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Context-free parsing with finite-state transducers

The complexity of parsing words according to context-free grammars is usually considered as having theoretically two parameters: the length of the input sequence and the size of the grammar, namely the number of rules or the sum of the lengths of rule bodies (see e.g. [START_REF] Aho | The Theory of Parsing, Translation and Compiling[END_REF][START_REF] Aho | The Theory of Parsing, Translation and Compiling[END_REF] for a survey). In practice, one tends to consider the size of the grammar as a constant. This approximation is acceptable if the size of the grammar is of a reasonable order of magnitude. As a matter of fact, existing parsers are usually applied to context-free grammars with at most a few thousand rules.

However, in the particular case of natural-language text parsing, we will see that a context-free grammar with a correct lexical and grammatical coverage is bound to have a very large number of rules. This problem has been addressed in various ways. Several authors preferred shifting from context-free parsing to more powerful grammatical and parsing formalisms. In two original contributions [START_REF] Roche | Looking for syntactic patterns in texts[END_REF][START_REF] Roche | Analyse syntaxique transformationnelle du français par transducteurs et lexique-grammaire[END_REF], Roche designs, implements and tests a top-down, breadth-first algorithm for parsing natural language sentences according to a context-free grammar with very numerous rules. His algorithm is based on the construction and use of a finite-state transducer. He describes how he constructed an actual, large-coverage context-free grammar and a parser for that grammar. He successfully applied it to French sentences. In this article, we exemplify the principle of Roche's algorithm on a small, non-linguistic grammar. Then, we give formal definitions of the construction of the parser and of the operation of the algorithm. We prove that the parser can be built for a large class of context-free grammars, and that it outputs the set of parsing trees of the input sequence.

1 Size of realistic natural-language grammars Context-free grammars were first designed and mathematically defined in order to model the syntax of natural languages [START_REF] Chomsky | Three models for the description of language[END_REF]; since then, they have been considered as the standard formalism to parse natural-language sentences [START_REF] Earley | An efficient context-free parsing algorithm[END_REF][START_REF] Tomita | Efficient Parsing for Natural Language. A fast algorithm for practical systems[END_REF][START_REF] Miller | Formalismes syntaxiques pour le traitement automatique du langage naturel[END_REF]. However, a close examination of the problem shows that parsing natural language requires making an intensive use of lexical information [START_REF] Gross | Lexicon based algorithms for the automatic analysis of natural language[END_REF]. In particular, the syntax of natural languages is highly dependent on lexical information: as [START_REF] Gross | Méthodes en syntaxe[END_REF][START_REF] Salkoff | Analyse syntaxique du français[END_REF][START_REF] Gazdar | Phrase structure grammars and natural languages[END_REF] first showed, a context-free grammar for natural-language sentences with a correct lexical and grammatical coverage would have at least hundreds of millions of rules; [START_REF] Salkoff | Analyse syntaxique du français[END_REF] describes the actual construction of such a grammar.

The most common principle in the construction of context-free grammars for natural languages consists in modelling sentences into predicate and arguments. Many rules can take the form S -→ u, where S is a non-terminal symbol standing for a sentence type and u is a sequence containing • a predicative element, in the form of one or several terminal symbols,

• one or several arguments in the form of non-terminals,

• and possibly grammatical words, in the form of terminal symbols or nonterminals.

The following examples model English sentence structures with 1, 2 and 3 arguments:

S -→ Nconc works (1) S -→ Nabs is complementary to Nabs (2) S -→ Nhum performs the installation of Nconc in Nconc (3) 
where S stands for sentence, Nconc for concrete noun, Nabs for abstract noun and Nhum for human noun.

The predicate-argument description is an imperfect model, but it has been successfully applied to dozens of languages and it is close enough to linguistic reality for nearly any tentative formal description to be founded on one of its variants. However, it needs numerous rules to be built for it. Each predicative element can appear in several sentence structures, due to syntactic transformations, e.g.:

S -→ Nabs is complementary to Nabs

(4) S -→ Nabs-plur are complementary (5)

If the language has n predicative elements as in (1)-(3) and if each of them admits on average p sentence structures as in (4) and (5), they can be represented by np rules. Rules like (1)-(3) are "lexicalized" in the sense that the rule body contains at least one terminal symbol, the predicative element (works, complementary, installation).

