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We compare classes of finite relational structures via monadic
second-order transductions. More precisely, we study the preorder

C ⊑ K : iff C ⊆ τ(K) for some transduction τ .

If we only consider classes of incidence structureswe can completely
describe the resulting hierarchy. It is linear of order type ω+ . Each
level can be characterised in terms of a suitable variant of tree-width.
Canonical representatives of the various levels are: the class of (i) all
trees of height n, for n ∈ N ; (ii) all paths; (iii) all trees; and (iv) all
grids.

 I

Monadic second-order logic (MSO) is one of themost expressive logicswhere quite
a few interesting theories are still decidable. In particular, the infinite binary tree
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has a decidable MSO-theory [, ] and the same holds for many classes of (fi-
nite or infinite) structures with bounded tree-width [, ]. Furthermore, for ev-
ery fixed MSO-sentence φ and every class C of finite structures with bounded
tree-width, there is a linear-time algorithm that checks whether a given struc-
ture from C satisfies φ [, ]. Examples of the expressive power of monadic
second-order logic include graph properties like k-colourability, various types
of connectivity, and planarity (via Kuratowski’s well-known characterisation by
forbidden configurations).
We also consider a variant of monadic second-order logic called guarded

second-order logic (GSO) which allows quantification not only over sets of ele-
ments but also over sets of edges (i.e., tuples from the relations) []. ¿e above
mentioned linear-time algorithms can be adapted to this logic. ¿ere are tight
links between guarded second-order logic and tree-width: every class of (finite
or infinite) relational structures with a decidable GSO-theory has bounded tree-
width. ¿is gives a sort of converse to the above mentioned decidability results
[, ]. ¿e proof of this result uses a deep theorem of graph minor theory by
Robertson and Seymour: a set of graphs has bounded tree-width if and only if it
excludes some planar graph as a minor [].
To compare theMSO-theories or GSO-theories of two classes of structures we

can usemonadic second-order transductions, a certain kind of interpretations suit-
able both, for monadic second-order logic and, with a technical trick, also for
guarded second-order logic [, , , ].
In the present article we classify classes of finite structures according to their

‘combinatorial complexity’. (Note that we do not consider decidability issues.)We
have already mentioned two ways to define the complexity of such classes. We
can compare them via transductions, or we can see which variants of tree-width
are bounded for the class. As it turns out these two approaches are equivalent
and they give rise to the same hierarchy.¿is indicates the robustness of our defi-
nitions and their intrinsic interest. Other possible hierarchies, based on different
logics, will be considered in Section .
Let us give more details. An MSO-transduction is a transformation of rela-

tional structures specified by monadic second-order formulae. As graphs can
be represented by relational structures, we can use MSO-transductions as trans-
formations between graphs. An MSO-transduction is a generalisation of the fol-
lowing kind of operations:
(i) the definition of a relational structure “inside” another one (inmodel theory

this is called an interpretation);
(ii) the replacement of a structure A by the union of a fixed number of dis-





joint copies of A, augmented with appropriate relations between the copies (see
Definition . (a));
(iii) the expansion of a given structureA by a fixed number of unary predicates,

called parameters. Usually, these predicates are arbitrary subsets of the domain,
but we also may have a formula imposing restrictions on them.
Because of the possibility to use parameters, a transduction τ is amany-valued

map in general. (We may also think of it as non-deterministic.) Each relational
structure A has several images τ(A, P , . . . , Pn) depending on the choice of the
parameters P , . . . , Pn ⊆ A. IfB = τ(A, P̄)we can consider P̄ as an encoding ofB
in A. ¿e transduction τ is the corresponding decoding function.
Each transduction extends in a canonical way to a transformation between

classes of structures. If C andK are classes of relational structures with C ⊆ τ(K),
we can think of τ as a way of encoding the structures in C by elements ofK. For
instance, every finite graph can be encoded in a sufficiently large finite square
grid (by a fixed transduction τ). Every finite tree of height at most n (for fixed n)
can be encoded in a sufficiently long finite path. But it is not the case that all finite
trees can be encoded by paths (by a single transduction).
¿e purpose of this article is to classify classes of finite relational structures

according to their encoding powers.Wewill compare classesC andK of structures
by the following preorder:

C ⊑ K : iff C ⊆ τ(K) for someMSO-transduction τ .

We attack the problem of determining the structure of this preorder. Unfortu-
nately, we only obtain a partial result since we are still missing some tools needed
to give a complete characterisation.
In the case of guarded second-order logic we are more fortunate. Here, the

corresponding hierarchy can be described completely. To obtain a correspond-
ing notion of transduction we cannot simply change the definition of an MSO-
transduction to use GSO-formulae since the resulting notion of transduction
would not yield a reduction between GSO-theories, and it even would not be
closed under composition. Instead, we will take a detour by combining ordinary
MSO-transductions with a well-known translation between GSO andMSO.
¿is translation is based on incidence structures. Let us first describe this no-

tion for undirected graphs where it is very natural.¿ere are two canonical ways
to encode a graphG by a relational structure.We can use its adjacency representa-
tionwhich is a structure ⟨V , edg⟩where the domainV consists of all vertices ofG
and edg is a binary relation containing all pairs of adjacent vertices. But we also





can use the incidence representation ofG. ¿is is the structure ⟨V ∪ E, in⟩ where
the domain V ∪ E contains both, the vertices and the edges of G, and in is the
incidence relation between vertices and edges. In a similar way, we can associate
with every relational structure A its incidence structure Ain (see Definition .)
where the domain also contains elements for all tuples in some relation of A.
It is shown in [] that every GSO-formula φ talking about some structure A

can be translated into anMSO-formula talking about the incidence structureAin,
and vice versa. Hence, we can use incidence structures to obtain an analogue ⊑in
of the preorder ⊑ suitable for guarded second-order logic. We set

C ⊑in K : iff Cin ⊆ τ(Kin) for someMSO-transduction τ ,

where Cin ∶= {Ain ∣ A ∈ C }. ¿e main result of the present article is a com-
plete characterisation of the resulting hierarchy for classes of finite structures.
We show that the preorder ⊑in is linear of order type ω + . It turns out that ev-
ery class of finite structures is equivalent to one of the following classes, listed in
increasing order of generality:

◆ trees of height at most n ∈ N ;
◆ paths;
◆ arbitrary trees (equivalently, binary trees);
◆ (square) grids.

Each of these levels can be characterised in terms of tree decompositions. Hence,
we also obtain a corresponding hierarchy of all complexity measures on struc-
tures that are compatible withMSO-transductions.
¿eupper levels of the hierarchy can be determined easily using themachinery

ofminors and tree decompositions developed byRobertson and Seymour. In par-
ticular, we employ two results characterising bounded tree-width and bounded
path-width in terms of excluded minors [, ].
For the lower levels consisting of classes of bounded path-width, the charac-

terisation is more complicated requiring the development of new results relating
tree decomposition and monadic second-order logic.
In Sections  and  we give basic definitions. Section  collects some known re-

sults from graphminor theory. In particular, we present the connection between
tree-width and monadic second-order transductions. We also prove some new
results in this direction. In Section  we introduce the transduction hierarchy
and we describe the structure of its upper part. ¿e lower part is studied in Sec-
tion . ¿e final Section  contains some extension of our results to other logics
and some open problems in this direction.
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Let us fix our notation. We set [n] ∶= {, . . . , n − } and we write ℘(X) for
the power set of a set X. In this article we only consider finite relational struc-
tures A = ⟨A, RA

 , . . . , R
A
m−⟩. ¿e signature of such a structure is the set Σ =

{R , . . . , Rm−} of relation symbols. We write ar(R) for the arity of a relation R.
For a signature Σ, we denote by STR[Σ] the class of all finite Σ-structures.
We mainly consider incidence structures. ¿ese are representations of struc-

turesA where we have added new elements to the domain, one for each tuple in
the relations of A.

Definition .. LetA = ⟨A, RA
 , . . . , R

A
m−⟩ be a structure and let r be themaximal

arity of a relation R i . ¿e incidence structure of A is the structure

Ain ∶= ⟨A⊍ E, PR
, . . . , PRm−

, in , . . . , inr−⟩ ,

where we extend the domain by

E ∶= RA
 ∪ ⋅ ⋅ ⋅ ∪ R

A
m− ,

and the relations are

PR i
∶= { c̄ ∈ E ∣ c̄ ∈ RA

i } ,
ini ∶= { (a, c̄) ∈ A× E ∣ ∣c̄∣ > i and a = c i } .

