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ABSTRACT

Time-frequency analysis and wavelet analysis are generally used for providing signal expansions that are suitable
for various further tasks such as signal analysis, de-noising, compression, source separation, ... However, time-
frequency analysis and wavelet analysis also provide efficient ways for constructing signals’ transformations. They
are modelled as linear operators that can be designed directly in the transformed domain, i.e. the time-frequency
plane, or the time-scale half plane. Among these linear operators, transformations that are diagonal in the time-
frequency or time scale spaces, i.e. that may be expressed by multiplications in these domains, deserve particular
attention, as they are extremely simple to implement, even though their properties are not necessarily easy to
control.

This work is a first attempt for exploring such approaches in the context of the analysis and the design of
sound signals. We study more specifically the transformations that may be interpreted as linear time-varying
(LTV) systems (often called time-varying filters). It is known that under certain assumptions, the latter may
be conveniently represented by pointwise multiplication with a certain time frequency transfer function in the
time-frequency domain. The purpose of this work is to examine such representations in practical situations, and
investigate generalizations. The originality of this approach for sound synthesis lies in the design of practical
operators that can be optimized to morph a given sound into another one, at a very high sound quality.
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1. INTRODUCTION

Time-frequency analysis is often used for studying signals, for example for analysis, denoising purpose. So far,
little has been done at the level of time-frequency representation of systems, except the work done by the Vienna
groups (see for example [8] for a mathematical approach, and [10] for signal processing developments).

A main point in time frequency analysis of systems is the fact that some of them may be well approximated
by Gabor multipliers, which are defined by pontwise multiplication by some fixed mask, or time-frequency
transfer function in the Gabor domain. To understand such approximations, one has to remember that an
extremely wide class of systems can be expanded as (continuous) weighted sums of Doppler shifts (i.e. time-
frequency shifts). When the latter are of small magnitude, Gabor multiplier approximations may be shown to
provide very good approximations. However, when time-frequency shifts of larger magnitude are involved, one
has to turn to more complex approaches. Among these, using combinations of Gabor multipliers with time-
frequency shifts represent a relatively simple choice. Approximating linear systemls as sums of such objects
leads to the so-called Multiple Gabor Multipliers, discussed in [3] and [4].

The purpose of this work is to investigate the practical potential of these approaches in the context of audio
signal processing. More specifically, we consider the problem of estimating Gabor multipliers and multiple Gabor
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multipliers that transform a given sound signal into another one. After reviewing the main results in the Gabor
multiplier theory that are of interest for the present work, we discuss the estimation problem, and propose simple
estimation procedures for Gabor multipliers. Corresponding procedures in the multiple gabor multiplier case turn
out to be extremely computationally intensive, and we propose a simple alternative, called the Masking pursuit
algorithm. Numerical simulations on simple synthetic signals are described and commented, which illustrate
the effectiveness of our approach. We conclude with an application to real sound transformation (saxophone to
clarinet).

2. TIME-FREQUENCY OPERATOR REPRESENTATION AND APPROXIMATION

2.1. The time-frequency plane

Classical time-frequency signal analysis starts by mapping signals say, functions of one real variable, to a suitably
chosen time-frequency representation (for example a short time Fourier transform), which is a function defined
on the phase space, or time-frequency plane, denoted by P.

The short time Fourier transform (STFT) of a (continuous time) signal x ∈ L2(R) is the function Vgx ∈ L2(P),
defined by

Vgx(b, ν) =
∫ ∞
−∞

x(t)e−2iπνtg(t− b) dt = 〈x, g(b,ν)〉,

where g is a fixed analysis window, and g(b,ν)(t) = exp{2iπνt}g(t − b). If g 6= 0, the STFT is multiple of
an isometry (i.e. ‖Vgx‖2 = C‖x‖2 for some constant C), and can be inverted in many different ways: for any
synthesis window h ∈ L2(R) such that 〈g, h〉 6= 0, one has

x(t) =
1
〈h, g〉

∫ ∞
−∞

∫ ∞
−∞

Vgx(b, ν)e2iπνth(t− b) dbdν =
1
〈h, g〉

∫ ∞
−∞

∫ ∞
−∞

Vgx(b, ν)h(b,ν)(t) dbdν ,

the equality holding in the strong L2(R) sense.