It is natural to try to reduce the number of rules by associating predicative elements which admit the same sentence structures. One could thus represent np forms by combining p structural rules, e.g.:

S -→ Nabs Pred to Nabs S -→ Nabs-plur Pred with n lexical rules:

Pred -→ are complementary Pred -→ relate Pred -→ have some relevance i.e. a total of n + p rules. However, that method can be applied to n predicative elements and p sentence structures only if the np combinations are acceptable. Unfortunately, the various sentence structures associated with a predicative element correspond to numerous and diverse syntactic transformations: reversals, omissions, pronominalizations, passive transformations, symmetric transformations. . . that never apply to all other predicative elements and that are distributed among them in an irregular way. Specialists estimate that no two simple verbs in French enter exactly in the same sentence structures, except a few series like that of verbs denoting animal shouts [START_REF] Gross | Méthodes en syntaxe[END_REF][START_REF] Boons | La structure des phrases simples en français : 1. Constructions intransitives[END_REF].

Due to these difficulties, the bulk of the rules of a realistic natural-language context-free grammar must be lexicalized. Several authors preferred shifting from context-free parsing to more powerful grammars and parsers: string grammars [START_REF] Salkoff | Analyse syntaxique du français[END_REF][START_REF] Sager | Natural Language Information Processing: a computer grammar of English and its applications[END_REF], generalized phrase-structure grammars [START_REF] Gazdar | Phrase structure grammars and natural languages[END_REF], tree-adjoining grammars [JS88, ASJ88]. . . However, in comparison with context-free grammars, the structural and computational complexity of such formalisms is clearly a drawback. Thus, context-free parsing is worth revisiting with the following additional constraint: the number of rules being a parameter of paramount importance, the time complexity with respect to this number must be reduced to a minimum.

The program of [START_REF] Roche | Analyse syntaxique transformationnelle du français par transducteurs et lexique-grammaire[END_REF] parses natural language sentences according to a context-free grammar with more than 8.3 million rules [START_REF] Roche | Looking for syntactic patterns in texts[END_REF]. The parser is probably the first that was ever applied to a several-million-rule grammar, but it parsed 30word sentences in 2 seconds. One of its advantages is that it does not process trees but strings. The rules are compacted into an acyclic finite-state automaton. The data of the parser consists of a finite-state transducer built from the automaton. The parser applies that transducer to the input sequence, then it iteratively applies it to the result, until a fixed point is reached. The theoretical time complexity of this process has not been studied yet, but in practice it seems to depend essentially on the height of the parsing trees and on the length and degree of ambiguity of the input sequence, but little or not on the number of rules. In the next section, we exemplify its operation on a small, non-linguistic grammar.

A non-linguistic example

We will use the following notations. The empty word is noted ǫ. If u∈A ⋆ and B ⊂ A, |u| B is the number of positions in u that belong to B. A context-free grammar G = (A, X, R) is defined by an alphabet A of terminal symbols, an alphabet X of non-terminal symbols and a set of rules, R ⊂ X×(A|X) ⋆ . A rule is noted (x-→u) with x∈X and u∈(A|X) ⋆ . If there is a derivation in n paths from u∈(A|X) ⋆ to v∈(A|X) ⋆ , we write u

n,G -→ v. The set of words of (A|X) ⋆ derived from u∈(A|X) ⋆ according to G is noted L G (u). The set of leftmost derivations from u according to G is noted D G (u).
Let G 0 be the following context-free grammar:

x-→axb|cxd|ǫ and let us see how Roche's algorithm parses strings according to G 0 . The computation does not process trees but strings. Parsing trees are coded as strings by using a grammar G 0 , a variant of G 0 where for each rule (x-→u), the left-hand side x appears in the right-hand side in the form of a pair of "labelled parentheses"

