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In this paper we give a detailed description of the random wavelet series representation of real-valued linear fractional stable sheet introduced in [2]. By using this representation, in the case where the sample paths are continuous, an anisotropic uniform and quasi-optimal modulus of continuity of these paths is obtained as well as an upper bound for their behavior at infinity and around the coordinate axes. The Hausdorff dimensions of the range and graph of these stable random fields are then derived.

Introduction and main results

Let 0 < α < 2 and H = (H 1 , . . . , H N ) ∈ (0, 1) N be given. We define an α-stable random field

X 0 = {X 0 (t), t ∈ R N } with values in R by X 0 (t) = R N h H (t, s) Z α (ds), (1.1) 
where Z α is a strictly α-stable random measure on R N with Lebesgue measure as its control measure and β(s) as its skewness intensity. That is, for every Lebesgue measurable set A ⊆ R N with Lebesgue measure λ N (A) < ∞, Z α (A) is a strictly α-stable random variable with scale parameter λ N (A) 1/α and skewness parameter (1/λ N (A)) A β(s)ds. If β(s) ≡ 0, then Z α is a symmetric α-stable random measure on R N . We refer to [START_REF] Samorodnitsky | Stable non-Gaussian processes: stochastic models with infinite variance[END_REF]Chapter 3] for more information on stable random measures and their integrals. Also in (1.1),

h H (t, s) = κ N ℓ=1 (t ℓ -s ℓ ) H ℓ -1 α + -(-s ℓ ) H ℓ -1 α + , (1.2) 
where κ > 0 is a normalizing constant such that the scale parameter of X 0 (1), denoted by X 0 (1) α , equals 1, t + = max{t, 0} and 0 0 = 1. Observe that, if

H 1 = • • • = H N = 1
α , X 0 is the ordinary stable sheet studied in [START_REF] Ehm | Sample function properties of multi-parameter stable processes[END_REF]. In general, the random field X 0 is called a linear fractional αstable sheet defined on R N (or (N, 1)-LFSS for brevity) in R with index H. LFSS is an extension of both linear fractional stable motion (LFSM), which corresponds to the case where N = 1, and ordinary fractional Brownian sheet (FBS) which corresponds to α = 2, that is, to replacing the stable measure in (1.1) by a Gaussian random measure.

We will also consider (N, d)-LFSS, with d > 1, that is a linear fractional α-stable sheet defined on R N and taking its values in R d . The (N, d)-LFSS that we consider is the stable field X = {X(t), t ∈ R N } defined by

X(t) = X 1 (t), . . . , X d (t) , ∀t ∈ R N , (1.3) 
where X 1 , . . . , X d are d independent copies of X 0 . It is easy to verify by using the representation (1.1) that X satisfies the following scaling property: For any N × N diagonal matrix A = (a ij ) with a ii = a i > 0 for all 1 ≤ i ≤ N and a ij = 0 if i = j, we have

X(At), t ∈ R N d = N j=1 a H j j X(t), t ∈ R N , (1.4) 
where d = denotes the equality in the sense of finite dimensional distributions, provided that the skewness intensity satisfies β(As) = β(s) for almost every s ∈ R N . Relation (1.4) means that the (N, d)-LFSS X is an operator-self-similar [or operator-scaling] random field in the time variable

(see [START_REF] Biermé | Operator scaling stable random fields[END_REF][START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF]). When the indices H 1 , . . . , H N are not the same, X has different scaling behavior along different directions. This anisotropic nature of X makes it a potential model for various spatial objects, as is already the case for anisotropic Gaussian fields ( [START_REF] Benson | Aquifer operator-scaling and the effect on solute mixing and dispersion[END_REF] and [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF]). We also mention that one can construct (N, d)-stable random fields which are self-similar in the space variables in the sense of [START_REF] Lin | Dimension properties of the sample paths of self-similar processes[END_REF][START_REF] Mason | Sample path properties of operator-self-similar Gaussian random fields[END_REF]. This will not be discussed in this paper.

Similarly to LFSM and FBS, see for instance [START_REF] Ayache | Hausdorff dimension of the graph of the fractional Brownian sheet[END_REF][START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Maejima | A self-similar process with nowhere bounded sample paths[END_REF][START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF][START_REF] Xiao | Properties of local nondeterminism of gaussian and stable random fields and their applications[END_REF], there are close connections between sample path properties of LFSS and its parameters H and α. In this article we study some of these connections. In all the remainder of this paper we assume that the sample paths of X are continuous, i.e. min(H 1 , . . . , H N ) > 1/α. For convenience we even assume that

1/α < H 1 ≤ • • • ≤ H N . (1.5)
Of course, there is no loss of generality in the arbitrary ordering of H 1 , . . . , H N . Observe that, since H ∈ (0, 1) N , condition (1.5) implies α > 1.