It is important to realize that although the time-frequency plane P is topologically isomorphic to the usual
Euclidean plane R2, it differs from it in several respects, in particular in terms of translation structure. In a few
words, translating a function defined on P amounts to translating it in the usual way, and then “correcting” its
argument, or phase. More precisely, the canonical time-frequency translation by (b, ν) on P, denoted by L(b, ν),
reads

[L(b, ν)F ](b0, ν0) = e−2iπ(ν0−ν)bF (b0 − b, ν0 − ν) . (1)

As we shall see below, this remark has a strong importance when it comes to modelling finely transformations
directly in the time-frequency plane.

2.2. The spreading function representation

We shall work in this section in the setting of L2(R) (continuous-time signals with infinite support). We denote
by H the class of Hilbert-Schmidt operator on L2(R). One of our starting points is the so-called spreading
function representation for linear operators. The reference functional setting is of course the L2(R) setting.
However, since even trivial operators can have extremely wild spreading functions, it is often necessary to turn
to distributional settings. This may be done in the framework of the Feichtinger algebra. We shall denote
by S0(R) the Feichtinger algebra of functions whose short time Fourier transform (with a Gaussian window)
is absolutely integrable, and by S ′0(R) the dual space (we refer to [9] and references therein for more details,
and extensions to wider functional settings). In addition, we denote by B (resp. B′) the family of continuous
operators S ′0(R)→ S0(R) (resp. S0(R)→ S ′0(R)).



Theorem 1.

1. Let H ∈H , the class of Hilbert-Schmidt operator on L2(R). Then there exists a function η = ηH ∈ L2(R2),
called the spreading function, such that

H =
∫ ∞
−∞

∫ ∞
−∞

η(b, ν)π(b, ν) dbdν . (2)

the integral being interpreted in the weak operator sense.

2. The relation η ∈ L2(R) ↔ H ∈ H extends to a Gelfand triple isomorphism (S0(R), L2(R),S ′0(R)) ↔
(B,H ,B′).

The second item of this result is important, as it allows one to cover the case of some very simple operators (such
as the identity) whose spreading function is actually a distribution.

The spreading function representation turns out to be closely related to the twisted convolution, which is a
convolution product suitably modified to account for the particular structure of the time-frequency plane, defined
by

(F\G)(b, ν) =
∫

R2
F (b′, ν′)G(b− b′, ν − ν′)e−2iπb′(ν−ν′) db′dν′ . (3)

It was shown in [3, 4] that the spreading function representation of the operator H ∈H actually takes the form
of a twisted convolution in the (continuous) time-frequency domain. η be its spreading function, as follows.

Assume for the sake of simplicity that g, h ∈ L2(R) are such that 〈g, h〉 = 1. Then H may be realized as a
left twisted convolution in the time-frequency domain: for all f ∈ L2(R),

Hx =
∫ ∞
−∞

∫ ∞
−∞

(ηH\Vgx) (b, ν)MνTbh dbdν . (4)

An immediate consequence is the fact, that the range of Vg is invariant under left twisted convolution.

Unfortunately, such an expression is of poor practical interest. Digital signals are in practice finite dimen-
sional, and a corresponding finite-dimensional version may be derived. Unfortunately, the numerical evaluation
of such discrete twisted convolutions turns out to be extremely time consuming (O(N4) complexity). In ad-
dition, subsampling the discrete twisted convolution results in very poor approximations. A better setting for
discretizing such expressions is provided by (discrete) Gabor transforms.

2.3. Gabor frames and Gabor multipliers

The Gabor transform is a sampled version of the STFT. Given lattice constants b0, ν0 in the time-frequency
domain, denote by gmn = g(mb0,nν0) and hmn = h(mb0,nν0) the corresponding time-frequency translates of the
analysis and synthesis windows, hereafter termed Gabor atoms. It may be shown2, 9 that for suitable choices
of g and the sampling constants (b0, ν0), the corresponding Gabor atoms gmn form a frame, which implies that
there exists synthesis windows h such that for all x ∈ L2(R),

x =
∑
m,n

〈x, gmn〉hmn .

