time series.
The rest of the paper is organized as follows. Section 2 is a reminder on multiresolution analysis. Sec-
tion 3 formulates the problem of dynamic forecasting in terms of mutual information. Section 4 con-
tains a comprehensive experimental evaluation of the proposed algorithm on S&P and high-frequency
foreign exchange time series1. We conclude the paper by summarizing the main contributions and
perspectives in section 5.

2 A refresher on wavelet representations

WT is a domain transform technique for hierarchical decomposing techniques. It allow a sequence to
be described in terms of an approximation of the original sequence, plus a set of details that range
from coarse to fine. The property of wavelets is that the broad trend of the input sequence is preserved
in the approximation part, while the localized changes are kept in the detail parts. More details about
WT can be found in [7]. For short, a wavelet is a smooth and quickly vanishing oscillating function
with good localisation properties in both frequency and time, this is more suitable for approximating
time series data that contain regional structures [14, 8]. The WT uses a basis comprising n waveforms
– n being the length of the data set under analysis. The basis waveforms ψj,k form a set of orthogonal
functions derived from scaling and translations of a mother wavelet

ψj,k(t) = 2j/2ψ(2jt− k), j, k ∈ Z. (1)

Any function f(t) ∈ L2(R) can be represented in terms of this orthogonal basis as

f(t) =
∑

j,k

cj,kψj,k(t), (2)

and the cj,k =< ψj,k(t), f(t) > are called the wavelet coefficients of f(t). To efficiently calculate
the WT for signal processing, Mallat introduced the multiresolution analysis (MRA) and designed
a family of fast algorithms based on [14]. With MRA, a signal can be viewed as being composed

1Chart of S&P 500 price (1950-present) can be found at http://pages.stern.nyu.edu/~churvich/Forecasting/Data/SNP500.CRS
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of a smooth background and fluctuations (also called details) on top of it. The distinction between
the smooth part and the details is determined by the resolution, that is the scale below which the
details of a signal cannot be discerned. At a given resolution, a signal is approximated by ignoring
all fluctuations below that scale. We can progressively increase the resolution: finer details are then
added to the coarser description, providing a better approximation of the signal

X = AJ +

J∑

j=1

Dj , (3)

where Aj and Dj are respectively the approximation and detail at level j of the signal X . In other
words, any time series can be written as the sum of orthogonal signals. Each signals lies in a common
space denoted by V0 and are of lenght n [15]. But Aj and Dj belong to spaces Vj and Wj respectively.
This sequence of nested approximation spaces (Vj) involved in the multiresolution framework (VJ ⊂
VJ−1 ⊂ . . . ⊂ V0). The space Wj is an orthogonal complement of Vj−1 in Vj , i.e. Vj = Vj−1 ⊕Wj−1.
Then by defining

V0 ⊕W0︸ ︷︷ ︸
V1

⊕W1 ⊕ . . .⊕Wj−1 = Vj (4)

any signal belonging to Vj (resp. Wj) can be viewed as approximation (resp. detail) signals like Aj
(resp. Dj). From a signal processing point of view, the approximation coefficients within lower scales
correspond to the lower freequency part of the signal. Hence the first few coefficients Aj can be viewed
as a noise-reduced signal. Thus keeping these coeffciients will not loose much information from the
original time series X . Hence, normally, the first coefficients are chosen as the features: they retain
the entire information of X at a particular level of granularity. The task of choosing the first few
wavelet coefficients is circumvented by choosing a particular scale. The candidate selection of feature
dimensions is reduced from {1, 2, . . . , n} to {20, 21, . . . , 2J−1}.
We use the Haar wavelet in out experiments which has the fastest transform algorithm and is the
most popularly used orthogonal wavelet proposed by Haar. Figure 1 plots two wavelets: the Haar on
the left and the Daubechies (db2) series on the right. Conceptually, these mother wavelet functions
are analogous to the impulse response of a band-pass filter.
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Figure 1: The general shape of 2 wavelets commonly used in wavelet analysis. The sharp corners enable the
transform to match up with local details that cannot be observed when using Fourier transform that matches
only sinusoidal shapes. Fig 1(a) The Haar wavelet (b) the Daubechies wavelet.

The Haar wavelet has the function

ψH(t) =





1 if 0 < t < 1
2

−1 if 1
2 < t < 1

0 otherwise.