¿e class of all incidence structures is STRin[Σ] ∶= {Ain ∣ A ∈ STR[Σ] }.
Remark. Note that incidence structures are binary (i.e., their relations have arity
at most ). Hence, they can be regarded as bipartite labelled directed graphs.

One important property of incidence structures is the fact that they are sparse,
i.e., their relations contain few tuples.

Definition .. Let k ∈ N. A structureA = ⟨A, R̄⟩ is k-sparse if, for every subset
X ⊆ A and all relations R i , we have

∣R i ∩ X
ar(R i)∣ ≤ k ⋅ ∣X∣ .

Lemma .. If A is a structure with relations of arity at most r thenAin is r-sparse.

In [] the term uniformly k-sparse was used.





Sometimes it is possible to reduce results about relational structures to state-
ments about undirected graphs. One way to do so consists in replacing the struc-
ture by its Gaifman graph.

Definition .. ¿e Gaifman graph of a structure A = ⟨A, R̄⟩ is the undirected
graph

Gf(A) ∶= ⟨A, edg⟩ ,
with the same domain A and with the edge relation

edg ∶= { (u, v) ∣ u ≠ v and there is some c̄ ∈ RA
i with u, v ∈ c̄ } .

Let us fix our notation regarding trees.

Definition .. Let D be a set.
(a)We denote byD<ω the set of all finite sequences of elements ofD.¿e prefix

relation on D<ω is defined by

x ⪯ y : iff y = xz , for some z ∈ D<ω .

¿e infimum of x and y with respect to ⪯, i.e., their longest common prefix, is
denoted by x ⊓ y.
(b) A prefix closed subset T ⊆ D<ω is called a tree domain.¿e domain of the

complete m-ary tree of height n is m<n . We distinguish two ways to represent a
tree as a relational structure.
An order tree is a structure isomorphic to a partial order of the form ⟨T , ⪯⟩

where T is a tree domain. If we replace the order ⪯ by the corresponding imme-
diate successor relation we obtain a successor tree ⟨T , E⟩. A coloured tree is the
expansion of a (order or successor) tree by unary predicates P̄. (Hence, every
vertexmay have none, one, or several colours.)We writeTREEm for the class of
all order trees ⟨T , ⪯, P , . . . , Pm−⟩ withm colours.¿e set of leaves of a tree T is
denoted by Lf(T).
(c) LetT = ⟨T , ⪯⟩ be an order tree.¿e level of an element v ∈ T is the number

of its predecessors. We denote it by ∣v∣. ¿e height of T is the least ordinal α
greater than the level of every element of T . Hence, the empty tree has height 
and the tree with a single vertex has height . ¿e out-degree of T is the maximal
number of immediate successors of a vertex of T. For successor trees we define
these notions analogously.
(d) Let T be a tree and v a vertex of T. ¿e subtree of T rooted at v is the

subtree Tv consisting of all vertices u with v ⪯ u.
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Monadic second-order logic (MSO) is the extension of first-order logic by set
variables and quantifiers over such variables. An important variant of MSO is
guarded second-order logic (GSO) where one can quantify not only over sets of
elements but also over sets of tuples from the relations (see [] for details). Hence,
guarded second-order logic over a given structure A is equivalent to monadic
second-order logic over its incidence structure Ain.

Lemma . (Grädel, Hirsch, Otto []).
(a) For every GSO-sentence φ, there exists anMSO-sentence ψ such that

A ⊧ φ iff Ain ⊧ ψ , for all structures A .

(b) For everyMSO-sentence φ, there exists a GSO-sentence ψ such that

Ain ⊧ φ iff A ⊧ ψ , for all structures A .

¿roughout the article we will consistently work with incidence structures,
thereby avoiding to treat with guarded second-order logic. In particular, all for-
mulae are tacitly assumed to beMSO-formulae.
Besides MSO and GSO we also consider their counting extensions CMSO and

CGSO. ¿ese add predicates of the form ∣X∣ ≅ k (mod m) to, respectively,MSO

and GSO, where X is a set variable and k,m are numbers. All of our results for
GSO go through also for CGSO, i.e., for CMSO-transductions between incidence
structures. In Section  we will give a partial characterisation of the hierarchy
for CMSO. Here, some results rely on the availability of counting predicates. Our
results forMSO are strictly weaker.
To state the composition theorem below it is of advantage to work with a vari-

ant ofMSO without first-order variables.¿is variant has atomic formulae of the
form X ⊆ Y and RZ̄, for set variables X ,Y , Z , Z , . . . , where a formula of the
form RZ̄ states that there are elements a i ∈ Z i such that the tuple ā is in R. Note
that every general monadic second-order formula with first-order variables can
be brought into this restricted form by replacing all first-order variables by set
variables and adding the condition that these sets are singletons.
Whenever we speak of MSO we will have this version in mind. In particular,

the following definition of the rank of a formula is based on this variant. When
writing down concrete formulae, on the other hand, we will allow the use of





first-order variables to improve readability. We regard every such formula as an
abbreviation of a formula of the restricted form.

Definition .. (a) ¿e rank qr(φ) of a formula φ is the nesting depth of quanti-
fiers in φ. Formulae of rank  are called quantifier-free.
(b) ¿emonadic theory of rank m of a structure A is

M¿m(A) ∶= {φ ∈ MSO ∣ A ⊧ φ, qr(φ) ≤ m } .

For a tuple ā of elements ofA, we also consider themonadic theoryM¿m(A, ā)
of the expansion ⟨A, ā⟩.
Remark. Weuse the term ‘rank’ instead of themore natural ‘quantifier rank’ since
in Section  below we will consider CMSO where the notion of rank has to be
adapted in order for our results to go through.

In order to compare the monadic theories of two classes of structures we em-
ploy MSO-transductions. To simplify the definition we introduce three simple
operations and we obtainMSO-transductions as a combination of these.

Definition .. (a) Let k ∈ N be a number. ¿e operation copyk maps a struc-
ture A to the expansion

copyk(A) ∶= ⟨A⊕ ⋅ ⋅ ⋅ ⊕A, ∼, P , . . . , Pk−⟩

of the disjoint union of k copies of A by the following relations. Denoting the
copy of an element a ∈ A in the i-th component by the pair ⟨a, i⟩, we define

Pi ∶= { ⟨a, i⟩ ∣ a ∈ A} and ⟨a, i⟩ ∼ ⟨b, j⟩ : iff a = b .

(b) For m ∈ M, we define the operation expm that maps a structure A to the
class of all expansions by m unary predicates Q , . . . ,Qm− ⊆ A. Note that this
operation is many-valued.
(c) A basic MSO-transduction is a partial operation τ on relational structures

described by a list

⟨χ, δ(x), φ(x̄), . . . , φs−(x̄)⟩

of MSO-formulae called the definition scheme of τ. Given a structure A that sat-
isfies the formula χ the operation τ produces the structure

τ(A) ∶= ⟨D, R , . . . , Rs−⟩





where

D ∶= { a ∈ A ∣ A ⊧ δ(a) } and R i ∶= { ā ∈ Dar(R i) ∣ A ⊧ φ i(ā) } .
If A ⊭ χ then τ(A) remains undefined.
(d) A k-copying MSO-transduction τ is a (many-valued) operation on rela-

tional structures of the form τ ○copyk ○expm where τ is a basicMSO-transduc-
tion.
Note that, due to expm , a structure can be mapped to several structures by

a transduction. Consequently, we consider τ(A) as the set of possible values
(τ ○ copyk)(A, P̄) where P̄ ranges over all m-tuples of subsets of A.
For classes C, we set

τ(C) ∶=⋃{ τ(A) ∣ A ∈ C } .
Remark. (a) Every basic MSO-transduction is a k-copying MSO-transduction
since we can choose copy = id and exp = id.
(b) ¿e expansion by m unary predicates corresponds, in the terminology of

[, ], to using m parameters. We will use this terminology, for instance, in the
proof of Proposition ..