Let us now state our main results. Theorem 1 below is an improved version of Theorems 1.2 and 1.3 in [START_REF] Ayache | Local and asymptotic properties of linear fractional stable sheets[END_REF]. Relation (1.6) provides a sharp upper bound for the uniform modulus of continuity of LFSS, while Relation (1.7) gives an upper bound for its asymptotic behavior at infinity and around the coordinate axes.

Theorem 1. Let Ω * 0 be the event of probability 1 that will be introduced in Corollary 5. Then for every compact set K ⊆ R N , all ω ∈ Ω * 0 and any arbitrarily small η > 0, one has sup s,t∈K

|X 0 (s, ω) -X 0 (t, ω)| N j=1 |s j -t j | H j -1/α 1 + log |s j -t j | 2/α+η < ∞ (1.6)
and

sup t∈R N |X 0 (t, ω)| N j=1 |t j | H j (1 + log |t j | ) 1/α+η < ∞. (1.7) 
The following result can be viewed as an inverse of (1.6) in Theorem 1.

Theorem 2. Let Ω * 3 be the event of probability 1 that will be introduced in Lemma 12. Then for all ω ∈ Ω * 3 , all vectors u n ∈ R N -1 with non-vanishing coordinates, any n = 1, . . . , N and any real numbers y 1 < y 2 and ǫ > 0, one has

sup sn,tn∈[y 1 ,y 2 ] |X 0 (s n , u n , ω) -X 0 (t n , u n , ω)| |s n -t n | Hn-1/α 1 + log |s n -t n | -1/α-ǫ = ∞, (1.8) 
where, for every real x n , we have set

(x n , u n ) = (u 1 , . . . , u n-1 , x n , u n+1 , . . . , u N ).
Observe that Theorems 1 and 2 have already been obtained by Takashima [START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF] in the particular case of LFSM (i.e., N = 1). However, the proofs given by this author can hardly be adapted to LFSS. To establish the above theorems we introduce a wavelet series representation of X 0 and use wavelet methods which are, more or less, inspired from [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF]. It is also worth noticing that the event Ω * 3 in Theorem 2 does not depend on u n . This is why the latter theorem cannot be obtained by simply using the fact that LFSS is an LFSM of Hurst parameter H n along the direction of the n-th axis.

The next theorem gives the Hausdorff dimensions of the range

X [0, 1] N = X(t) : t ∈ [0, 1] N and the graph GrX [0, 1] N = (t, X(t)) : t ∈ [0, 1] N
of an (N, d)-LFSS X. We refer to [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF] for the definition and basic properties of Hausdorff dimension.

The following result extends Theorem 4 in [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF] to the linear fractional stable sheets. Unlike the fractional Brownian sheet case, we remark that the Hausdorff dimensions of X [0, 1] N and GrX [0, 1] N are not determined by the uniform Hölder exponent of X on [0, 1] N . Theorem 3. Let the assumption (1.5) hold. Then, with probability 1,

dim H X [0, 1] N = min d; N ℓ=1 1 H ℓ (1.9)
and

dim H GrX [0, 1] N = min k ℓ=1 H k H ℓ + N -k + (1 -H k )d, 1 ≤ k ≤ N ; N ℓ=1 1 H ℓ = N ℓ=1 1 H ℓ if N ℓ=1 1 
H ℓ ≤ d, k ℓ=1 H k H ℓ + N -k + (1 -H k )d if k-1 ℓ=1 1 
H ℓ ≤ d < k ℓ=1 1 H ℓ , (1.10) 
where 0 ℓ=1 1

H ℓ := 0.
Remark 4. The second equality in (1.10) can be verified by using (1.5) and some elementary computation; see [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF].

In light of Theorem 3 it is a natural question to consider the Hausdorff dimensions of the image X(E) and graph GrX(E), where E is an arbitrary Borel set in R N . As shown by Wu and Xiao [START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF] for fractional Brownian sheets, due to the anisotropic nature of X, the Hausdorff dimension of E and the index H alone are not enough to determine dim H X(E). By combining the methods in Wu and Xiao [START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF] and Xiao [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF] with the moment argument in this paper we determine dim H X(E) for every nonrandom Borel set E ⊆ (0, ∞) N ; see Theorem 21.