⇐

x and

⇒ x : x-→ ⇐ x axb ⇒ x | ⇐ x cxd ⇒ x | ⇐ x ⇒ x
Each parsing tree according to G 0 may be coded either in the form of a leftmost derivation:

x-→axb-→acxdb-→acdb or in the form of a word

⇐ x a ⇐ x c ⇐ x ⇒ x d ⇒ x b ⇒
x ∈L G0 (x). The algorithm makes use of a second set of labelled parentheses, which we will note -→ f . For example, il the algorithm is run to determine whether a string f ∈A ⋆ is in L G0 (x), its input should be

← x f →
x . An elementary step in the parsing process consists in:

1. substituting ⇐ x and ⇒ x for ← x and → x in each ← x g → x ∈ ← x A ⋆ →
x , and 2. inserting new pairs of labelled parentheses into g in such a way that if, in the result, one replaces each parenthesized string

← x h →
x with x, then one obtains a right-hand side of a rule of G 0 .

For example, when this elementary step is applied to

← x acdb → x , the result is ⇐ x a ← x cd → x b ⇒ x because (x-→ ⇐ x axb ⇒ x ) is a rule of G 0 .
The two operations of substitution and insertion are performed at the same time by applying a finite-state transducer. In the case of G 0 , this transducer is a 9-state transducer that realizes the transduction θ defined by:

τ = { ( ← x af b → x , ⇐ x a ← x f → x b ⇒ x ) | f ∈A ⋆ } ∪ { ( ← x cf d → x , ⇐ x c ← x f → x d ⇒ x ) | f ∈A ⋆ } ∪ { ( ← x → x , ⇐ x ⇒ x ) } and by θ = (τ | Id A| ⇐ X| ⇒ X
) ⋆ , where the star is Kleene's star. When θ is applied to a string, one step of top-down parsing is performed by further analyzing each of the strings g that had been parenthesized by ← x and → x in the preceding step. For example, if we want to parse aacdbb, the iterative application of θ to ← x aacdbb → x yields the following strings:

← x aacdbb → x ⇐ x a ← x acdb → x b ⇒ x ⇐ x a ⇐ x a ← x cd → x b ⇒ x b ⇒ x ⇐ x a ⇐ x a ⇐ x c ← x → x d ⇒ x b ⇒ x b ⇒ x ⇐ x a ⇐ x a ⇐ x c ⇐ x ⇒ x d ⇒ x b ⇒ x b ⇒ x ⇐ x a ⇐ x a ⇐ x c ⇐ x ⇒ x d ⇒ x b ⇒ x b ⇒ x
The iterative application of θ reaches a fixed point, which is a coding of the parsing tree of aacdbb. In general, θ is not a function: when applied to a string, it can yield several strings. In this case, the transducer is applied to the finite set of strings obtained from the preceding application. Each of these sets of strings can be represented by an acyclic automaton. We will see that in the assumption that the grammar is strict, the iterative application of θ to the set of strings reaches a fixed point and that the elements of the fixed point are the strings that code the parsing trees of the input sequence.

Coding trees as strings

Let G = (A, X, R) be the context-free grammar to be used by the parser. We will use four copies of X:

← X, → X, ⇐ X, ⇒ X, disjoint from A and X and pairwise disjoint. Let G = (A| ⇐ X | ⇒ X, X, R) where R = { (x-→ ⇐ x u ⇒ x ) | (x-→u)∈R }
For example, if G is the grammar G 0 defined in the preceding section:

x-→axb|cxd|ǫ then G 0 is defined as:

x-→ Proof.

⇐ x axb ⇒ x | ⇐ x cxd ⇒ x | ⇐ x ⇒ x Let ϕ : A|X| ← X | → X| ⇐ X | ⇒ X -→A|X
(i) D G (x) is in bijection with D G (x): each derivation of D G (x) or D G (x) applies a sequence of rules. Thus we have two injective mappings î : D G (x)-→ R ⋆ and i : D G (x)-→R ⋆ . By induction on n, we show that for each (x, u 1 . . .u n )∈D G (x), where the rules r 1 . . . r n are applied, then (x, ϕ(u 1 ). . .ϕ(u n ))∈D G (x), where the rules r 1 . . .r n are applied. Therefore, ϕ induces a mapping α : D G (x)-→D G (x) and a bijection β : R ⋆ -→R ⋆ , with îβ = αi; thus α = îβi -1 is bijective.