We denote by
Vg : x ∈ L2(R) 7−→ Vgx , Vgx(m,n) = 〈x, gmn〉

the analysis operator (we use the same notation for the STFT and the Gabor transform), and by

S : α ∈ `2(Z2) 7−→ Sα =
∑
m,n

αmnhmn



the synthesis operator. When the frame is tight,2 h may be chosen so that h = Kg for some constant K, and
S = K−1V ∗g , where V ∗g is the adjoint of Vg.

Given a Gabor frame, and a linear operator H, the latter may of course be characterized by its matrix elements
〈Hgmn, gm′n′〉 in the frame. However, there are situations in which good quality approximations can nevertheless
be obtained in a simple manner. These correspond to situations in which the spreading function ηH of H is
sufficiently “concentrated” in the time-frequency space. The operator H can then be suitably approximated
using the so-called Gabor multipliers, which we now describe.

Let consider the normalised analysis and synthesis windows g, h ∈ L2(R) (〈g, h〉 = 1). Given any m ∈ `∞(Z2),
termed time-frequency transfer function (or mask) we define the associated Gabor multiplier Mm by
Gabor transform, followed by multiplication by the mask, and inverse Gabor transform:

Mm;g,hx(t) =
∞∑

m,n=−∞
m(m,n)〈x, gmn〉hmn.

Gabor multipliers have been studied extensively (see [6], in particular the chapter by Feichtinger and Nowak).
They can also be combined with other operators, for example time-frequency shifts to yield wider classes of
operators.3, 4 For example, using a time-frequency shifted copy of g as a synthesis window h is a way of
implementing time-frequency shifts in the multiplier.

2.4. Approximation by Gabor multiplier

Gabor multipliers provide a flexible class of operators that is fairly easy to use. Notice however that any linear
operator cannot be expressed as a Gabor multiplier. Indeed, since a Gabor multiplier is a multiplication operator
in the time-frequency domain, operators that involve time-frequency shifts of large magnitude can obviously not
be written as Gabor multipliers, and can hardly be approximated as such. The following result gives more
insights of what can be expected.

Proposition 1. The spreading function of the Gabor multiplier Mm;g,h is given by

ηMm(b, ν) = M (d)(b, ν)Vgh(b, ν) , (5)

where the (ν0−1, b0
−1)-periodic function M (d) is the symplectic Fourier transform of the transfer function m

M (d)(t, ξ) =
∞∑

m=−∞

∞∑
n=−∞

m(m,n)e2iπ(nν0t−mb0ξ) .

It is useful to comment on this result. Let us assume that the analysis and synthesis windows have been
fixed, as well as the lattice constants b0 and ν0. Then the following two remarks can be made.

1. The localization of the spreading function of a Gabor multiplier matches the localization of the cross
ambiguity function Vgh. For example, in the special case h = g, the spreading functionηH is localized near
the origin, and its decay matches that of Vgg. If g is well localized in time and frequency, a corresponding
Gabor multiplier can therefore not involve time-frequency shifts of large magnitude.

2. In order to involve time-frequency shifts of significant magnitude, one has to use a synthesis window which
is sufficiently far away from the analysis window in the time-frequency domain.

3. The spreading function ηH of the Gabor multiplier has to be such that the function ηH/Vgh is (ν0−1, b0
−1)-

periodic.

Let us mention that in addition, it is possible to derive necessary and sufficient conditions ensuring the
existence of best Gabor multiplier approximations for all Hilbert-Schmidt operators.



