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Context-free parsing with finite-state transducers

Éric Laporte∗

Abstract

This article is a study of an algorithm designed and implemented by Roche
[Roc92, Roc93] for parsing natural language sentences according to a context-
free grammar. This algorithm is based on the construction and use of a finite-
state transducer. Roche successfully applied it to a context-free grammar with
very numerous rules. In contrast, the complexity of parsing words according
to context-free grammars is usually considered in practice as a function of
one parameter: the length of the input sequence; the size of the grammar is
generally taken to be a constant of a reasonable value. In this article, we first
explain why a context-free grammar with a correct lexical and grammatical
coverage is bound to have a very large number of rules and we review work
related with this problem. Then we exemplify the principle of Roche’s algo-
rithm on a small grammar. We provide formal definitions of the construction
of the parser and of the operation of the algorithm and we prove that the
parser can be built for a large class of context-free grammars, and that it
outputs the set of parsing trees of the input sequence.

The complexity of parsing words according to context-free grammars is usually
considered as having theoretically two parameters: the length of the input sequence
and the size of the grammar, namely the number of rules or the sum of the lengths of
rule bodies (see e.g. [AU72, AU73] for a survey). In practice, one tends to consider
the size of the grammar as a constant. This approximation is acceptable if the size
of the grammar is of a reasonable order of magnitude. As a matter of fact, existing
parsers are usually applied to context-free grammars with at most a few thousand
rules.

However, in the particular case of natural-language text parsing, we will see that
a context-free grammar with a correct lexical and grammatical coverage is bound
to have a very large number of rules. This problem has been addressed in various
ways. Several authors preferred shifting from context-free parsing to more powerful
grammatical and parsing formalisms. In two original contributions [Roc92, Roc93],
Roche designs, implements and tests a top-down, breadth-first algorithm for parsing
natural language sentences according to a context-free grammar with very numerous
rules. His algorithm is based on the construction and use of a finite-state transducer.
He describes how he constructed an actual, large-coverage context-free grammar and
a parser for that grammar. He successfully applied it to French sentences. In this
article, we exemplify the principle of Roche’s algorithm on a small, non-linguistic
grammar. Then, we give formal definitions of the construction of the parser and of
the operation of the algorithm. We prove that the parser can be built for a large
class of context-free grammars, and that it outputs the set of parsing trees of the
input sequence.

∗Laboratoire d’études et recherches en informatique, Université de Reims-Champagne-Ardenne,

Moulin de la Housse, B.P.1039, F-51687 Reims CEDEX 2, France.
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1 Size of realistic natural-language grammars

Context-free grammars were first designed and mathematically defined in order to
model the syntax of natural languages [Cho56]; since then, they have been consid-
ered as the standard formalism to parse natural-language sentences [Ear70, Tom86,
MT90]. However, a close examination of the problem shows that parsing natural
language requires making an intensive use of lexical information [Gro93]. In partic-
ular, the syntax of natural languages is highly dependent on lexical information: as
[Gro75, Sal79, Gaz83] first showed, a context-free grammar for natural-language sen-
tences with a correct lexical and grammatical coverage would have at least hundreds
of millions of rules; [Sal79] describes the actual construction of such a grammar.

The most common principle in the construction of context-free grammars for
natural languages consists in modelling sentences into predicate and arguments.
Many rules can take the form S −→ u, where S is a non-terminal symbol standing
for a sentence type and u is a sequence containing

• a predicative element, in the form of one or several terminal symbols,

• one or several arguments in the form of non-terminals,

• and possibly grammatical words, in the form of terminal symbols or non-
terminals.

The following examples model English sentence structures with 1, 2 and 3 argu-
ments:

S −→ Nconc works (1)

S −→ Nabs is complementary to Nabs (2)

S −→ Nhum performs the installation of Nconc in Nconc (3)

where S stands for sentence, Nconc for concrete noun, Nabs for abstract noun and
Nhum for human noun.