(ii) We only need to show that G is unambiguous, i.e. the mapping

D G (x) -→ L G (x) (x, u 1 . . .u n ) -→ u n is injective. By induction on n, if (x, u 1 . . .u n ), (x, v 1 . . .v m )∈D G (x), u n = v m and n≤m, then n = m and ∀i∈[1, n] u i = v i . ▽
The set of parsing trees of a word u∈A ⋆ will thus be represented by

L G (x) ∩ ϕ -1 (u) ∩ (A| ⇐ X | ⇒ X) ⋆ .
For example, each parsing tree according to G 0 may be coded either in the form of a leftmost derivation:

x-→axb-→acxdb-→acdb or in the form of a word

⇐ x a ⇐ x c ⇐ x ⇒ x d ⇒ x b ⇒ x ∈L G0 (x).
4 The transducer

Let σ : (A|X| ⇐ X| ⇒ X) ⋆ -→(A|( ← X A ⋆ → X)| ⇐ X| ⇒ X) ⋆ be the rational substitution defined by ∀a∈A σ(a) = a ∀ ⇐ x ∈ ⇐ X σ( ⇐ x ) = ⇐ x ∀ ⇒ x ∈ ⇒ X σ( ⇒ x ) = ⇒ x ∀x∈X σ(x) = ← x A ⋆ → x Let ψ : (A| ← X| → X| ⇐ X| ⇒ X) ⋆ -→(A|X| ← X| → X) ⋆ be the morphism defined by ∀a∈A ψ(a) = a ∀ ← x ∈ ← X ψ( ← x ) = ǫ ∀ → x ∈ → X ψ( → x ) = ǫ ∀ ⇐ x ∈ ⇐ X ψ( ⇐ x ) = ← x ∀ ⇒ x ∈ ⇒ X ψ( ⇒ x ) = → x
We 

L = (x-→u)∈R ⇐ x σ(u) ⇒ x For example, with G 0 , L = ⇐ x a ← x A ⋆ → x b ⇒ x | ⇐ x c ← x A ⋆ → x d ⇒ x | ⇐ x ⇒ x
L is recognized by a deterministic automaton with at most

2 card X + (x-→u)∈R (|u| + 2|u| X ) (6)
transitions (this is a computational count: some of the transitions are labelled by the whole terminal alphabet A). For each u∈L, |u|⇐

X = |u|⇒ X = 1 and for each u∈ ⇐ x σ(v) ⇒ x , |u|← X = |u|→ X = |v| X . Let τ ⊂ ( ← X A ⋆ → X) × ( ⇐ X (A| ← X | → X) ⋆ ⇒ X) be the rational transduction defined by τ = { (ψ(u), u) | u∈L }
It is realized by a transducer with the same number of transitions as in ( 6). With G 0 , τ can be written as the union of 3 rational transductions: ) ⋆ , where the star is Kleene's star.

τ = { ( ← x af b → x , ⇐ x a ← x f → x b ⇒ x ) | f ∈A ⋆ } ∪ { ( ← x cf d → x , ⇐ x c ← x f → x d ⇒ x ) | f ∈A ⋆ } ∪ { ( ← x → x , ⇐ x ⇒ x ) } If (u, v)∈τ , we have ϕ(u) = ϕ(v), |u| A = |v| A , |v|← X = |v|→ X , |u|→ X = |v|⇒ X = 1, |u|⇒ X = 0,
The transduction θ is realized by a transducer with one state less and one transition more than in (6). This transducer will be applied iteratively in order to parse input

sequences. θ ⊂ (A|( ← X A ⋆ → X)| ⇐ X| ⇒ X) ⋆ × (A|( ← X A ⋆ → X)| ⇐ X| ⇒ X) ⋆ . In general, neither θ nor θ -1 are functions. If (u, v)∈θ, we have ϕ(u) = ϕ(v), |u| A = |v| A , |v|← X = |v|→ X , |v|⇒ X = |u|⇒ X + |u|→ X and |v| = |u| + 2|v|→ X ≥|u|. Proposition 3 For u∈(A| ← X| → X| ⇐ X| ⇒ X) ⋆ , the following 3 conditions are equivalent: (i) |u|← X = |u|→ X = 0, (ii) ∀v∈(A| ← X| → X| ⇐ X| ⇒ X) ⋆ (u, v) ∈ θ ⇐⇒ u = v, (iii) (u, u) ∈ θ.
Proof.