Example. ¿e operation mapping an incidence structureAin ∈ STRin[Σ] to the
structure Gf(A)in is a k-copying MSO-transduction where k = r(r − )/ and
r is the maximal arity of a relation in Σ.

¿e two most important properties ofMSO-transductions are summarised in
the following lemmas.

Lemma .. Let τ be anMSO-transduction. For everyMSO-sentence φ, there exists
anMSO-sentence φτ such that, for all structures A,

A ⊧ φτ iff B ⊧ φ for some B ∈ τ(A) .
Lemma . (Courcelle []). For all MSO-transductions σ , τ there exists an MSO-
transduction ρ with ρ = σ ○ τ.

As a first example of transductions note that we can use them to translate be-
tween order trees and successor trees.

Lemma .. (a)¿ere exists a transduction τ mapping an order tree to the corre-
sponding successor tree.
(b)¿ere exists a transduction σ mapping a successor tree to the corresponding

order tree.





A similar, but deeper, result states that there are transductions translating be-
tween a structure and its incidence structure.

Lemma .. For every signature Σ, there exists a transduction τ such that τ(Ain) =
A, for all A ∈ STR[Σ].
¿eorem . (Courcelle [, ]). For every signature Σ and all numbers k ∈ N,
there exist anMSO-transduction τ such that τ(A) = Ain, for all k-sparse structures
A ∈ STR[Σ].
We have seen in Lemma . that transductions relate the monadic theories

of two structures. We also need techniques to relate the monadic theory of a
structure to those of its substructures.¿e following generalisation of the disjoint
union operation can frequently be used for this purpose (see [] for an overview;
for the special case of linear orders, a readable proof can be found in []).

Definition .. Let I = ⟨I, S̄⟩ be a structure and (A(i))i∈I a family of structures
A(i) = ⟨A(i) , R̄(i)⟩ indexed by elements i of I.
¿e generalised sum of (A(i))i∈I is the structure

∑
i∈I

A(i) ∶= ⟨U , ≈, R̄′, S̄′⟩

with domain U ∶= { ⟨a, i⟩ ∣ i ∈ I, a ∈ A(i) } and relations

⟨a, i⟩ ≈ ⟨b, j⟩ : iff i = j ,

R′l ∶= { (⟨a , i⟩, . . . , ⟨an− , i⟩) ∣ i ∈ I and ā ∈ R(i)l } ,
S′l ∶= { (⟨a , i⟩, . . . , ⟨an− , in−⟩) ∣ ı̄ ∈ S l } .

¿eorem . (Shelah []). For everyMSO-sentence φ, we can construct a finite
sequence ofMSO-sentences χ , . . . , χs− and anMSO-sentence ψ such that

∑
i∈I

A(i) ⊧ φ iff ⟨I, ⟦χ⟧, . . . , ⟦χs−⟧⟩ ⊧ ψ ,

where ⟦χ⟧ ∶= { i ∈ I ∣ A(i) ⊧ χ } . Furthermore, we can choose the formulae χ i to
be of the same rank as φ.

¿is theorem is usually called theComposition¿eorem. Belowwe will mainly
make use of the following corollary.





Lemma .. Let T be an order tree and v ∈ T a vertex. Suppose that T′ is the
order tree obtained from T by replacing the subtree Tv by some tree S. Let c̄ be a
tuples of vertices of Twith v â c i , for all i. If ā are vertices of Tv and b̄ are vertices
of S such that

M¿h(Tv , ā) =M¿h(S, b̄)
then it follows that

M¿h(T, āc̄) =M¿h(T′, b̄c̄) .
Proof. Let J be the tree obtained from T by replacing the subtree Tv by a single
vertexw. We can obtain T by a quantifier-free basicMSO-transduction from the
generalised sum∑i∈J Ai whereAw ∶= Tv andAi is a singleton, for every i ≠ w. In
the same way, we obtain T′ from the sum∑i∈J A′i where A′w ∶= S and A′i ∶= Ai ,
for i ≠ w. Let d̄ i be the subtuple of āc̄ whose components belong to Ai and let
d̄′i be the corresponding subtuple of b̄c̄. Since

M¿h(Ai , d̄ i) =M¿h(A′i , d̄′i) , for all i ∈ I ,

it follows by¿eorem . that

M¿h(T, āc̄) =M¿h(T′, b̄c̄) .

 M,  , 



Many properties of the transduction hierarchy we will introduce in the next sec-
tion can be deduced from results in graph minor theory.

Definition .. (a) Let G = ⟨V , E⟩ be an undirected graph and F ⊆ E a set of
edges. We denote by F∗ the reflexive and transitive closure of F . ¿e graphG/F
is obtained by contracting all edges in F . Formally, we have

G/F ∶= ⟨π[V], π[E ∖ F∗]⟩ ,
where π ∶ V → V/F∗ is the projection corresponding to the equivalence rela-
tion F∗.
(b) Aminor of a graphG is a graph that can be obtained fromG by first delet-

ing some vertices and edges and then contracting some of the remaining edges.
For a class C of graphs, we denote by Min(C) the class of all minors of graphs
in C.





Lemma . (Courcelle []). ¿ere exists a transduction τ with τ(Gin) =Min(G),
for every graph G.

Proof. Aminor H ofG is obtained by deleting vertices, deleting edges, and con-
tracting edges. Hence, we can encodeH by three sets: the set of vertices we delete,
the set of edges we delete, and the set of edges we contract.With the help of these
parameters we can define H inside ofGin byMSO-formulae.

Besides the notion of a minor we consider tree decompositions of structures
and the corresponding notions of tree-width and path-width.

Definition .. Let A = ⟨A, R̄⟩ be a structure.
(a) A tree decomposition of A is a family D = (Uv)v∈T of (possibly empty)

subsets Uv ⊆ A indexed by an order tree T such that

◆ for every element a ∈ A, the set { v ∈ T ∣ a ∈ Uv } is nonempty and
connected in T ;

◆ for every tuple c̄ ∈ R i , there is some index v ∈ T with c̄ ⊆ Uv .

We call T the underlying tree of the decomposition.
¿e width of a tree decomposition D = (Uv)v∈T is the number

wdD ∶= sup
v∈T

(∣Uv ∣ − ) .

(¿e summand − has mainly aesthetic reasons.)
(b) ¿e tree-width twd(A) of A is the minimal width of a tree decomposition

of A.
(c)¿e path-width pwd(A) ofA is the minimal width of a tree decomposition

of A where the underlying tree is a path.
(d) ¿e n-depth tree-width twdn(A) of A is the minimal width of a tree de-

composition of A whose underlying tree has height at most n.

Remark. ¿e n-depth tree-width is related to the tree-depth td(G) of a graphG

introduced by Nešetřil and Ossona de Mendez [, ]. ¿e tree-depth of a con-
nected graph G is the least number n such that G is a subgraph of some order
tree of height n (ignoring edge directions). It follows that

(a) td(G) ≤ n implies twdn(G) < n.
(b) twdn(G) < k implies td(G) ≤ nk.





¿enext lemma shows thatmost questions regarding the tree decompositions
of structures can be reduced to the corresponding questions for their Gaifman
graphs. For many of the following results it is therefore sufficient to consider
graphs.

Lemma .. Let A be a structure. A family (Uv)v∈T is a tree decomposition of A

if and only if it is a tree decomposition of Gf(A).
Proof. (⇒) is immediate. (⇐) follows from the fact that every tree decomposi-
tion of a clique has one component covering the whole clique. ¿is implies that,
for every clique C in Gf(A), there is some vertex v ∈ T with C ⊆ Uv .

¿ere is a close relationship between tree decompositions and transductions.

Lemma .. For every signature Σ and every number k ∈ N, there exists a trans-
duction τk ∶ TREE → STRin[Σ] that maps an order tree T to the class of all
incidence structures Ain such that the corresponding Σ-structure A has a tree de-
composition of width at most k with underlying tree T .