The predicate-argument description is an imperfect model, but it has been suc-
cessfully applied to dozens of languages and it is close enough to linguistic reality
for nearly any tentative formal description to be founded on one of its variants.
However, it needs numerous rules to be built for it. Each predicative element can
appear in several sentence structures, due to syntactic transformations, e.g.:

S −→ Nabs is complementary to Nabs (4)

S −→ Nabs-plur are complementary (5)

If the language has n predicative elements as in (1)–(3) and if each of them admits on
average p sentence structures as in (4) and (5), they can be represented by np rules.
Rules like (1)–(3) are ”lexicalized” in the sense that the rule body contains at least
one terminal symbol, the predicative element (works, complementary, installation).

It is natural to try to reduce the number of rules by associating predicative
elements which admit the same sentence structures. One could thus represent np
forms by combining p structural rules, e.g.:

S −→ Nabs Pred to Nabs

S −→ Nabs-plur Pred

with n lexical rules:

Pred −→ are complementary

Pred −→ relate

Pred −→ have some relevance
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i.e. a total of n + p rules. However, that method can be applied to n predicative
elements and p sentence structures only if the np combinations are acceptable. Un-
fortunately, the various sentence structures associated with a predicative element
correspond to numerous and diverse syntactic transformations: reversals, omis-
sions, pronominalizations, passive transformations, symmetric transformations. . .
that never apply to all other predicative elements and that are distributed among
them in an irregular way. Specialists estimate that no two simple verbs in French
enter exactly in the same sentence structures, except a few series like that of verbs
denoting animal shouts [Gro75, BGL76].

Due to these difficulties, the bulk of the rules of a realistic natural-language
context-free grammar must be lexicalized. Several authors preferred shifting from
context-free parsing to more powerful grammars and parsers: string grammars
[Sal79, Sag81], generalized phrase-structure grammars [Gaz83], tree-adjoining gram-
mars [JS88, ASJ88]. . .

However, in comparison with context-free grammars, the structural and com-
putational complexity of such formalisms is clearly a drawback. Thus, context-free
parsing is worth revisiting with the following additional constraint: the number of
rules being a parameter of paramount importance, the time complexity with respect
to this number must be reduced to a minimum.

The program of [Roc93] parses natural language sentences according to a con-
text-free grammar with more than 8.3 million rules [Roc92]. The parser is probably
the first that was ever applied to a several-million-rule grammar, but it parsed 30-
word sentences in 2 seconds. One of its advantages is that it does not process trees
but strings. The rules are compacted into an acyclic finite-state automaton. The
data of the parser consists of a finite-state transducer built from the automaton.
The parser applies that transducer to the input sequence, then it iteratively applies
it to the result, until a fixed point is reached. The theoretical time complexity of
this process has not been studied yet, but in practice it seems to depend essentially
on the height of the parsing trees and on the length and degree of ambiguity of the
input sequence, but little or not on the number of rules. In the next section, we
exemplify its operation on a small, non-linguistic grammar.

2 A non-linguistic example

We will use the following notations. The empty word is noted ǫ. If u∈A⋆ and B ⊂ A,
|u|B is the number of positions in u that belong to B. A context-free grammar
G = (A,X,R) is defined by an alphabet A of terminal symbols, an alphabet X of
non-terminal symbols and a set of rules, R ⊂ X×(A|X)⋆. A rule is noted (x−→u)
with x∈X and u∈(A|X)⋆. If there is a derivation in n paths from u∈(A|X)⋆ to

v∈(A|X)⋆, we write u
n,G
−→ v. The set of words of (A|X)⋆ derived from u∈(A|X)⋆

according to G is noted LG(u). The set of leftmost derivations from u according to
G is noted DG(u).