2.5. Multiple Gabor multipliers
We just saw that Gabor multipliers are good at approximating linear operators whose spreading function is
suitably well localized in the time-frequency domain. However, this is not the general situation. When the
spreading function ηH ofH is not well enough localized, it is still possible to seek approximations as sums of Gabor
multipliers. The Multiple Gabor Multipliers, introduced in [3, 4] are linear combinations of Gabor multipliers,
with fixed analysis window, and variable synthesis windows (with different time-frequency localizations) h(j) and
masks mj , and are defined as follows:

M =
∑

Mmj ;g,h(j) (6)

In the particular case where the synthesis windows are defined by time-frequency shifts of a unique window, on a
suitable time-frequency lattice, conditions were given to ensure the existence of the best MGM approximation,3, 4

together with an explicit expression for the latter, in terms of the spreading function of the operator under
consideration. Unfortunately, the latter expression is quite complex, and it is not clear yet how to exploit it
numerically in real world situations. We present below an alternative, based upon an iterative algorithm called
masking pursuit.

3. ESTIMATING GABOR MULTIPLIERS
Let us now turn to the estimation problem. We consider the following problem: given an input signal x0 ∈ L2(R),
and a set of output signals x1, . . . xk, images of x0 by some operator, find a good Gabor multiplier approximation
of the operator. We describe below various situations, of increasing complexity. Throughtout this section, we
assume for the sake of simplicity that the window g ∈ L2(R) generates a tight Gabor frame.

Let us first consider the simple case with one input and one output signals, linked by a linear operator H
with spreading function η. The model is x1 = Hx0 + ε, where ε is nome observation noise. One then has
Vgx1 = η\Vgx0 + Vgε. Obtaining an estimate of the spreading function η from x0 and x1 would require inversing
this twisted convolution equation, which is not easy since

• the situation is not as simple as with usual convolutions, which are diagonal in the Fourier domain.

• The solution may be highly unstable.

However, the situation may change drastically if the spreading function of interest can be considered sufficiently
“concentrated”. Indeed, in such a case, the operator may be conveniently approximated by a Gabor multiplier,
or a composition of the latter with a time-frequency shift.

3.1. The simple case
Suppose we have the input signal x0, and an observation x1 of the form

x1(t) = Mg,g;mx0(t) + ε1(t) ,

from which we try to estimate the mask m. It is natural to seek a solution by minimizing

Φ[m] = ‖x1 −Mg,g;mx0‖2 + λ‖m‖2 , (7)

where the Lagrange parameter λ ∈ R+ is introduced in order to control the norm of m.
The latter quantity reads

Φ[m] = ‖V ∗g (Vgx1 −mVgx0) ‖2 + λ‖m‖2 ,
and is not obvious to minimize, because V ∗g is not one to one.

As an alternative, one may use the proxy defined by the minimizer of

Ψ[m] = ‖Vgx1 −mVgx0‖2 + λ‖m‖2 , (8)

which reads

m =
Vgx0 Vgx1

|Vgx0|2 + λ
. (9)

The latter quantity is quite easy to evaluate numerically. Corresponding results are shown and commented in
section 4 below.



3.2. Multiple realizations of the output signal

Let us now turn to the situation where several realizations of the output signal (with varying amplitude) are
available, with a unique input. We assume that all output signals xk to be of the form

xk = akMg,g;mx0 + εk ,

where εk is a perturbation, that may be conveniently modelled as random Gaussian white noise. To estimate
the model parameters, we seek minimizers of the quantity

Φ[m, a1, . . . aK ] =
K∑
k=1

‖Vgxk − akmVgx0‖2 +Kλ‖m‖2 ,

the second term of which is introduced to ensure boundedness of the mask.

The normal equations yield the system of two equations

m(m,n) =

(∑K
k=1 akVgxk(m,n)

)
Vgx0(m,n)(∑K

k=1 |ak|2 |Vgx0|2
)

+Kλ
, (10)

and

ak =

∑
m,nm(m,n)Vgx0(m,n)Vgxk(m,n)∑

m,n |m(m,n)|2 |Vgx0(m,n)|2
(11)

which suggests to use an iterative algorithm for the search of the mask m and the weights ak: iterate evaluations
of the mask and the weights.