Proof. Suppose thatA is a structure which has a tree decomposition (Uv)v∈T of
width k.We prove thatA can be defined from a colouring of T where the number
of colours depends only on Σ and k.
Let C , . . . ,Cm− be an enumeration of all Σ-structures whose domain is a

subset of [k+ ]. For each v ∈ T , let Uv be the substructure ofA induced byUv . It
follows that, for every v ∈ T , we can find some index λ(v) such that Uv ≅ Cλ(v).
Let πv ∶ Uv → Cλ(v) be the corresponding isomorphism.
Furthermore, we associate with each edge (u, v) of T a binary relation

R(u, v) ∶= { (πu(a), πv(a)) ∣ a ∈ Uu ∩Uv } ⊆ [k + ] × [k + ] .
We can recoverA from T with the help of the vertex colouring λ and the edge

colouring R.We form the disjoint union of all structures (Cλ(v))in, for v ∈ T , and
we identify two elements i ∈ Cλ(u) and j ∈ Cλ(v) if (u, v) is an edge of T such
that (i , j) ∈ R(u, v). ¿is can be performed by a n-copying MSO-transduction
where n is the maximal size of the structures (Ci)in, i < m.
¿e converse ismore involved.We defer the proof of the following proposition

to the end of this section.

Proposition .. For every transduction τ ∶ TREEm → STRin[Σ], there exists
a number k ∈ N such that, for each tree T with image Ain ∈ τ(T), the structure
A has a tree decomposition of width at most k where the underlying tree is T.





In order to separate the higher classes of the hierarchy, we employ two deep
results of Robertson and Seymour about excluded minors.

¿eorem . (Excluded Tree ¿eorem []). For each tree T, there exists a num-
ber k ∈ N such that

T ∉Min(G) implies pwd(G) < k , for every graph G .

¿eorem. (ExcludedGrid¿eorem []). For each planar graphE, there exists
a number k ∈ N such that

E ∉Min(G) implies twd(G) < k , for every graph G .

For the separation of the lower degrees of the hierarchy we will need a result
stating that the class of trees underlying a tree decomposition of a given structure
can be obtained from the structure with the help of a transduction. In general, it
is impossible to obtain all such trees via a transduction, but we can get some of
them.¿ere is a general result of Lapoire [] to this effect.We will only need the
special case of tree decompositions of bounded height where the proof is much
simpler. As convenience for the reader we give a complete proof for this special
case.

Definition .. Let (Uv)v∈T be a tree decomposition of a structure A.

(a) We define a function µ ∶ A→ T by

µ(a) ∶=min { v ∈ T ∣ a ∈ Uv } .

(b) For v ∈ T , we set

U⇑v ∶= ⋃
u≥v

Uu ∖ ⋃
u<v

Uu .

(c) ¿e tree decomposition (Uv)v is strict if, for every v ∈ T ,
◆ Uv ∩ µ(A) ≠ ∅, and
◆ if v is not the root of T then U⇑v is connected.

Definition .. Let D = (Uv)v∈T be a tree decomposition and let F be a set of
edges of (the successor tree corresponding to) T . ¿e tree decomposition D/F
obtained by contracting the edges in F is

D/F ∶= (U ′[v])[v]∈T/F ,
where U ′[v] ∶= ⋃u∈[v]Uu .





Lemma .. Let G be a graph. For every tree decomposition (Uv)v∈T of G, there
exists a strict tree decomposition (U ′v)v∈T′ ofGwhose width and height are at most
those of (Uv)v∈T .
Proof. By induction on n ∈ N, we construct a sequence (U n

v )v∈Tn
of tree decom-

positions such that, U n
⇑v is connected, for every v ∈ Tn with  < ∣v∣ ≤ n. (Recall

that ∣v∣ denotes the level of v.) Furthermore, the restriction of Tn to the set of
vertices of level at most n coincides with the corresponding restriction of Tn+,
and we haveU n+

v = U n
v , for all v ∈ Tn+ with ∣v∣ ≤ n. It follows that the sequence

has a limit (Uω
v )v∈Tω

where

Tω ∶= ⋃
n∈N

{ v ∈ Tn ∣ ∣v∣ ≤ n } and Uω
v ∶= U ∣v∣v .

We start the construction with T ∶= T andU

v ∶= Uv . Suppose that we have al-

ready defined (U n
v )v∈Tn

. For every vertex v ∈ Tn of level ∣v∣ = n+  wemodify the
tree decomposition as follows. Let C , . . . ,Cm− be an enumeration of the con-
nected components ofU n

⇑v . We replace in Tn the subtree rooted at v bym copies
S , . . . , Sm− of the subtree, all attached to the predecessor of v. For u ∈ S i we
define U n+

u ∶= U n
u ∩ C i . We can do these modifications for all vertices of level

n +  simultaneously. Let (U n+
v )v∈Tn+

be the resulting tree decomposition.
¿e limit (Uω

v )v∈Tω
of this sequence satisfies the connectedness requirement

of a strict tree decomposition. To also satisfy the other condition we proceed as
follows. Let F be the set of all edges (u, v) of Tω such thatUv ∩ µ(V) = ∅. (Note
that this implies Uv ⊆ Uu .) We construct the tree decomposition (U ′v)v∈T′ by
contracting all edges in F .

¿eorem .. For each constant n ∈ N, there exists anMSO-formula φn(x , y; Z̄)
such that, for every strict tree decomposition D = (Uv)v∈T of a graph G of height
at most n, there are sets L , . . . , Ln− ⊆ V such that

G ⊧ φn(a, b; L̄) iff µ(a) ≤ µ(b) .
Proof. Given D we use the sets

L i ∶= { a ∈ V ∣ ∣µ(a)∣ = i }
of all elements that first appear at level i of the tree. For k < n, let G≥k be the
subgraph ofG induced by Lk ∪ ⋅ ⋅ ⋅ ∪ Ln−. For a ∈ L i and b ∈ L j we define

a ⪯ b iff i ≤ j and a, b belong to the same connected component

ofG≥i ,





and a ∼ b iff a ⪯ b and b ⪯ a .
Clearly, the relation ⪯ is MSO-definable with the help of the parameters L̄. We
claim that

a ⪯ b iff µ(a) ≤ µ(b) .
(⇐) Suppose that µ(a) ≤ µ(b). ¿en b ∈ U⇑µ(a). Furthermore, U⇑µ(a) is

connected since D is strict. Hence,U⇑µ(a) is a connected component ofG≥i con-
taining both a and b. Since ∣µ(a)∣ ≤ ∣µ(b)∣ it follows that a ⪯ b.
(⇒) Suppose that a ⪯ b. ¿en there exists an undirected path π in G≥∣µ(a)∣

connecting a and b. Since U⇑u ∩ U⇑v = ∅, for all u ≠ v with ∣u∣ = ∣v∣, it follows
that π is contained in someU⇑v with ∣v∣ = ∣µ(a)∣. Since a is a vertex of π wemust
have v = µ(a). Furthermore, b ∈ U⇑µ(a) since b is also a vertex of π.¿is implies
that µ(a) ≤ µ(b).
Corollary .. For each constant n ∈ N, there exists a transduction τn mapping
a graph G to the class of all (underlying trees of) strict tree decompositions of G of
height at most n.

We also need a variant of ¿eorems . and . for n-depth tree-width. ¿e
next lemma contains the main technical argument.

Lemma .. Suppose that G is a graph that does not contain a path of length l
and let D = (Uv)v∈T be a strict tree decomposition of G of width k.¿en the height
of T is at most l k+.

Proof. We will prove the following claim. Let v < ⋅ ⋅ ⋅ < vn be a path in T of
length n +  and let C ⊆ V be a set of vertices such that C ⊆ Uv i , for all i. ¿en
we claim that n < l k+−∣C∣.
Clearly, the statement of the lemma follows from this claim by setting C ∶= ∅.

We prove the claim by induction on ∣C∣, starting with large sets C. If ∣C∣ = k + 
then we have Uv i = C, for all i ≤ n. As D is strict this implies that n =  <
l. For the induction step, suppose that ∣C∣ ≤ k. For every i < n, we select an
element a i ∈ Uv i+ ∖Uv i . Since D is strict there exists a path π = b . . . bm− inG

connecting a and an− such that π ⊆ V∖U. In particular, we have π∩C = ∅. By
assumption onGwe havem < l . Since every componentUv i contains at least one
of the elements b j it follows that there is some index j such that at least n/m > n/l
of the Uv i contain the vertex b j. Suppose that b j ∈ Uv i , for s ≤ i ≤ s + n/l . ¿en
C ∪{b j} is contained in all theseUv i and it follows by induction hypothesis that

n/l < l k−∣C∣. Hence, n < l k+−∣C∣.