(i) =⇒ (ii): if there were a factor f of u and a g∈L such that (f,

g) ∈ τ , then |f |→ X = 1 and |u|→ X > 0. (ii) =⇒ (iii) is immediate. (iii) =⇒ (i) follows from the fact that (u, v)∈θ =⇒ |v|⇒ X = |u|⇒ X + |u|→ X . ▽ Proposition 4 If (u, v) ∈ θ and u ∈ σ(L G (x)) for some x∈X, then v ∈ σ(L G (x)). Proof. Assume x p, G -→ f and u ∈ σ(f ). We have f = g 0 x 1 g 1 . . .x n g n with x k ∈X and g k ∈(A| ⇐ X | ⇒ X) ⋆ , so u = g 0 ← x 1 h 1 → x 1 g 1 . . . ← x n h n → x n g n with h k ∈A ⋆ . Since τ ⊂ ( ← X A ⋆ → X) × ( ⇐ X (A| ← X | → X) ⋆ ⇒ X), v = g 0 ⇐ x 1 h ′ 1 ⇒ x 1 g 1 . . . ⇐ x n h ′ n ⇒ x n g n with ( ← x k h k → x k , ⇐ x k h ′ k ⇒ x k )∈τ . But ← x k h k → x k ∈ σ(x k ), so for each k there is a rule (x k -→c k ) ∈ R such that ⇐ x k h ′ k ⇒ x k ∈ σ(c k ). We can derive f k, G -→ g 0 c 1 g 1 . . .c n g n and v ∈ σ(g 0 c 1 g 1 . . .c n g n ). ▽
Consider for x∈X and u∈A ⋆ the sequence of languages defined by:

• P 0 (x, u) = { ← x u → x }; • P i (x, u) = θ(P i-1 (x, u)) for i≥1.
It follows from proposition (4) that for i≥0, P i (x, u) ⊂ σ(L G (x)) ∩ ϕ -1 (u). For example, parsing aacdbb according to G 0 involves the languages P i (x, aacdbb):

P 0 (x, aacdbb) = { ← x aacdbb → x } P 1 (x, aacdbb) = { ⇐ x a ← x acdb → x b ⇒ x } P 2 (x, aacdbb) = { ⇐ x a ⇐ x a ← x cd → x b ⇒ x b ⇒ x } P 3 (x, aacdbb) = { ⇐ x a ⇐ x a ⇐ x c ← x → x d ⇒ x b ⇒ x b ⇒ x } P 4 (x, aacdbb) = { ⇐ x a ⇐ x a ⇐ x c ⇐ x ⇒ x d ⇒ x b ⇒ x b ⇒ x } P 5 (x, aacdbb) = P 4 (x, aacdbb)
In general, the languages P i (x, u) may be empty or contain several elements. Each of these languages can be represented by an acyclic automaton, then the computation of P i (x, u) from P i-1 (x, u) is performed by a quick and simple algorithm.

Strict grammars

In the following we show that if G is a strict grammar in the sense of [START_REF] Berstel | Transductions and Context-Free Languages[END_REF], i.e.