Let G0 be the following context-free grammar:

x−→axb|cxd|ǫ

and let us see how Roche’s algorithm parses strings according to G0. The computa-
tion does not process trees but strings. Parsing trees are coded as strings by using
a grammar Ĝ0, a variant of G0 where for each rule (x−→u), the left-hand side x

appears in the right-hand side in the form of a pair of ”labelled parentheses”
⇐
x and

⇒
x :

x−→
⇐
x axb

⇒
x |
⇐
x cxd

⇒
x |
⇐
x
⇒
x
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Each parsing tree according to G0 may be coded either in the form of a leftmost
derivation:

x−→axb−→acxdb−→acdb

or in the form of a word
⇐
x a

⇐
x c

⇐
x
⇒
x d

⇒
x b

⇒
x ∈L

Ĝ0

(x).

The algorithm makes use of a second set of labelled parentheses, which we will

note
←
x and

→
x in order to keep them distinct from

⇐
x and

⇒
x . The algorithm will

parenthesize a string f∈A⋆ with
←
x and

→
x whenever it attempts to find a derivation

x
n,G0

−→ f . For example, il the algorithm is run to determine whether a string f∈A⋆

is in LG0
(x), its input should be

←
x f

→
x . An elementary step in the parsing process

consists in:

1. substituting
⇐
x and

⇒
x for

←
x and

→
x in each

←
x g

→
x ∈

←
x A⋆ →x , and

2. inserting new pairs of labelled parentheses into g in such a way that if, in the

result, one replaces each parenthesized string
←
x h

→
x with x, then one obtains

a right-hand side of a rule of Ĝ0.

For example, when this elementary step is applied to
←
x acdb

→
x , the result is

⇐
x a

←
x cd

→
x b

⇒
x

because (x−→
⇐
x axb

⇒
x) is a rule of Ĝ0. The two operations of substitution and

insertion are performed at the same time by applying a finite-state transducer. In
the case of G0, this transducer is a 9-state transducer that realizes the transduction
θ defined by:

τ = { (
←
x afb

→
x,
⇐
x a

←
x f

→
x b

⇒
x) | f∈A⋆ } ∪

{ (
←
x cfd

→
x,
⇐
x c

←
x f

→
x d

⇒
x) | f∈A⋆ } ∪

{ (
←
x
→
x,
⇐
x
⇒
x) }

and by θ = (τ | Id
A|
⇐

X|
⇒

X
)⋆, where the star is Kleene’s star. When θ is applied to

a string, one step of top-down parsing is performed by further analyzing each of

the strings g that had been parenthesized by
←
x and

→
x in the preceding step. For

example, if we want to parse aacdbb, the iterative application of θ to
←
x aacdbb

→
x

yields the following strings:

←
x aacdbb

→
x

⇐
x a

←
x acdb

→
x b

⇒
x

⇐
x a

⇐
x a

←
x cd

→
x b

⇒
x b

⇒
x

⇐
x a

⇐
x a

⇐
x c

←
x
→
x d

⇒
x b

⇒
x b

⇒
x

⇐
x a

⇐
x a

⇐
x c

⇐
x
⇒
x d

⇒
x b

⇒
x b

⇒
x

⇐
x a

⇐
x a

⇐
x c

⇐
x
⇒
x d

⇒
x b

⇒
x b

⇒
x

The iterative application of θ reaches a fixed point, which is a coding of the parsing
tree of aacdbb. In general, θ is not a function: when applied to a string, it can
yield several strings. In this case, the transducer is applied to the finite set of
strings obtained from the preceding application. Each of these sets of strings can
be represented by an acyclic automaton. We will see that in the assumption that
the grammar is strict, the iterative application of θ to the set of strings reaches a
fixed point and that the elements of the fixed point are the strings that code the
parsing trees of the input sequence.
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3 Coding trees as strings

Let G = (A,X,R) be the context-free grammar to be used by the parser. We will

use four copies of X :
←

X,
→

X,
⇐

X,
⇒

X, disjoint from A and X and pairwise disjoint. Let

Ĝ = (A|
⇐

X |
⇒

X,X, R̂) where

R̂ = { (x−→
⇐
x u

⇒
x) | (x−→u)∈R }

For example, if G is the grammar G0 defined in the preceding section:

x−→axb|cxd|ǫ

then Ĝ0 is defined as:
x−→

⇐
x axb

⇒
x |
⇐
x cxd

⇒
x |
⇐
x
⇒
x

Let ϕ : A|X |
←

X |
→

X|
⇐

X |
⇒

X −→A|X be the projection that erases the symbols of
←

X|
→

X |
⇐

X |
⇒

X , and extend it to a morphism

ϕ : (A|X |
←

X|
→

X|
⇐

X |
⇒

X)⋆−→(A|X)⋆

Parsing trees according to G will be coded in the form of words of (A|
⇐

X |
⇒

X)⋆.