3.3. Gabor multiplier composed with time-frequency shift

Let us now study the case where the output signal is obtained through a Gabor multiplier composed with some
extra deformation (some linear operator), denoted by D. The model is then as follows

x1(t) = DMg,g;mx0(t) + ε1(t) ,

which would naturally lead to the optimization of

Φ[m, D] = ‖x1 −DMg,g;mx0‖2 + λ‖m‖2 ,

for which one faces the same difficulties as before.

In what follows, we shall limit ourselves to time-frequency translations D = πk` = M`ν0Tkb0 , which is a
unitary transformation. Assume first that k and ` are known. Minimizing Φ[m, πk`] with respect to D and for
fixed m, is equivalent to maximizing <(〈x1, πk`Mg,g;mx0(t)〉):

min
k,`

Φ[m, πk`]⇔ max
k,`
<(〈x1, πk`Mg,g;mx0〉) . (12)

Then by noticing that
〈x1, πk`y〉 = Vyx1(k, `) ,

the search of minima with respect to D (here, k, `) amounts to a search for the maxima of the cross-ambiguity
function Vyx1.

Let us now assume that the deformation D is known, and turn to the estimation of the mask. We can proceed
as before, and start by remarking that

πk`V
∗
g = V ∗g Lk` , with (Lk`G)(m,n) = e−2iπb0ν0k(n−`)G(m− k, n− `)



so that
‖x1 − πk`Mg,g;mx0‖2 = ‖V ∗g (Vgx1 − Lk`mVgx0)‖2 .

Notice that Lk` is unitary (‖Lk`G‖2 = ‖G‖2 for all G), and the adjoint operator reads

(L∗k`G)(m,n) = e2iπknb0ν0G(m+ k, n+ `) .

This suggests to replace the optimization of Φ with that of

Ψ[m] = ‖Vgx1 − Lk`mVgx0‖2 + λ‖m‖2 = ‖L∗k`Vgx1 −mVgx0‖2 + λ‖m‖2 ,

and leads to an expression very similar to (9)

m =
Vgx0 L

∗
k`Vgx1

|Vgx0|2 + λ
. (13)

In general, both D and m are unknown, and have to be estimated simultaneously. This may be done using
an iterative strategy recursively optimizing with respect to the mask and the deformation

• The estimation of m is done via (9).

• The estimation of the deformation can be performed using either the above optimization of the ambiguity
function (with fixed m) VMmx0x1, or restarting from the functional Ψ, and optimizing

〈Vgx1, Lk`mVgx1〉 =
∑

Vgx1(m,n)Vgx0(m− k, n− `)e2iπkb0ν0(n−`) ,

i.e. a kind of (squared modulus of) twisted correlation. Since the latter involves evaluation of oscillatory
sums, a first guess may be obtained by optimizing a (possibly smoothed and subsampled) classical 2D
correlation product of |Vgx1| and |Vgx0|.

3.4. An algorithm for multiple Gabor multiplier estimation: masking pursuit
As stressed above, Gabor multipliers are often not sufficient for correctly approximating operators of interest
in sound analysis. Multiple Gabor multipliers (see subsection 2.5) were proposed in [3, 4] as alternatives to
Gabor multipliers. Numerical implementation of MGM is currently under study, but two difficulties can
be mentioned:

– The best MGM approximation of a given operator with known spreading function requires the inver-
sion of a system of twisted convolutions, which may turn out to be a difficult problem in real world
situations.

– In addition, in the problem under consideration here, the MGM has to be estimated from data, which
makes the task more complex.

We describe now a simple alternative, called Masking Pursuit, which estimates iteratively Gabor multi-
pliers composed with time-frequency shifts, based upon the considerations of subsection 3.3

Let x0 and x1 denote respectively the input and output signals as before.