(5)

So far, for many time series, the construction is not very good. In this case, no effort was made to do
a good job of the decomposition, but merely to perform one MRA and to make it comprehensive.
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3 Methods

3.1 Related work

One frequent assumption in the wavelet domain is the absence of correlations between coefficients. As
put forward by [9] when studying high-frequency time series such as exchange rates, this assumption
should be questionned. In [9, 6] the underlying joint distribution is estimated thanks to a hidden
Markov model, where to each coefficient of the DWT corresponds a high or low volatility level.
Besides the fact that we will consider only binary dependence, in this article we impose no predefined
structure such as a Hidden Markov Tree. Rather, we propose to examine the dependence between
every possible wavelet coefficients couples, in a combinatorial way.
In the litterature devoted to the statistical physics approach to financial time series, the dependence
between scales is given a precise meaning, and models of the random processes are debated. For
example, Arnéodo et al. [3] focus on an explicit model of downward causality between successive
scales of the random process. Although we will not give such an inclination to this article we remark
that, interestingly, mutual information plays a role in the latter work. Indeed, it allows to measure
the propagation of the causal influence of a scale s1 on scale s2 < s1.
In the following we mix the two approaches and infer the structure of dependence between the wavelet
coefficients thanks to tools from information theory such as mutual information, that can be estimated
from small samples.

3.2 Inference of dependence structure

One first naive approach would be to first perform the DWT or the continuous wavelet transform
(CWT) of a one-dimensional signal, then to consider all the coefficients of a single scale s1 as the
realizations of a single random variables. Then, one may infer the dependence between every couples
of scales (si, sj) thanks to a measure of dependence between the sample χi = {ci,1, . . . , ci,k} and
χj = {cj,1, . . . , cj,k}.
This was done S&P500 data, as shown by Fig. 2. One may however legitimately question the grouping
of several coefficients estimates cj,1, . . . , cj,k belonging to the same scale, since there is no reason why
they should obey the same law.
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Figure 2: Naive inference of dependence (a) Signal S&P (t) (b) Continuous wavelet transform coefficients
(c) Mutual information matrix (mij) = MI(χi, χj) where χi = {ci,1, . . . , ci,k} and χj = {cj,1, . . . , cj,k} (d)
Dependence graph, obtained after thresholding (mij)

Another approach considers every single cj,k as a random variable, and aims at infering the dependence
between all possible couples cj1,k1 and cj2,k2 . To do so one needs several realizations cj,k for fixed
values of j and k. Here we can take advantage of high-frequency sampling of financial time series and
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remark that they may display some degree of periodicity from one day to another, as shown on the
example of the realized volatility of USD-DEM volatility in [9]. As illustrated by Fig.3, if we consider
N high-frequency time series that correspond to N opening days, to each day i we can associate a set
of wavelet coefficents cij,k and thus estimate either the pdf of cj,k or directly the mutual information
between different coefficients cj1,k1 and cj2,k2 .
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Figure 3: Sampling strategy. Each day yields a higi-frequency time series, that can be transformed in the
DWT coefficients. N opening days thus allow to collect N realizations of each coefficient cj,k

Next we describe more precisely the data under study, before laying stress on the statistical intricacies
relative to the inference of the dependence structure.

3.3 EUR-USD volatility

We study the realized volatility at the sampling rate of 1-min, from January 1st, 2008, to the end of
May, spanning 100 opening days2. The 5-min foreign exchange (FX) return can be defined as:

ri,5 = logPi − logPi−5 (6)

Pi being the foreign exchange price at discrete time i. The volatility will be defined below as r2
i,5.

Only the first 1024 sample out of approximately 1400 available each day are conserved, so as to fit
the dyadic-length constraint.

3.4 Empirical test of dependence, graph inference

Mutual information is approximated from finite sample thanks to the estimator I (1)(x, y) by Kraskov
et al. [10], based on the statistics of the k-th nearest neighbours, for a fixed maximum number of k = 6
neighbors. As explained in section 3.3, each sample χj,k = {cij,k}i≤imax for the wavelet coefficient cj,k
will be composed of imax = 100 realizations, which may not seem enough at first sight. The estimation
error, though, was shown to remain tolerable even for such small samples in the case of a Gaussian
random variable.