∀(x-→u)∈R u = ǫ=⇒u∈(A|X) ⋆ A(A|X) ⋆ , then the sequence of P i (x, u) admits a fixed point which is the set of parsing trees of u. We need to introduce the rational function r : (A|( Therefore we have shown that ∃i≤|r(u 0 )| + 1 u i = u i+1 . By proposition (3), the sequence of words will be stationary from u i on. ▽ Thus the sequence of languages P i (x, u) is stationary as well and it reaches its stationary part at most when i = |r(u 0 )| + 1 = |u| + 1. Let P (x, u) be the fixed point of that sequence. Then we have the following:

← X A ⋆ → X)| ⇐ X| ⇒ X) ⋆ -→A ⋆ such that r(g 0 ← x 1 h 1 → x 1 g 1 . . . ← x n h n → x n g n ) = h 1 h 2 . . .h n for g k ∈(A| ⇐ X| ⇒ X) ⋆ , x k ∈X
Proposition 8 ∀x∈X ∀u∈A ⋆ P (x, u) = L G (x) ∩ ϕ -1 (u) ∩ (A| ⇐ X | ⇒ X) ⋆ Proof. ⊂: recall that for each i≥0, P i (x, u) ⊂ σ(L G (x)) ∩ ϕ -1 (u). Therefore P (x, u) ⊂ σ(L G (x)) ∩ ϕ -1 (u) ∩ (A| ⇐ X | ⇒ X) ⋆ but σ(L G (x)) ∩ (A| ⇐ X | ⇒ X) ⋆ ⊂ L G (x). ⊃: for x∈X, g∈(A| ⇐ X | ⇒ X)
⋆ and p≥0, we show by induction on p that

x p, G -→ g =⇒ g∈P (x, ϕ(g))
If we take g∈L G (x) ∩ ϕ -1 (u), we obtain g∈P (x, u). ▽ Thus, if the context-free grammar is strict, the computation of P i (x, u) reaches a fixed point after at most |u| + 1 steps, and the fixed point is the set of parsing trees of u.

In order to parse a finite number of words at the same time, we compute

P 0 (x, U ) = u∈U P 0 (x, u) P i (x, U ) = θ(P i-1 (x, U )) for i≥1
The sequence P i (x, U ) reaches a fixed point

P (x, U ) = u∈U P (x, u)
The computation of P i (x, U ) consists in applying a finite-state transducer to an acyclic automaton. The fixed point is reached after at most |u| + 1 steps, where |u| is the length of the longest word in U , and the fixed point is the set of parsing trees of the strings in U .

The assumption that the grammar is strict is reasonable. Firstly, by Greibach's normal form theorem, any context-free language is generated by a strict grammar. Secondly, in the case of natural-language sentence parsing, this assumption is particularly not costly: as we mentioned in section 1, the bulk of the rules of a realistic, large-coverage, natural-language context-free grammar based on the predicateargument model must be lexicalized, therefore each rule body contains at least one terminal symbol, the predicative element.

Conclusion

We studied an algorithm designed and implemented by Roche [START_REF] Roche | Looking for syntactic patterns in texts[END_REF][START_REF] Roche | Analyse syntaxique transformationnelle du français par transducteurs et lexique-grammaire[END_REF] for parsing natural language sentences according to context-free grammars. We noted the following facts about this algorithm.

It does not process trees, but strings, and thus it can take advantage of timesaving finite-state algorithms.

Roche successfully applied the algorithm to a context-free grammar with several millions of rules, whereas parsing words according to such large grammars is quite unusual. It should be borne in mind that a context-free grammar with a correct lexical and grammatical coverage is bound to have a very large number of rules.

The parser can be built for any context-free grammar provided that it is strict in the sense of [START_REF] Berstel | Transductions and Context-Free Languages[END_REF], and it outputs the set of parsing trees of the input sequence.

The assumption that the grammar is strict is not costly: a realistic, large-coverage context-free grammar for natural-language sentences must be lexicalized, which implies that it naturally comes out as a strict grammar.

Most natural-language words are ambiguous: lexical ambiguity can be dealt with by representing the input sentence by an acyclic automaton recognizing a set of sequences, and by parsing them at the same time without backtracking.

Therefore, the theoretical properties of Roche's algorithm make it particularly adapted to parsing natural-language sentences and it is to be expected that it should significantly improve upon current techniques.
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  and therefore |v| = |u| + 2|v|→ X ≥|u|; moreover, if u ∈ σ(x) for some x∈X, then there exists a rule (x-→c) ∈ R such that v ∈ σ(c). Let θ be the rational transduction (τ | Id A| ⇐ X| ⇒ X
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