– Initialization: Set r(0) = x1.
– Iteration: for n = 0, ..Nmax − 1,
∗ Estimate a mask mn+1 and time-frequency shifts (kn+1, `n+1) from x0 and residual r(n), using

the approach developed in subsection 2.5.
∗ Update the residual r(n+1) = r(n) − πkn+1`n+1Mmn+1;g,gx0

This yields an estimate

H ≈
Nmax−1∑
n=0

πkn`nMmn;g,g

for a MGM approximation of the operator



3.5. Numerical experiments

In this section we present simple academic examples that demonstrate the most most salient behavior of
the algorithm and the effect of the main parameters. It illustrates the practical potential of the Gabor
masks. Considered signals are composed of a sum of L complex exponential sequences (CES) that are
modulated in amplitude.

s(n) =
l=L∑
l=1

al(n) exp(2iπfln) (14)

where al and fl are respectively the amplitudes and the normalized frequencies of the CESs. All the
examples are generated as discrete-time signals at a sampling rate of SR = 44100Hz; this frequency
remaining a standard in audio processing.

Let start with a simple case study where both reference signal x0 and target signal x1 are composed of
a single CES at the same frequency (f0 = 2000Hz), and which amplitude is modulated differently at the
attack time. The attack shape is the shape of the beginning of the temporal envelope that represents
the amplitude modulation of the CES. This is an important feature which has a strong influence on the
perception of sound signals (e.g. changing only the attack portion of a sound signal might completely
change the perceived nature of the sound). Here the aim is to study the design a Gabor multiplier which
transforms a given temporal attack shape into a new one.

The attack of the source sound starts at time N0 = 0.01 ∗ SR and consists in a cosine-shape modulation
for a duration N = 0.05 ∗ SR, i.e.: a(n) = 0.0 for n < N0

a(n) = 1
2 (1− cos( 2πn

N )) for N0 < n ≤ N +N0

a(n) = 1.0 for n > N
(15)

The attack of the target sound is a simple Heaviside function which discontinuity is located at time N .
Figure1 represents the magnitude of the Gabor transform of the source sound, and of the target sound, while
Figure 2 represents the magnitude of the mask between the source and the target. More specifically these
representations have been calculated using 1000 modulations (also called channels in audio processing),
and with a hop size of 8. A (very small) value of 10−12 was chosen for the regularisation parameter λ.
The Gabor transforms of the source and the target exhibits clearly expected features. An horizontal stripe
centered around 2000Hz that smoothly starts for the source, while it vertically spreads the power around
N0 for the target.

More interesting is the Gabor mask (cf. Figure 2), which highlights the transformation it represents.
First, a vertical stripe with a high amplitude aiming at transforming the smooth start of the cosine-shape
attack into a square-shape one. Second an horizontal patterns which starts at N0, with an amplitude that
monotonically decreases to stabilize at a value of 1.0 around time N+N0. One may notice that the vertical
stripe of the Gabor Mask remains of finite values, thanks to the benefit of the regularization provided by
λ, and the presence of residual power due to the spreading of the spectral representation provided by the
spectral shape of the window as well as some numerical noise.

The example number 2 uses the same source and target signals than in Example 1; the only difference is
a 2000Hz shift in frequency and a 0.01s shift in time of the target signal. The pictures of Figure 3 and
Figure 4 show the same main characteristics that were just described above. In addition the mask presents
a few noticeable differences. First the horizontal stripe is now centred around 4000Hz in order to increase
the weak power of the source available in these time-frequency region. Conversely, the mask comes near
the zero value around the frequency of the source signal, i.e. 2000Hz; this can be clearly seen when it
clears the vertical stripe corresponding to the singularity.

The third example deals with the general case of the multiple Gabor multipliers and illustrates the masking
pursuit algorithm described in section 3.4. While the source signal is still composed of a single CES, but at
frequency 440Hz, the target is a superposition of three equal-amplitude CES at the following frequencies
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Figure 1. Magnitude of the Gabor Transform of the source (left) and the target sounds (right).
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Figure 2. Magnitude of the Gabor Mask.