¿eorem . (Excluded Path ¿eorem). For each path P, there exist numbers
n, k ∈ N such that

P ∉Min(G) implies twdn(G) < k , for every graph G .

Proof. By ¿eorem ., there is a number k such that P ∉ Min(G) implies
pwd(G) < k. Hence, G has a tree decomposition D of width smaller than k.
We can use Lemma . to find a strict tree decomposition D′ of G of the same
width. According to the preceding lemma D′ has height at most n ∶= l k+ where
l is the length ofP. Consequently, twdn G < k.

It remains to prove Proposition .. As a technical tool we introduce a second
kind of hierarchical decompositions of structures and a corresponding notion of
width. To simplify the definition we will only consider incidence structures.

Definition .. Let Ain = ⟨A∪ E, P̄, in , . . . ⟩ be an incidence structure.
(a)A partition refinement ofAin is a familyΠ = (Wv , ≈v)v∈T of pairs consisting

of a subsetWv ⊆ A∪ E and an equivalence relation ≈v onWv with the following
properties:

◆ ¿e index set T is a tree.

◆ W⟨⟩ = A∪ E

◆ For every internal vertex u ∈ T with immediate successors v , . . . , vn−,
the setsWv , . . . ,Wvn− form a partition ofWu .

◆ ∣Wu ∣ = , for every leaf u ∈ T .
◆ x ≈v y and u ⪯ v implies x ≈u y.

◆ If u is an internal vertex of T , v ,w immediate successors of u, not neces-
sarily distinct, and x ∈Wv , y ∈Ww elements, then x ≈u y implies either

x , y ∈ A and (x , e) ∈ ini ⇔ (y, e) ∈ ini for every e ∈ E ∖ (Wv ∪Ww)
or x , y ∈ E and (a, x) ∈ ini ⇔ (a, y) ∈ ini for every a ∈ A∖ (Wv ∪Ww) .

(b) ¿e width of a partition refinement Π = (Wv , ≈v)v∈T is the maximum
number of equivalence classes realised in some componentWv :

wdΠ ∶=max
v∈T
∣Wv/≈v ∣ .

¿e partition-width of the structure Ain is the minimal width of a partition re-
finement of Ain.





¿e notion of a partition refinement and of partition-width is an adaptation
of definitions from [, ]. Up to a factor of , the partition-width of an incidence
structure and its clique-width coincide.

Example. Let A = (A, R) be a structure with domain A = {a, b, c, d , e} and a
ternary relation

R = {(a, b, c)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

x

, (a, b, d)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

y

, (a, b, e)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

z

} .

Its incidence structure is A∈ = (A ∪ E, PR , in , in , in) with E = {x , y, z}. We
obtain a partition refinement

{a∣b∣c, d , e∣x , y, z}

{a∣b} {x∣c} {y∣d} {z∣e}

{a} {b} {x} {c} {y} {d} {z} {e}

where we have indicated the partition into ≈v-classes by vertical bars. Note that
this partition refinement has width .

Lemma .. For every partition refinement Π = (Wv , ≈v)v∈T of an incidence
structure Ain = ⟨A ∪ E, P̄, in , . . . , inr−⟩, there exists a tree decomposition D =
(Uv)v∈T of Ain with the same underlying tree T such that

wdD ≤ (r + ) ⋅wdΠ .

Proof. Let l ∶ A ∪ E → Lf(T) be the function assigning to every x ∈ A ∪ E
the unique leaf l(x) of T such that U l(x) = {x}. We claim that the desired tree
decomposition (Uu)u∈T of H is given by

Uu ∶= Bu ∪ Cu ∪ Du





where

Bu ∶= { v ∈ A ∣ u ⪯ l(v) and (v , e) ∈ ini for some i < r and e ∈ E with

u â l(e) } ,
Cu ∶= { v ∈ A ∣ u â l(v) and (v , e) ∈ ini for some i < r and e ∈ E with

u ⪯ l(e) } ,
Du ∶= { v ∈ A ∣ (v , e) ∈ ini for some i < r and e ∈ E with

l(v) ⊓ l(e) = u } .

Note that the connectedness condition holds since (v , e) ∈ ini implies that v be-
longs to every component Uu such that u lies on the path from l(v) to l(e).
It remains to prove that ∣Uu ∣ ≤ (r + ) ⋅wdΠ. If u = l(c̄), for some c̄ ∈ E, then

Uu = Cu consists the components of c̄. Hence, ∣Uu ∣ = ∣c̄∣ ≤ r. ¿erefore, we may
assume that u ∉ l[E]. Let

[x]u ∶= { y ∈Wu ∣ y ≈u x }

denote the ≈u-class of x. We prove the following bounds.

() ∣[x]u ∣ = , for all x ∈ Bu .

() ∣[x]u ∩Uu ∣ ≤ , for all x ∈ Du .

() ∣Cu ∣ ≤ r ⋅ ∣Wu/≈u ∣.
¿en it follows that ∣Uu ∣ = ∣Bu ∪ Cu ∪ Du ∣ ≤ (r + ) ⋅ ∣Wu/≈u ∣.
() Let x ∈ Bu . ¿ere is some tuple e ∈ E and some index i with (x , e) ∈ ini

and u â l(e). We have (y, e) ∈ ini , for every y ∈Wu with y ≈u x. Since x is the
only such element it follows that [x]u = {x}.
() Let x ∈ Du . ¿ere is some tuple e ∈ E and some i with (x , e) ∈ ini and

u = l(x) ⊓ l(e). Let v be the immediate successor of u with v ≤ l(e). We have
(y, e) ∈ ini , for all y ∈Wu ∖Wv with y ≈u x. Hence, [x]u ∖Wv = {x}.
Suppose that there is some element y ∈ [x]u ∩Wv ∩ Uu . By definition of Uu

there is some tuple f ∈ E and some j with (y, f ) ∈ in j and l(y) ⊓ l( f ) ⪯ u. As
above it follows that [x]u ∩Wv = {y}. Consequently, we have ∣[x]u ∩Uu ∣ ≤ .
() Let x ∈ Cu and consider some tuple e ∈ E with (x , e) ∈ ini and with

u ⪯ l(e). Set

Iu(e) ∶= { z ∈ A ∣ (z, e) ∈ ini for some i and l(z) â u } .





For e , f ∈ E ∩Wu , it follows that

e ≈u f implies Iu(e) = Iu( f ) .

Furthermore, we obviously have ∣Iu(e)∣ ≤ ∣e∣ ≤ r. It follows that Cu contains at
most r ⋅ ∣Wu/≈u ∣ vertices.
Lemma .. Let τ ∶ TREEm → STRin[Σ] be a basic MSO-transduction such
that, for every tree T with image Ain ∈ τ(T), we have

A∪ E = Lf(T) and A∩ E = ∅ .

¿en there exists a finite constant w such that, for every order tree T, we can find
a partition refinement (Wv , ≈v)v∈T of τ(T) of width at most w.

Proof. Let ⟨χ, δ(x), (φPR(x))R , (φini
(x , y))i⟩ be the definition scheme of τ. Let

h be the maximal rank of these formulae.
Given T we define the desired partition refinement Π = (Wu , ≈u)u∈T by set-

ting

Wu ∶= { x ∈ Lf(T) ∣ u ⪯ x } ,
and x ≈u y : iff M¿h(Tv , x) =M¿h(Tw , y) ,

where v ,w are the immediate successors of u with

x ∈Wv and y ∈Ww .

(If u is a leaf of T thenWu = {x} and we take the equality relation for ≈u .) Note
that the index of ≈v is finite and it only depends on h and not on the input treeT.
It remains to show that Π is really a partition refinement. First, let us prove

that x ≈v y and u ⪯ v implies x ≈u y. It is sufficient to consider the case that
u is the immediate predecessor of v. ¿en the general case follows by induction.
Hence, suppose that v is the immediate successor of u, thatw ,w′ are immediate
successors of v, and that x , y are leafs with w ⪯ x and w′ ⪯ y such that x ≈v y.
¿en we have

M¿h(Tw , x) =M¿h(Tw′ , y) ,

which, by Lemma ., implies that

M¿h(Tv , x) =M¿h(Tv , y) .