In order to show it we need a technical lemma about Ĝ:

Proposition 1 For x∈X, no derived sequence of D
Ĝ
(x) takes the form

fyg
⇐
z h

⇒
z k

with y, z∈X, h∈(X |A)⋆ and f, g, k∈(X |A|
⇐

X |
⇒

X)⋆.

By induction on the length n of the derivation. ▽

Proposition 2 For x∈X, DG(x) is in bijection with D
Ĝ

(x) and L
Ĝ
(x).

Proof.
(i) DG(x) is in bijection with D

Ĝ
(x): each derivation of DG(x) or D

Ĝ
(x) applies

a sequence of rules. Thus we have two injective mappings ı̂ : D
Ĝ

(x)−→R̂⋆ and
i : DG(x)−→R⋆. By induction on n, we show that for each (x, u1. . .un)∈D

Ĝ
(x),

where the rules r̂1. . .r̂n are applied, then (x, ϕ(u1). . .ϕ(un))∈DG(x), where the rules
r1. . .rn are applied. Therefore, ϕ induces a mapping α : D

Ĝ
(x)−→DG(x) and a

bijection β : R̂⋆−→R⋆, with ı̂β = αi; thus α = ı̂βi−1 is bijective.
(ii) We only need to show that Ĝ is unambiguous, i.e. the mapping

{
D

Ĝ
(x) −→ L

Ĝ
(x)

(x, u1. . .un) 7−→ un

is injective. By induction on n, if (x, u1. . .un), (x, v1. . .vm)∈D
Ĝ
(x), un = vm and

n≤m, then n = m and ∀i∈[1, n] ui = vi. ▽
The set of parsing trees of a word u∈A⋆ will thus be represented by L

Ĝ
(x) ∩

ϕ−1(u) ∩ (A|
⇐

X |
⇒

X)⋆. For example, each parsing tree according to G0 may be
coded either in the form of a leftmost derivation:

x−→axb−→acxdb−→acdb

or in the form of a word
⇐
x a

⇐
x c

⇐
x
⇒
x d

⇒
x b

⇒
x ∈L

Ĝ0

(x).
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4 The transducer

Let σ : (A|X |
⇐

X|
⇒

X)⋆−→(A|(
←

X A⋆
→

X)|
⇐

X|
⇒

X)⋆ be the rational substitution defined
by

∀a∈A σ(a) = a

∀
⇐
x ∈

⇐

X σ(
⇐
x) =

⇐
x

∀
⇒
x ∈

⇒

X σ(
⇒
x) =

⇒
x

∀x∈X σ(x) =
←
x A⋆ →x

Let ψ : (A|
←

X|
→

X |
⇐

X|
⇒

X)⋆−→(A|X |
←

X|
→

X)⋆ be the morphism defined by

∀a∈A ψ(a) = a

∀
←
x ∈

←

X ψ(
←
x) = ǫ

∀
→
x ∈

→

X ψ(
→
x) = ǫ

∀
⇐
x ∈

⇐

X ψ(
⇐
x ) =

←
x

∀
⇒
x ∈

⇒

X ψ(
⇒
x ) =

→
x

We have ψψ = ϕ and |u| = |ψ(u)| + |u|←
X

+ |u|→
X

. For each rule (x−→v)∈R and

u∈
⇐
x σ(v)

⇒
x , we have |ψ(u)|⇒

X
= 0 and |ψ(u)|→

X
= |u|⇒

X
= 1.