We end the Introduction with some notation. Throughout this paper, the underlying parameter

spaces are R N , R N + = [0, ∞) N or Z N .
A typical parameter, t ∈ R N is written as t = (t 1 , . . . , t N ) or t = t j whichever is more convenient. For any s, t ∈ R N such that s j < t j (j = 1, . . . , N ), the set [s, t] = N j=1 [s j , t j ] is called a closed interval (or a rectangle). Open or half-open intervals can be defined analogously. We will use capital letters C, C 1 , C 2 , . . . to denote positive and finite random variables and use c, c 1 , c 2 , . . . to denote unspecified positive and finite constants. Moreover, C and c may not be the same in each occurrence.
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Wavelet expansion of LFSS

The goal of this section is to give a detailed description of the wavelet representations of LFSS X 0 . First we need to introduce some notation that will be extensively used in all the sequel.

(i) The real-valued function ψ denotes a well chosen compactly supported Daubechies wavelet (see [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF][START_REF] Meyer | Wavelets and Operators[END_REF]). Contrary to the Gaussian case the fact that ψ is compactly supported will play a crucial role in the proof of Theorem 2 (see the proof of Part (b) of Proposition 14).

(ii) For any ℓ = 1, . . . , N , the real-valued functions ψ H ℓ and ψ -H ℓ respectively denote the leftsided fractional primitive of order H ℓ + 1 -1/α and the right-sided fractional derivative of order H ℓ + 1 -1/α of ψ, which are respectively defined for all x ∈ R by

ψ H ℓ (x) = R (x -y) H ℓ -1/α + ψ(y) dy and ψ -H ℓ (x) = d 2 dx 2 R (y -x) 1/α-H ℓ + ψ(y) dy. (2.1)
Observe that the functions ψ H ℓ and ψ -H ℓ are well-defined, continuously differentiable and well-localized provided that ψ has sufficiently many vanishing moments (and thus is smooth enough). By saying that a function φ : R → R is well-localized we mean that

sup x∈R (1 + |x|) 2 |φ(x)| + φ ′ (x) < ∞ . (2.2) 
(iii) {ǫ j,k , (j, k) ∈ Z N × Z N } will denote the sequence of random variables defined as

ǫ j,k = R N N ℓ=1 2 j ℓ /α ψ(2 j ℓ s ℓ -k ℓ ) Z α (ds) . (2.3)
They are strictly α-stable random variables all with the same scale parameter

ǫ j,k α = R |ψ(t)| α dt N/α
and skewness parameter

β j,k = ǫ j,k -α α R N N ℓ=1 2 j ℓ ψ <α> (2 j ℓ s ℓ -k ℓ ) β(s) ds ,
where x <α> = |x| α sgn(x) which is the number having the same sign as x and absolute value |x| α . Moreover, if L > 0 is a constant such that the support of ψ is included in [-L, L], then for any integers p > 2L, any r ∈ {0, . . . , p -1} N and j ∈ Z N , {ǫ j,r+kp ; k ∈ Z N } is a sequence of independent random variables.

A consequence of the above properties of the sequence {ǫ j,k , (j, k) ∈ Z N × Z N } is the following.

Corollary 5. There exists an event Ω * 0 of probability 1 such that, for any η > 0, for all ω ∈ Ω * 0 and all j, k ∈ Z N × Z N ,

|ǫ j,k (ω)| ≤ C(ω) N l=1 (1 + |j l |) 1/α+η (1 + |k l |) 1/α log 1/α+η (2 + |k l |) ,
where C is a finite positive random variable.

Proof. We apply Lemma 23.

It is worth noticing that, for every ℓ = 1, . . . , N , the functions ψ H ℓ and ψ -H ℓ can be defined equivalently to (2.1), up to a multiplicative constant, but in the Fourier domain by (see e.g. [START_REF] Samko | Fractional integrals and derivatives[END_REF])

ψ H ℓ (ξ) = e i sgn(ξ)(H ℓ -1/α+1) π 2 ψ(ξ) |ξ| H ℓ -1/α+1
(2.4) and

ψ -H ℓ (ξ) = e i sgn(ξ)(H ℓ -1/α+1) π 2 |ξ| H ℓ -1/α+1 ψ(ξ). (2.5) 
It follows from Parseval's Formula, (2.4), (2.5) and the orthonormality (in L 2 (R)) of the sequence