1000, 2000, and 3000Hz. Both source and target components start at the same time, and with the same
linear-shape attack. As discussed in section 3.4, the estimation of a time and frequency shift has to be
performed at each iteration step. We use a classical 2D-correlation between the Gabor transforms of both
signals. We then check for the maximum value of the correlation. At the first iteration, the estimated
frequency shift is 1300Hz, which is close to the expected value, i.e. 1560 = 2000−440Hz. As a consequence
the first iteration mainly focuses on the second component of the target (2000Hz), while it renders a fraction
of the first one (1000 Hz). This can clearly be seen on the left picture of Figure 5, which represents the
magnitude of the Gabor Transform of the first reconstructed signal, noted u1. Conversely the right pitcure
of the same Figure shows the Magnitude of the Gabor Transform of the first residual signal r1, as defined
in 3.4.

In the same way, Figures 6 and 7 respectively show the same kind of data obtained after the second and
third iteration of the adaptive algorithm. When adding the three shifted sources u1, u2, and u3, we would
get a generic source signal, which would provide us with a multiple Gabor multiplier simply composed by
the sum of the three corresponding ones. As most audio signals are quasi-harmonic ones, or at least made
of a sum of partials, this approach can become a general one to estimate masks enabling transformations of
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Figure 3. Magnitude of the Gabor Transform of the source (left) and the target sounds (right).
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Figure 4. Magnitude of the Gabor Mask.

a sound of a given fundamental frequency to a sound with a different fundamental frequency. This iterative
approach can be used to overcome the open problem of the Gabor multipliers and dilation.

Notice that we could have pushed the algorithm to focus on only one component for each iteration, by a
proper adjustment of the λ parameter. λ might be interpretated in this context as a kind of suppressor
that hides components, whose power are below the λ value. Thus a larger value of λ would have rejected
the 1000Hz component at the first iteration. However the price for this simpler behavior would have been
a slower convergence of the algorithm.

4. APPLICATION TO SOUND SIGNAL PROCESSING

In this section we describe what represents, to the best of our knowledge, the first application of Gabor multipliers
to the processing of real audio signals. The aim of this audio application is two-fold. We first discuss the interest
of using Gabor masks as a sound timbre differenciation tool, or let say it more precsiely as a time-frequency
morphological differentiation of signals that can quantify the timbre perceptual differences. We then develop
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Figure 5. First iteration of the Masking Pursuit algorithm. Magnitudes of the Gabor Transform of the first estimation
(left) and the first residual (right).
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Figure 6. Second iteration of the Masking Pursuit algorithm. Magnitudes of the Gabor Transform of the first estimation
(left) and the first residual (right).

the second idea, which is to validate the potential of Gabor multipliers for sound transformation as well as for
synthesis by acting directly on the time-frequency domain.

For this purpose we choose a simple example that involves two harmonic instrumental sounds played at the
same pitch, a F#4 at 370 Hz. The target signal is a sustained Eb clarinet note, while the source is a soprano
saxophone note with no vibrato. In practice the actual fundamental frequencies might be slightly different for
the two signals. This sounds have been downloaded from the Musical Instrument Samples database from the
University of Iowa.

Before describing the shape of the Gabor Mask, let us first describe in a somewhat detailed way the main
features of these two tones. This will be helpful to demonstrate how well a Gabor Mask is able to extract the
appropriate differences between these two sounds.

The left part of Figure 8 is the magnitude of the Gabor Transform of the Saxophone tone. It shows most of
the typical time-frequency features of this family of instruments. Among them, there is a relatively sharp attack,
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Figure 7. Third iteration of the Masking Pursuit algorithm. Magnitudes of the Gabor Transform of the first estimation
(left) and the first residual (right).

with most of its harmonic components starting at the same time. A second feature is a relatively smooth spectral
envelope, i.e. a smooth variation of the amplitude of the harmonic components with respect to the frequency.
A so-called formantic structure is meanwhile responsible for an increase of power around 800Hz and 3500Hz.
A decrease of power can be observed around 3000Hz; this is know as an anti-formant. As regards the release
of the temporal envelope one can see a faster decrease of the high-frequency components when compared to the
low-frequency ones. Finally the whole saxophone signal includes some noisy components as this is the case for
most of wind instruments. However the noisy components appear in this case at a rather weak power level.