Let L be the following rational language:

L =
⋃

(x−→u)∈R

⇐
x σ(u)

⇒
x

For example, with G0,

L =
⇐
x a

←
x A⋆ →x b

⇒
x |
⇐
x c

←
x A⋆ →x d

⇒
x |
⇐
x
⇒
x

L is recognized by a deterministic automaton with at most

2 cardX +
∑

(x−→u)∈R

(|u| + 2|u|X) (6)

transitions (this is a computational count: some of the transitions are labelled by
the whole terminal alphabet A). For each u∈L, |u|⇐

X
= |u|⇒

X
= 1 and for each

u∈
⇐
x σ(v)

⇒
x , |u|←

X
= |u|→

X
= |v|X .

Let τ ⊂ (
←

X A⋆
→

X) × (
⇐

X (A|
←

X |
→

X)⋆
⇒

X) be the rational transduction defined
by

τ = { (ψ(u), u) | u∈L }

It is realized by a transducer with the same number of transitions as in (6). With
G0, τ can be written as the union of 3 rational transductions:

τ = { (
←
x afb

→
x,
⇐
x a

←
x f

→
x b

⇒
x) | f∈A⋆ } ∪

{ (
←
x cfd

→
x,
⇐
x c

←
x f

→
x d

⇒
x) | f∈A⋆ } ∪

{ (
←
x
→
x,
⇐
x
⇒
x) }

If (u, v)∈τ , we have ϕ(u) = ϕ(v), |u|A = |v|A, |v|←
X

= |v|→
X

, |u|→
X

= |v|⇒
X

= 1,

|u|⇒
X

= 0, and therefore |v| = |u| + 2|v|→
X
≥|u|; moreover, if u ∈ σ(x) for some x∈X ,

then there exists a rule (x−→c) ∈ R̂ such that v ∈ σ(c).
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Let θ be the rational transduction (τ | Id
A|
⇐

X|
⇒

X
)⋆, where the star is Kleene’s star.

The transduction θ is realized by a transducer with one state less and one transition
more than in (6). This transducer will be applied iteratively in order to parse input

sequences. θ ⊂ (A|(
←

X A⋆
→

X)|
⇐

X|
⇒

X)⋆ × (A|(
←

X A⋆
→

X)|
⇐

X |
⇒

X)⋆. In general, neither θ
nor θ−1 are functions. If (u, v)∈θ, we have ϕ(u) = ϕ(v), |u|A = |v|A, |v|←

X
= |v|→

X
,

|v|⇒
X

= |u|⇒
X

+ |u|→
X

and |v| = |u| + 2|v|→
X
≥|u|.

Proposition 3 For u∈(A|
←

X|
→

X |
⇐

X|
⇒

X)⋆, the following 3 conditions are equivalent:
(i) |u|←

X
= |u|→

X
= 0,

(ii) ∀v∈(A|
←

X|
→

X|
⇐

X|
⇒

X)⋆ (u, v) ∈ θ ⇐⇒ u = v,
(iii) (u, u) ∈ θ.

Proof.
(i) =⇒ (ii): if there were a factor f of u and a g∈L such that (f, g) ∈ τ , then

|f |→
X

= 1 and |u|→
X
> 0.

(ii) =⇒ (iii) is immediate.
(iii) =⇒ (i) follows from the fact that (u, v)∈θ =⇒ |v|⇒

X
= |u|⇒

X
+ |u|→

X
. ▽

Proposition 4 If (u, v) ∈ θ and u ∈ σ(L
Ĝ

(x)) for some x∈X, then v ∈ σ(L
Ĝ

(x)).

Proof. Assume x
p,Ĝ
−→ f and u ∈ σ(f). We have f = g0x1g1. . .xngn with xk∈X

and gk∈(A|
⇐

X |
⇒

X)⋆, so u = g0
←
x1 h1

→
x1 g1. . .

←
xn hn

→
xn gn with hk∈A

⋆. Since

τ ⊂ (
←

X A⋆
→

X) × (
⇐

X (A|
←

X |
→

X)⋆
⇒

X), v = g0
⇐
x1 h′1

⇒
x1 g1. . .