Consequently, we have x ≈u y.
We also have to show that the incidence relation is invariant under ≈u . Let

v ,w be immediate successors of u and suppose that x , y are leaves with v ⪯ x
and w ⪯ y such that x ≈u y. We have to distinguish two cases.
Suppose that x , y ∈ V and let e ∈ E ∖ (Wv ∪Ww) be an edge. Since

M¿h(Tv , x) =M¿h(Tw , y) ,

it follows that

T ⊧ φini
(x , e) iff T ⊧ φini

(y, e) .

Hence, (x , e) ∈ ini iff (y, e) ∈ ini .
Now, suppose that x , y ∈ E and let z ∈ V ∖ (Wv ∪Ww) be a vertex. Since

M¿h(Tv , x) =M¿h(Tw , y) ,

it follows that

T ⊧ φini
(z, x) iff T ⊧ φini

(z, y) .

Hence, (z, x) ∈ ini iff (z, y) ∈ ini .

Proof of Proposition .. () First, let us consider the case that the transduction
τ ∶ TREEm → STRin[Σ] is a basic MSO-transduction such that, for every tree
T ∈ dom(τ) with image Ain ∈ τ(T), we have

A∪ E = Lf(T) and A∩ E = ∅ .

It follows by Lemma . that there is a constantw ∈ N such that, for every treeT,
we can find a partition refinement of τ(T)with underlying treeTwhose width is
at mostw. By Lemma . it follows that τ(T) has a tree decomposition (Uv)v∈T
with underlying tree T and whose width is bounded by k ∶= w(r + ).
() If τ is a basicMSO-transduction such that

A∪ E ⊆ Lf(T) and A∩ E = ∅ , for Ain ∈ τ(T) with T ∈ dom(τ) ,

then we can argue similarly. Let τ′ be theMSO-interpretation mapping T to the
structure obtained from τ(T) by adding one isolated element for every leaf of T
that does not correspond to an element of τ(T).¿en τ′ is of the form considered
in () and we obtain a tree decomposition (Uv)v∈T of τ′(T). Deleting from every





componentUv all elements not in τ(T)weobtain the desired tree decomposition
of τ(T).
() Suppose that τ is a non-copyingMSO-transduction as in () but with p pa-

rameters.We can regard τ as a basicMSO-transductionTREEm+p → STRin[Σ].
By () it follows that, for every value of the parameters P̄, the hypergraph τ(T, P̄)
has a tree decomposition of the required form.
() Finally, consider the general case. Suppose that τ is l-copying. Given T let

T+ be the tree obtained from T by adding l new immediate successors to every
vertex of T. Formally, suppose that T ⊆ D<ω , for some set D. W.l.o.g. we may
assume that D ∩ [l] = ∅. We define the domain T+ ⊆ (D ∪ [l])<ω of T+ by

T+ ∶= T ∪ T × [l] .

Furthermore, we add new colour predicates

S i ∶= T × {i} , for i ∈ [l] .

Note that every element of τ(T) is of the form ⟨v , i⟩ where i ∈ [l] and v ∈
T . Hence, each such element corresponds to a leaf vi ∈ T × [l] ⊆ T+. Using
the colours S̄ we can construct a basic MSO-transduction τ+ ∶ TREEm+l →
STRin[Σ] satisfying the conditions of () such that τ+(T+) = τ(T). By (), we
obtain a tree decompositionD+ = (U+v )v∈T+ of τ+(T+) = τ(T). LetD = (Uv)v∈T
be the tree decomposition obtained from D+ by contracting every edge leading
to a leaf in T+ ∖ T . ¿en

wdD +  ≤ (l + )(wdD+ + ) .

 T  

¿e focus of our investigation lies on the following preorder on classes of struc-
tures which compares their ‘encoding power’ with respect toMSO-transductions.
Our main result is a complete description of the hierarchy induced by this pre-
order. It will be given in ¿eorem ..

Definition .. Let C ,K ⊆ STR. We define the following relations.

(a) C ⊑ K if there exists a transduction τ such that C ⊆ τ(K).
(b) C ⊏ K if C ⊑ K andK ⋢ C.





(c) C ≡ K if C ⊑ K andK ⊑ C.

(d) C ^ K if C ⊏ K and there is no classD with C ⊏ D ⊏ K.

(e) C ⊑in K if Cin ⊑ Kin.

(f) ¿e relations ⊏in, ≡in, and ^in are defined analogously to ⊏, ≡, ^ by replac-
ing ⊑ everywhere by ⊑in.

¿e transduction hierarchy is the hierarchy of classes C ⊆ STR induced by the
relation ⊑in.

As transductions are closed under composition it follows that the relation ⊑in
is a preorder, i.e., it is reflexive and transitive.

Lemma .. ⊑in is a preorder on ℘(STR).
Definition .. We consider the following subclasses of STR[{edg}]. (All trees
below are considered to be successor trees.)

(a) Tn ∶= {m<n ∣ m ∈ N } is the set of all complete m-ary trees of height n.
(b) Tbin ∶= { <n ∣ n ∈ N } is the set of all binary trees.
(c) Tω is the set of all trees.

(d) P is the class of all finite paths.

(e) G is the class of all rectangular grids.

¿e following description of the transduction hierarchy is the main result of
the present paper.

¿eorem .. We have the following hierarchy:

∅ ^in T ^in T ^in ⋅ ⋅ ⋅ ^in Tn ^in ⋅ ⋅ ⋅ ⊏in P ^in Tω ≡in Tbin ^in G

For every signature Σ, every class C ⊆ STR[Σ] is ≡in-equivalent to some class in
this hierarchy.

It is straightforward to show that the above classes form an increasing chain.
¿e hard part is to prove that the chain is strictly increasing and that there are
no further classes.





Lemma .. We have

∅ ⊑in T ⊑in T ⊑in ⋅ ⋅ ⋅ ⊑in Tn ⊑in ⋅ ⋅ ⋅ ⊑in P ⊑in Tω ⊑in G .

Proof. Note that C ⊆Min(K) implies C ⊑in K, by Lemma .. All but one of the
above claims follow from this observation. It only remains to prove thatTn ⊑in P .
We can encode each tree T of height n as a finite word w over the alphabet [n]
as follows. Let v <lex ⋅ ⋅ ⋅ <lex vm− be an enumeration of T in lexicographic
order and let l i be the level of v i . We encode T by the word w ∶= l . . . lm−.
Note that we can recover T from w as follows. Each position in w corresponds
to a vertex. ¿e predecessor of the i-th vertex v is the maximal vertex to the le 
of v whose label is less than l i . Clearly, this predecessor relation is definable in
monadic second-order logic.

Let us collect some easy properties of the hierarchy. Our first result states that
G belongs to the greatest degree in the transduction hierarchy.

Lemma .. STR[Σ] ⊑in G
Proof. ¿em×n grid is the graphG = ⟨V , edg⟩with verticesV = [m]× [n] and
edge relation

edg = {(⟨i , k⟩, ⟨ j, l⟩) ∣ ∣i − j∣ + ∣k − l ∣ = } .

Before encoding arbitrary structures in such grids we describe a transduction
mappingG to its directed variant ⟨V , E , E⟩ where

E ∶= { (⟨i , k⟩, ⟨i + , k⟩) ∣ i < m − , k < n } ,
and E ∶= { (⟨i , k⟩, ⟨i , k + ⟩) ∣ i < m, k < n − } .

¿is can be donewith the help of the parameters P, P , P ,Q ,Q ,Q ⊆ V where

Pm ∶= { ⟨i , k⟩ ∣ i ≡ m (mod ) } ,
and Qm ∶= { ⟨i , k⟩ ∣ k ≡ m (mod ) } .

¿en

E = { (u, v) ∣ u ∈ Pi and v ∈ Pj for some i ≡ j −  (mod ) } ,
and E = { (u, v) ∣ u ∈ Q i and v ∈ Q j for some i ≡ j −  (mod ) } .





To show that STR[Σ] ⊑in G, suppose that A ∈ STR[Σ] is a structure with
Ain = ⟨A ∪ E, (PR)R , in , . . . , inr−⟩. Fix enumerations a , . . . , am− of A and
e , . . . , en− of E. By the above remarks, it is sufficient to encode Ain in the di-
rected m × n grid. Consider the following subsets of [m] × [n] :

A′ ∶= [m] × {} , P′R ∶= { ⟨, k⟩ ∣ ek ∈ PR } ,
E′ ∶= {} × [n] , I′l ∶= { ⟨i , k⟩ ∣ (a i , ek) ∈ inl } .