The right part of Figure 8 is the magnitude of the Gabor Transform of the clarinet tone. Contrarily to the
saxophone note, the attack is smoother and the harmonic structure exhibits only a few noticeable components.
Furthermore the noise level across the entire time-frequency spectrum is higher. A very specific feature of the
clarinet sound is the strong difference between the power level of the odd and the even components. This is
coherent with the physics (opposite boundary conditions at the limits of the clarinet tube of the instrument, see
[13]), and is also the most significant perceptual feature for the recognition of clarinet tones. The release of the
temporal envelope is, in the case of this clarinet sound, similar for each of spectral component. One may notice
also a specific noise which appears after the release of the harmonic components (after 2s). This might be due
to the noise generated by the release of a keypad.

The Gabor mask remarkably make the differences between the two sounds explicit as shown on Figure 9.
Given that the two sounds have very close fundamental frequencies, we chose to use the simple procedure
described in 3.1. The mask was then computed with no frequency and no time shifting. One can notice that
the slight differences in frequencies between the two sounds lie within the phase of the Gabor mask. As far as
time-shift is concerned, the Gabor mask shows a black vertical stripe around the time origin. This compensate
for the lack of power at the very beginning of the source sound du to the presence of a time offset, which does not
appear in the clarinet sounds. An appropriate time shift estimation would have made this discrepancy vanish.

The Gabor mask highlights a strong difference between the attack-shape of the two instrumental sounds.
This can be observed between time 0.01 and 0.04s and is somewhat similar to what appears in example 1 (see
Figure 2). Nevertheless actual sounds are more complicated and the vertical stripe can be decomposed in two
parts. The first one localized between 0.01s and 0.02s aims at increasing the power of the saxophone attack in
order to match the one of the clarinet. The second part, between 0.02s and 0.04s shows a much stronger decrease
of the power right after the attack time (usually called the decay) in the case of the clarinet.

A more obvious fact that is clearly represented in this Gabor mask concerns the difference of the power
distribution along the frequency components. The Gabor Mask exhibits clear white horizontal stripes, located
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Figure 8. Magnitude of the Gabor Transform of the saxophone tone (left) and of the clarinet tone (right).

around even harmonics. Moreover the differences in the formantic and anti-formantic structure is well represented
by respectively darker and lighter horizontal regions (around 3000Hz and 4000Hz).

Finally the differences during the release part of the temporal envelope also clealry appears in the Gabor
mask starting around 1.5s for high-frequency components. Notice that the presence of the keypad noise in the
clarinet tone is taken into account and corresponds to an increase of the mask at low frequencies after 2s.

In addition to the application we just described, the Gabor mask allows for a very high quality synthesis
and transformation of sound. This is due to two facts. The first one is that the Gabor mask takes into
account the phase relationship between source and target while keeping it coherent in terms of a time-frequency
representation. The second one is that it explicitly design the transfer function of a system that maps a given
sound into one another. In the case of the saxophone and the clarinet tone, very high quality sounds have been
obtained providing an appropriate choice of the regularisation λ parameter.
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Figure 9. Example 4.b



CONCLUSION

We have described in this presentation some first steps towards application of Gabor multipliers to audio signal
transformations. We have sticked to simple estimation procedures, which nevertheless allowed us to illustrate
the interest of the proposed approach. However, lot still remains to be better understood, for example the tuning
of the regularization parameter λ.

It is clear that for processing more complex signals, Gabor multipliers are generally not sufficient, and multiple
Gabor multipliers will have to used, the estimation problem becoming extremely complicated. However, the
masking pursuit approach we have proposed in this contribution represents a simple and efficient alternative.
The previous examples have demonstrated the great potential of the Gabor mask for audio applications. We
have focused on the properties of the magnitude of these masks. Nevertheless the experimental study of the
phase of the Gabor masks, will likely help for a better understanding of the micro frequency variations between
target and source sounds, such as a vibrato discrepancies, and subtle frequency modulations. A natural future
work is to extend the use of these technique to generate a sequence of intermediate morphed sound signals. A
future work has also to addresses specific strategies for the estimation of the time and frequency shift depending
on the features of both source and target sounds.
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