⇐
xn h′n

⇒
xn gn

with (
←
xk hk

→
xk,

⇐
xk h′k

⇒
xk)∈τ . But

←
xk hk

→
xk∈ σ(xk), so for each k there is a rule

(xk−→ck) ∈ R̂ such that
⇐
xk h

′
k

⇒
xk∈ σ(ck). We can derive f

k,Ĝ
−→ g0c1g1. . .cngn and

v ∈ σ(g0c1g1. . .cngn). ▽
Consider for x∈X and u∈A⋆ the sequence of languages defined by:

• P0(x, u) = {
←
x u

→
x};

• Pi(x, u) = θ(Pi−1(x, u)) for i≥1.

It follows from proposition (4) that for i≥0, Pi(x, u) ⊂ σ(L
Ĝ

(x)) ∩ ϕ−1(u). For
example, parsing aacdbb according to G0 involves the languages Pi(x, aacdbb):

P0(x, aacdbb) = {
←
x aacdbb

→
x }

P1(x, aacdbb) = {
⇐
x a

←
x acdb

→
x b

⇒
x }

P2(x, aacdbb) = {
⇐
x a

⇐
x a

←
x cd

→
x b

⇒
x b

⇒
x }

P3(x, aacdbb) = {
⇐
x a

⇐
x a

⇐
x c

←
x
→
x d

⇒
x b

⇒
x b

⇒
x }

P4(x, aacdbb) = {
⇐
x a

⇐
x a

⇐
x c

⇐
x
⇒
x d

⇒
x b

⇒
x b

⇒
x }

P5(x, aacdbb) = P4(x, aacdbb)

In general, the languages Pi(x, u) may be empty or contain several elements. Each of
these languages can be represented by an acyclic automaton, then the computation
of Pi(x, u) from Pi−1(x, u) is performed by a quick and simple algorithm.
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5 Strict grammars

In the following we show that if G is a strict grammar in the sense of [Ber79], i.e.

∀(x−→u)∈R u 6= ǫ=⇒u∈(A|X)⋆A(A|X)⋆,

then the sequence of Pi(x, u) admits a fixed point which is the set of parsing trees

of u. We need to introduce the rational function r : (A|(
←

X A⋆
→

X)|
⇐

X|
⇒

X)⋆−→A⋆

such that
r(g0

←
x1 h1

→
x1 g1. . .

←
xn hn

→
xn gn) = h1h2. . .hn

for gk∈(A|
⇐

X |
⇒

X)⋆, xk∈X and hk∈A
⋆. If (x−→v)∈R, then for all u∈

⇐
x σ(v)

⇒
x ,

|u|A = |v|A + |r(u)|.

Proposition 5 For each word u∈L such that |u|≥3, |r(u)| < |r(ψ(u))|

Proof. There is a rule (x−→v)∈R such that u∈
⇐
x σ(v)

⇒
x and v 6=ǫ, therefore

|u| = 2 + |v|A + 2|v|X + |r(u)| and |r(ψ(u))| = |u| − 2 − 2|v|X . ▽
Let (u, v)∈τ : if |r(u)| = 0, then |u| = |v| = 2 and |r(v)| = 0; if |r(u)|≥1, then

|u|≥3 and |v|≥3, so |r(v)| < |r(u)|. In both cases, |r(v)| ≤ |r(u)|.

Proposition 6 Let (u, v)∈θ such that u 6=v. Then |r(v)| ≤ |r(u)|; if |r(u)| = 0,
then |u| = |v|, and if |r(u)|≥1, then |r(v)| < |r(u)|.

Proof. By induction on |u|. ▽

Proposition 7 Any sequence (ui)i≥0 of words such that ∀i≥0 (ui, ui+1)∈θ is sta-
tionary and reaches it stationary part at most when i = |r(u0)| + 1.