{2 j/2 ψ(2 j • -k), j, k ∈ Z} that ψ H ℓ and ψ -H ℓ satisfy, for all (J, K) ∈ Z 2 and (J ′ , K ′ ) ∈ Z 2 , up to a multiplicative constant, R ψ H ℓ (2 J x -K)ψ -H ℓ (2 J ′ x -K ′ ) dx = 2 -J δ(J, K; J ′ , K ′ ), (2.6) 
where δ(J, K; J ′ , K ′ ) = 1 when (J, K) = (J ′ , K ′ ) and 0 otherwise. By putting together (2.4),

(2.5) and the fact that ψ(ξ) = O(ξ 2 ) as |ξ| → 0, another useful property is obtained: for every ℓ = 1, . . . , N , the first moment of the functions ψ H ℓ and ψ -H ℓ vanish, namely one has

R ψ H ℓ (u) du = R ψ -H ℓ (u) du = 0. (2.7) 
We are now in position to state the main results of this section. Proposition 6. Let Ω * 1 be the event of probability 1 that will be introduced in Lemma 22. For every n ∈ N, M > 0 and t ∈ R N we set

U n,M (t) = (j,k)∈D N n,M 2 -j,H ǫ j,k N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) , (2.8) 
where the random variables {ǫ j,k , (j, k) ∈ Z N × Z N } are defined by (2.3) and

D N n,M = (j, k) ∈ Z N × Z N : for all l = 1, . . . , N |j l | ≤ n and |k l | ≤ M 2 n+1 .
(2.9)

Then for every ω ∈ Ω * 1 the functional sequence (U n,M (•, ω)) n∈N is a Cauchy sequence in the Hölder space C γ (K) for every γ ∈ [0, H 1 -1/α) and compact set K ⊆ [-M, M ] N . We denote its limit by

(j,k)∈Z N ×Z N 2 -j,H ǫ j,k N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) . Proposition 7. With probability 1, the following holds for all t ∈ R N X 0 (t) = (j,k)∈Z N ×Z N 2 -j,H ǫ j,k N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) .
(2.10)

Remark 8. By the definition of X 0 and by Proposition 6, both sides of (2.10) are continuous in t with probability 1. Hence, to prove Proposition 7, it is sufficient to show that

   (j,k)∈Z N ×Z N 2 -j,H ǫ j,k N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) , t ∈ R N  
 is a modification of X 0 . This is a natural extension of the wavelet series representations both of LFSM and FBS (see [START_REF] Benassi | Elliptic self-similar stochastic processes[END_REF][START_REF] Ayache | Hausdorff dimension of the graph of the fractional Brownian sheet[END_REF][START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF]) and will be called the random wavelet series representation of LFSS.

Assume for a while that Proposition 6 holds and let us prove Proposition 7.

Proof of Proposition 7. Let us fix l ∈ {1, . . . , N }. For any (j l , k l ) ∈ Z × Z and s l ∈ R we set

ψ j l ,k l (s l ) = 2 j l /α ψ(2 j l s l -k l ). (2.11)
Since {ψ j,k , j ∈ Z, k ∈ Z} is an unconditional basis of L α (R) (see [START_REF] Meyer | Ondelettes et opérateurs[END_REF]) and, for every fixed t l ∈ R,

the function s l → (t l -s l ) H l -1/α + -(-s l ) Hn-1/α + ∈ L α (R) ∩ L 2 (R), one has (t l -s l ) H l -1/α + -(-s l ) H l -1/α + = j l ∈Z k l ∈Z κ l,j,k (t l )ψ j l ,k l (s l ) , (2.12) 
where the convergence of the series in the RHS of (2.12), as a function of s l , holds in L α (R). Next by using the Hölder inequality and the L 2 (R) orthonormality of the sequence 2 j l (1/2-1/α) ψ j l ,k l ,

j l ∈ Z, k l ∈ Z , one can prove that κ l,j l ,k l (t l ) = 2 j l (1-1/α) R {(t l -s l ) H l -1/α + -(-s l ) H l -1/α + } ψ(2 j l s l -k l ) ds l = 2 -j l ,H l ψ H l (2 j l t l -k l ) -ψ H l (-k l ) . (2.13) 
By inserting (2.12) into (1.1) for every l = 1, . . . , N , we get that for any fixed t ∈ R N , the series (2.10) converges in probability to X 0 (t) and Proposition 7 follows from Remark 8.

From now on our goal will be to prove Proposition 6. We need some preliminary results.