¿en Ain can be recovered from G by an MSO-transduction using these sets as
parameters.

Lemma .. Tω ≡in Tbin.

Proof. Tbin ⊆ Tω implies Tbin ⊑in Tω . Conversely, each finite tree can be obtained
as minor of a binary tree. Hence, Tω ⊆Min(Tbin) ⊑in Tbin.
Lemma .. We have C ≡in T if and only if C is finite and contains at least one
nonempty structure.

As indicated in the example on page  there exist a transduction mapping an
incidence structureAin to the incidence structure Gf(A)in of theGaifman graph.
Lemma .. For every class C of structures, we have Gf(C) ⊑in C .
From the results of Section  we can deduce the following facts.

Lemma .. For every class C of graphs we haveMin(C) ≡in C .
Proof. ¿is follows directly from Lemma ..

¿eorem .. Let C ⊆ STR[Σ].
(a) C ⊑in P iff pwd(C) <∞.

(b) C ⊑in Tω iff twd(C) <∞.

(c) C ⊑in Tn iff twdn(C) <∞.

Proof. In each case (⇐) follows from Lemma . and (⇒) follows from Propo-
sition ..

Corollary .. Let C be a class of structures.





(a) pwd(C) =∞ implies Tω ⊑in C.

(b) twd(C) =∞ implies G ⊑in C.

Proof. For (a), ¿eorem . implies that Tω ⊆ Min(Gf(C)), while, for (b), ¿e-
orem . implies that G ⊆ Min(Gf(C)). Consequently, both claims follow from
Lemma ..

Corollary .. Let C ⊆ STR[Σ].
(a) C ⋢in P implies Tω ⊑in C.

(b) C ⋢in Tω implies G ≡in C.

Corollary .. P ^in Tω ^in G

Proof. Both inclusions follow from¿eorem . and Corollary ..
For the first one, note that we have P ⊑in Tω since P ⊆Min(Tω). Conversely,

pwd(Tω) = ∞ implies Tω ⋢in P . Hence, P ⊏in Tω . Finally, if C ⊏in Tω then
C ⊑in P , by Corollary . (a). Consequently, we have P ^in Tω .
Similarly, the fact that Tω ⊑in G follows from Lemma .. Since twd(G) =

∞ Lemma . implies that Tω ⊏in G. Finally, we obtain Tω ^in G by Corol-
lary . (b).

 T     

In this section we finish the proof of ¿eorem . by showing that Tn ^in Tn+,
for all n. First, we prove that Tn ≢in Tn+.

Definition .. LetT = ⟨T , ≤⟩ be an order tree. Vertices v , . . . , vm− are horizon-
tally related via w if all v i are at the same level of the tree and v i ⊓ vk = w, for all
i ≠ k.

Lemma .. Let T be a coloured order tree of height n, and suppose that τ is a
parameterless k-copyingMSO-transduction of rank r such that τ(T) is a successor
tree of height at most n + .
Consider vertices v , . . . , vm− that are horizontally related via w in T and fix

some number l < k. Let x i be the successor ofw with x i ⪯ v i . If, for all i , j < m, we
have

M¿r+n+(Tx i , v i) =M¿r+n+(Tx j
, v j) ,





then we can remove one vertex from the set {⟨v , l⟩, . . . , ⟨vm− , l⟩} in such a way
that the remaining ones are horizontally related in τ(T).
Proof. Let φ i j(x , y) be the formula defining the successor relation in τ(T) be-
tween vertices of the form ⟨x , i⟩ and ⟨y, j⟩.
First, note that a vertex ⟨v , l⟩ is on level h in τ(T) if and only if there are indices

s , . . . , sh− < k such that

T ⊧ ψs . . .sh−(v)

where

ψs . . .sh−(v) ∶= ∃x⋯∃xh−[ ⋀
i<h−

φs i s i+(x i , x i+) ∧ φsh− l(xh− , v)

∧ ¬∃y⋁
s<k

φss(y, x)] .

By assumption on v i and Lemma ., we have

M¿r+n+(T, v i) =M¿r+n+(T, v j) , for all i , j .

Since the rank of ψs . . .sh− is h + r +  ≤ r + n +  it follows that

T ⊧ ψs . . .sh−(v i) iff T ⊧ ψs . . .sh−(v j) .

Hence, all vertices ⟨v , l⟩, . . . , ⟨vm− , l⟩ are on the same level h in τ(T).We prove
by induction on h that

(∗) M¿r+n+h+(Tx i , v i) =M¿r+n+h+(Tx j
, v j)

implies that all but at most one of ⟨v , l⟩, . . . , ⟨vm− , l⟩ are horizontally related.
Let ⟨u i , s i⟩ be the predecessor of ⟨v i , l⟩ in τ(T), that is,

T ⊧ φs i l(u i , v i) .

We distinguish two cases.
First suppose that u ⊓ v ⪯ w. By (∗) and Lemma ., we have

M¿r+n+h+(T, u , v) =M¿r+n+h+(T, u , v i) ,





for all i such that u ⊓ v i ⪯ w. Hence,

T ⊧ φs l(u , v) implies T ⊧ φs l(u , v i) , for all such i ,

and ⟨u , s⟩ is the common predecessor of all the ⟨v i , l⟩, except for possibly one
of them. (¿ere might by an index i with u ⊓ v i ⪯ w. For such an index our
composition argument does not work since in that case (∗) does not imply that
the theories of (T, u , v) and (T, u , v i) coincide.)
It remains to consider the case that w ≺ u ⊓ v. Setting

ηu i
∶=⋀M¿r+n+h−+(Tx i , u i)

we have

Tx ⊧ ∃z[∣z∣ = ∣u∣ ∧ ηu
(z) ∧ φs l(z, v)] .

Since the rank of this formula is r + n + h +  it follows that

Tx i ⊧ ∃z[∣z∣ = ∣u∣ ∧ ηu
(z) ∧ φs l(z, v i)] , for all i < m .

Consequently, we have ∣u i ∣ = ∣u∣, for all i, and u , . . . , um− are horizontally
related via w. By induction hypothesis it follows that all but at most one of the
vertices ⟨u, s⟩, . . . , ⟨um− , s⟩ are horizontally related via some vertexw′.¿ere-
fore, the same holds for their successors ⟨v , l⟩, . . . , ⟨vm− , l⟩.
Definition .. We denote by B(n, k, c) the number of all vertex-coloured trees
with height at most n, out-degree at most k, and c colours. More precisely, we
define B(n, k, c) as the number of all functions of the form λ ∶ m<n → ℘([c])
with m ≤ k.

Lemma .. For n ≥  and k ≥ , we have
ck

n− ≤ B(n, k, c) ≤ kckn− .
Proof. For m ≥ , we have

mn ≤ mn
+∑

i<n

m i = mn
+
mn − 

m − 
≤ mn

.

Since ∣[m]<n∣ =∑i<n m
i it follows that

mn− ≤ ∣[m]<n∣ ≤ mn−
.





¿erefore, we can bound

B(n, k, c) = cn +
k

∑
m=

c∣[m]
<n ∣

from above by

B(n, k, c) ≤ cn +
k

∑
m=

cm
n−

≤ kck
n−

and from below by

B(n, k, c) ≥ cn +
k

∑
m=

cm
n− ≥ ckn− .

¿eorem .. Tn ⊏in Tn+
Proof. For a contradiction, suppose that there exists anMSO-transduction τ such
that (Tn+)in ⊆ τ((Tn)in). Let T ord

n be the class of all order trees corresponding
to successor trees in Tn , and let T

col
n+ ∶= exp(Tn+) be the class of all coloured

successor trees with one colour whose underlying tree is in Tn+. As the succes-
sor trees in Tn are sparse we can construct an MSO-transduction σ such that
(Tn)in ⊆ σ(Tn). Since T ord

n ≡ Tn we can combine τ and σ to a transduction σ
such that T col

n+ ⊆ σ(T ord
n ). By Lemma ., it follows that there is some constant d

such that every tree T ∈ σ(T ord
n ) with out-degree at most k is of the form σ(T′)

where T′ ∈ T ord
n has out-degree at most dk. (¿e out-degree of an order tree is

the out-degree of the corresponding successor tree.) Suppose that σ uses c pa-
rameters. ¿ere are

B(n, dk, c) ≤ dkc(dk)n−

colourings of trees in T ord
n with out-degree at most dk. On the other hand, there

are

B(n + , k, ) ≥ kn

trees in T col
n+ with out-degree at most k. For large k it follows that

B(n, dk, c) ≤ dkcdn−kn− < kn = B(n + , k, ) .