Proof. Assume that ∀i≤|r(u0)| ui 6=ui+1. Then, ∃i≤|r(u0)| |r(ui)| = 0: otherwise,
in view of proposition (6), |r(ui)| would be a strictly decreasing sequence of positive
integers. By proposition (6) again, |ui| = |ui+1|. It follows that |ui+1|←

X
= |ui+1|→

X
=

0, then by proposition (3), ui+2 = ui+1.
Therefore we have shown that ∃i≤|r(u0)|+1 ui = ui+1. By proposition (3), the

sequence of words will be stationary from ui on. ▽
Thus the sequence of languages Pi(x, u) is stationary as well and it reaches its

stationary part at most when i = |r(u0)| + 1 = |u| + 1. Let P (x, u) be the fixed
point of that sequence. Then we have the following:

Proposition 8 ∀x∈X ∀u∈A⋆ P (x, u) = L
Ĝ

(x) ∩ ϕ−1(u) ∩ (A|
⇐

X |
⇒

X)⋆

Proof.
⊂: recall that for each i≥0, Pi(x, u) ⊂ σ(L

Ĝ
(x)) ∩ ϕ−1(u). Therefore

P (x, u) ⊂ σ(L
Ĝ

(x)) ∩ ϕ−1(u) ∩ (A|
⇐

X |
⇒

X)⋆

but σ(L
Ĝ

(x)) ∩ (A|
⇐

X |
⇒

X)⋆ ⊂ L
Ĝ
(x).

⊃: for x∈X , g∈(A|
⇐

X |
⇒

X)⋆ and p≥0, we show by induction on p that

x
p,Ĝ
−→ g =⇒ g∈P (x, ϕ(g))

If we take g∈L
Ĝ
(x) ∩ ϕ−1(u), we obtain g∈P (x, u). ▽

Thus, if the context-free grammar is strict, the computation of Pi(x, u) reaches
a fixed point after at most |u| + 1 steps, and the fixed point is the set of parsing
trees of u.
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In order to parse a finite number of words at the same time, we compute

P0(x, U) =
⋃

u∈U

P0(x, u)

Pi(x, U) = θ(Pi−1(x, U)) for i≥1

The sequence Pi(x, U) reaches a fixed point

P (x, U) =
⋃

u∈U

P (x, u)

The computation of Pi(x, U) consists in applying a finite-state transducer to an
acyclic automaton. The fixed point is reached after at most |u|+ 1 steps, where |u|
is the length of the longest word in U , and the fixed point is the set of parsing trees
of the strings in U .

The assumption that the grammar is strict is reasonable. Firstly, by Greibach’s
normal form theorem, any context-free language is generated by a strict grammar.
Secondly, in the case of natural-language sentence parsing, this assumption is par-
ticularly not costly: as we mentioned in section 1, the bulk of the rules of a realis-
tic, large-coverage, natural-language context-free grammar based on the predicate-
argument model must be lexicalized, therefore each rule body contains at least one
terminal symbol, the predicative element.

Conclusion

We studied an algorithm designed and implemented by Roche [Roc92, Roc93] for
parsing natural language sentences according to context-free grammars. We noted
the following facts about this algorithm.

It does not process trees, but strings, and thus it can take advantage of time-
saving finite-state algorithms.

Roche successfully applied the algorithm to a context-free grammar with several
millions of rules, whereas parsing words according to such large grammars is quite
unusual. It should be borne in mind that a context-free grammar with a correct
lexical and grammatical coverage is bound to have a very large number of rules.

The parser can be built for any context-free grammar provided that it is strict
in the sense of [Ber79], and it outputs the set of parsing trees of the input sequence.
The assumption that the grammar is strict is not costly: a realistic, large-coverage
context-free grammar for natural-language sentences must be lexicalized, which
implies that it naturally comes out as a strict grammar.

Most natural-language words are ambiguous: lexical ambiguity can be dealt
with by representing the input sentence by an acyclic automaton recognizing a set
of sequences, and by parsing them at the same time without backtracking.

Therefore, the theoretical properties of Roche’s algorithm make it particularly
adapted to parsing natural-language sentences and it is to be expected that it should
significantly improve upon current techniques.
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