2 Data made publicly available online courtesy of Forexite, see http://www.forexite.com/free_forex_quotes/

forex_history_arhiv.html
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Even if the error properties of this estimator have been well studied, its distribution as a function of
the probability laws of the input random variables remains out of reach, should the latter be known.
We need however to design a statistical test based on this estimation, and propose to get around this
difficulty thanks to a surrogate data empirical test [18, p.79]. To do so, N = 3000 values of the mutual
information I(1)(χj1,k1 , χj2,k2) between a sample χj1,k1 = {cij1,k1

} and another one χj2,k2 = {cij2,k2
}

are computed, where (j1, k1, j2, k2) are randomly chosen, and the values in the samples are randomly

permuted. The obtained set of mutual information estimates {I (1)
1 , . . . I

(1)
N } approximately follow a

normal law, whose mean and standard deviation (µ, σ) can be estimated. Now, every realization of the
mutual information can be tested again the null hypothesis H0 that it follows a normal law N (µ, σ),
under the α = 0.05 significance threshold.
We can further proceed to test the significance of the dependence between cj1,k1 and cj2,k2 , for every
couples (j1, k1) and (j2, k2). This problem must be recognized as a an occurrence of a multiple
comparison problem, where the α = 0.05 significance can’t be guaranteed if each comparison is made
separately. Thus a p-value correction is made necessary, and fulfilled thanks to an Fdr correction [4],
under the αfdr = 0.05 significance threshold.

4 Results

We now summarize the results, obtained on a subset of the full 1024 × 1024 mutual information
matrix, for clarity reasons. Fig.4(a) represents the p-values matrix (pij) for the statistical test of
independence between two coefficients. Low values in dark stand for values such that it is unlikely
that the coefficients indexed are independent. After thresholding by the a = 5% significance level, the
couples that failed to pass the test are shown in light color by Fig.4(b).
Remark that the main diagonal is rejected, which is consistent with the fact that a coefficient is
hardly independent with itself. Now, other unexpected structures appear along the y = ax line, for
different slopes though. Their presence can be explained thanks to the wavelet coefficient dependence
tree, displayed in a decimated way by Fig.4(d). A connection between two nodes means that two
coefficients failed to pass the independence test, and we can note that nodes pertaining to a given
scale s are connected with their closest neighbour. Such nodes correspond precisely to the y = ax
lines with a 6= 1 in the rejection matrix.
Comparaison of the full wavelet coefficient dependence tree Fig.4(c) with models in the litterature,
such as thee Hidden Markov Tree (HMT) used by [9] shows that the dependence structure imposed
on the model should be compared with the model-free structure obtained by direct inference. Indeed,
in HMT models, associations are allowed between scales but not within scales, which would not fit
the data under study. Furthermore, associations between non adjacent scales should be taken into
account, as suggested by [6, p.892], in consideration of the complex interplay between scales and times
in 4(c).

5 Conclusions and perspectives

We have presented a descriptive framework whose aim is to infer the dependence structure of a set of
times series thanks to their Wavelet Transform, and dependence measures from Information theory.
We show that this structure can be inferred without model, and apply the method to a high-frequency
financial time series. It appears that intrascale dependence play an important role, between adjacent
coefficients in the wavelet coefficients tree; and that dependencies span scales and time locations.
In future research we plan to discuss the following topics:

• can this method succeed in inferring the structure of processes studied in the litterature, where
the relations between scales are available, such as the “causal cascade” depicted in [3]. For such
processes where the pdfs may be available, can we derive explicit expressions of the mutual
information between coefficients ?
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Figure 4: Inferred structure of dependence, for the first 256 coefficients, out of 1024 (a) p-value matrix (pij),
for the test against the null hypothesis of independence between two DWT coefficients indexed by i, j (b)
rejection matrix, rij = 1 if the two coefficients can’t be considered as independent (c) Wavelet coefficients
dependence graph (d) Decimated dependence graph.



MASHS 2008, Creteil

• can we minimize mutual information estimation error, e.g. thanks to resampling techniques, for
a reasonable computational cost ?

• can this framework be extended to oriented or causal measures of dependence ?

• do the structure of the obtained graphs have an explanatory power, for example through the
study of communities [16].

• what applications can we envision, from machine learning (clustering, rupture detection) to
multiscale physical systems analysis (e.g. robotics, . . . ) ?
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