Consequently, there is some tree in T col
n+ that is not the image of a tree in T

ord
n .

A contradiction.





To conclude the proof of ¿eorem . it remains to show that every degree
in the lower part of the hierarchy is equivalent to one of the classes Tn . We say
that the tree m<n+ can be embedded into a tree T if there exists an embedding
of order trees ⟨m<n+ , ⪯⟩→ ⟨T , ⪯⟩, i.e., if ⟨m<n+ , ⪯⟩, regarded as relational struc-
ture, is isomorphic to an induced substructure of ⟨T , ⪯⟩. For instance, we have
an embedding

↦



 



 





   

Lemma .. Let C be a class with k ∶= twdn+(C) < ∞. If there is some num-
ber m ∈ N such that every structure A ∈ C has a tree decomposition D(A) ∶=
(Uv)v∈T of width k and height at most n +  such that the tree m<n+ cannot be
embedded into T , then twdn(C) < m(k + ) <∞.

Proof. For each A ∈ C we construct a tree decomposition D′(A) of height at
most n and width at most mk as follows.
Suppose that D(A) = (Uv)v∈T and let P ⊆ T be the minimal (w.r.t. ⊆) set of

vertices that contains

◆ every leaf of T with level n and

◆ every vertex that has at least m successors in P.

Since m<n+ cannot be embedded into T it follows that P does not contain the
root of T . Let F be the set of all edges of T linking a vertex in T∖P to a vertex in P.
By definition of P it follows that every vertex of T has less than m F-successors
and every path of T from the root to some leaf on level n contains exactly one
edge from F .
¿e decomposition D′(A) ∶= D(A)/F obtained by contraction the edges in F

has width at most

k +  + (m − )(k + ) −  < m(k + ) .

Furthermore, the height of the underlying tree is at most n.





Lemma .. Let C be a class of structures. If, for every number m ∈ N, there exists
a structure A ∈ C such that we can embed m<n+ into every tree decomposition
(Uv)v∈T of A of width k, then Tn+ ⊑in C.

Proof. By Lemma ., it follows that, for every m ∈ N, there is a structure in C
with a strict tree decomposition of width at most k into which we can embed
the treem<n+. According to¿eorem . there is a transduction mapping C to
the class of trees underlying these strict tree decompositions. Hence, there exists
a class K ⊑in C of successor trees containing, for every m ∈ N, some tree into
which we can embed m<n+. Hence, Tn+ ⊆Min(K) ⊑in K ⊑in C.
¿eorem .. If Tn+ ⋢in C then twdn(C) <∞.

Proof. Note that G ⊈ C since Tn+ ⊑in G. Hence, C ⊑in Tω and k ∶= twd(C) <∞.
Similarly, P ⋢in C since Tn+ ⊑in P . Hence, there exists a constant l such that no
structure A ∈ C has a tree decomposition of width k and height l . ¿is implies
that twdl(C) = twd(C) = k.
If l ≤ n then we are done. Otherwise, we have Tl ⋢in C. Hence, Lemma .

and Lemma . together imply that twdl−(C) <∞. Repeating this argument it
follows that twdi(C) <∞, for all n ≤ i ≤ l .

Corollary .. If Tn+ ⋢in C then C ⊑in Tn .

Corollary .. Tn ^in Tn+.

To conclude the proof of ¿eorem . it remains to show that there are no
classes between the lower part of the hierarchy and its upper part.

Lemma .. If Tn ⊑in C, for all n ∈ N, then P ⊑in C.

Proof. Suppose that P ⋢in C. By Lemma ., it follows that P ⊈ Min(Gf(C)).
¿erefore, we can find a path that is not in Min(Gf(C)). By ¿eorem ., it
follows that twdn C < k, for some n, k ∈ N. Hence, we can use Lemma . to
obtain anMSO-transduction τ witnessing that C ⊑in Tn . Consequently, we have
Tn+ ⋢in C, as desired.

Corollary .. If C ⊏in P then there is some n ∈ N such that C ⊑in Tn .

Proof. By Lemma ., there is some n ∈ N such that Tn+ ⋢in C. Hence, Corol-
lary . implies that C ⊑in Tn .





 P  

Above we have obtained a complete description of the transduction hierarchy
for classes of finite incidence structures. ¿e most surprising result is that the
hierarchy is linear. At this point there are at least three natural directions inwhich
to proceed.

(i) We can study the hierarchy for classes of structures, instead of their inci-
dence structures.

(ii) We can consider the hierarchy for classes of infinite structures.

(iii) We can replaceMSO by a different logic.

An answer to (ii) seems within reach, at least if we restrict our attention to
countable structures. Although the resulting hierarchy is no longer linear we can
adapt most of our techniques to this setting.
Concerning question (iii), let us remark that all results above go through if we

use CMSO instead of MSO. We only need the right definition of rank for CMSO.
In the proof of ¿eorem . we needed the fact that there are only finitely many
theories of bounded rank. We can ensure this for CMSO by defining the rank as
the least number n such that

◆ the nesting depth of quantifiers is at most n and

◆ in every cardinality predicate ∣X∣ ≡ k (mod m) we have m ≤ n.
One can check that, with this definition of rank, the proof of ¿eorem . also
goes through for CMSO.
For logicsmuchweaker thanMSO, on the other hand, it seems to be unrealistic

to hope for a complete description of the corresponding transduction hierarchy.
Finally, let us address question (i).When using transductions between the orig-

inal structures instead of their incidence structures we can transfer some of the
above results to the corresponding hierarchy. But we presently have no complete
description since we miss some of the corresponding excluded minor results.

Lemma .. Let C ,S ⊆ STR and suppose that S is k-sparse.

(a) C ⊑in S implies C ⊑ S .

(b) S ⊑ C implies S ⊑in C.





Proof. ¿ere is a transduction ρ such that C = ρ[Cin]. Since S is sparse we can
also find a transduction σ such that Sin = σ[S]. Consequently,

Cin ⊆ τ[Sin] implies C ⊆ (ρ ○ τ ○ σ)[S] ,
and S ⊆ τ[C] implies Sin ⊆ (σ ○ τ ○ ρ)[Cin] .
¿eorem .. We have the following hierarchy:

∅ ⊏ T ⊏ T ⊏ ⋅ ⋅ ⋅ ⊏ Tn ⋅ ⋅ ⋅ ⊏ P ⊏ Tω ⊏ G ≡ STR[Σ]

Proof. Note that all classes in the above hierarchy are sparse. For sparse classes
C andK, Lemma . implies that

C ⊑ K iff C ⊑in K .

Consequently, the claim follows from¿eorem ..

Open Problem. Is there any class C ⊆ STR[Σ] which is not ≡-equivalent to some
class in the above hierarchy?

Remark. If we only consider classes of graphs and we use CMSO-transductions
instead ofMSO-transductions then we can replace¿eorem . by the following
result:

¿eorem . (Courcelle, Oum []). Let C be a class of graphs with cwdC = ∞.
¿ere exists a CMSO-transduction τ with G ⊆ τ[C].
¿is eliminates some possibilities for intermediate classes of graphs in the hier-
archy, but we still need analogues of ¿eorems ., ., and . to complete
the picture. Furthermore, the techniques of [] are specific to graphs (or, more
generally, to relational structures where all relations are binary). Even with these
results one cannot exclude the existence of a class C strictly between Tω and G in
the CMSO-transduction hierarchy.
Let us make a final comment about relational structures. An incidence struc-

ture Ain can be seen as a bipartite labelled directed graph (see the remark a er
Definition .). Furthermore, it is k-sparse where k is the maximal arity of a re-
lation of A. Hence, our results use tools from graph theory, in particular those
of [, , ]. However, there is no encoding of relational structures as labelled
graphs that could help to solve question (i) above.
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