Proof of Proposition 6. For the sake of simplicity we suppose that N = 2. The proof for the general case is similar. The space C γ (K) is endowed with the norm

f γ = sup x∈K |f (x)| + |f | γ with |f | γ = sup x =y∈K |f (x) -f (y)| x -y γ ,
where

• denotes the Euclidean norm in R 2 . For every n ∈ N we set D c n = (Z 2 × Z 2 ) \ D 2 n,M . Let us define F n (x, y) = F n (x, y; ψ H 1 ; M, φ, δ, β, η) and E(x, y) = E(x, y; φ, δ, β, η) by F n (x, y) = A n (x, y) + B n (x, y) ,
where A n (x, y) and B n (x, y) are defined in Lemma 26 in the Appendix, and

E(x, y) = (J,K)∈Z 2 2 -Jδ |φ(2 J x -K) -φ(2 J y -K)| |x -y| β (3 + |J|) 1/α+η (3 + |K|) 1/α+η .
Using (2.8), the triangle inequality and Lemma 22, one has for any n, p ∈ N and

s 1 , s 2 , t 1 , t 2 ∈ [-M, M ],
denoting by the product over indices l = 1, 2,

|U n+p,M (s 1 , s 2 ) -U n+p,M (t 1 , t 2 ) -U n,M (s 1 , s 2 ) + U n,M (t 1 , t 2 )| (|s 1 -t 1 | 2 + |s 2 -t 2 | 2 ) β/2 = (j,k)∈D 2 n+p,M \D 2 n,M 2 -j,H ǫ j,k ψ H l (2 j l s l -k l ) -ψ H l (-k l ) - ψ H l (2 j l t l -k l ) -ψ H l (-k l ) (|s 1 -t 1 | 2 + |s 2 -t 2 | 2 ) β/2 ≤ (j,k)∈D c n 2 -j,H |ǫ j,k | ψ H l (2 j l s l -k l ) -ψ H l (-k l ) - ψ H l (2 j l t l -k l ) -ψ H l (-k l ) (|s 1 -t 1 | 2 + |s 2 -t 2 | 2 ) β/2 ≤ C (j,k)∈D c n 2 -j,H (3 + |j l |) 1/α+η (3 + |k l |) 1/α+η ψ H 1 (2 j 1 s 1 -k 1 ) -ψ H 1 (2 j 1 t 1 -k 1 ) |s 1 -t 1 | β × ψ H 2 (2 j 2 s 2 -k 2 ) -ψ H 2 (-k 2 ) + similar term ,
where C is a positive random variable. Observing that, for any non-negative array (a j,k ) (j,k)∈Z 4 ,

(j,k)∈D c n a j,k ≤ (j 1 ,k 1 )∈Z 2 \D n,M (j 2 ,k 2 )∈Z 2 + (j 1 ,k 1 )∈Z 2 (j 2 ,k 2 )∈Z 2 \D n,M a j,k ,
we thus get

|U n+p,M (s 1 , s 2 ) -U n+p,M (t 1 , t 2 ) -U n,M (s 1 , s 2 ) + U n,M (t 1 , t 2 )| (|s 1 -t 1 | 2 + |s 2 -t 2 | 2 ) β/2 ≤ C F n (s 1 , t 1 ; ψ H 1 ; H 1 , β, η)E(s 2 , 0; ψ H 2 ; H 2 , 0, η) + E(s 1 , t 1 ; ψ H 1 ; H 1 , β, η)F n (s 2 , 0; ψ H 2 ; H 2 , 0, η) + F n (s 2 , t 2 ; ψ H 2 ; H 2 , β, η)E(t 1 , 0; ψ H 1 ; H 1 , 0, η) + E(s 2 , t 2 ; ψ H 2 ; H 2 , β, η)F n (t 1 , 0; ψ H 1 ; H 1 , 0, η) .
By Lemma 26, we have that sup

x,y∈[-M,M ] F n (x, y) → 0 as n → ∞ and sup x,y∈[-M,M ] E(x, y) < ∞; hence the last display yields that sup p≥0 |U n+p,M -U n,M | γ → 0 as n → ∞. Observing that
U n,M vanishes on the axes, the same result holds with | • | γ replaced by • γ and Proposition 6 is proved.

Remark 9. Proposition 6 is much easier to prove in the Gaussian case. Indeed, in this case, using the fact that the ǫ j,k 's are independent N (0, 1) Gaussian random variables one can easily show that the sequence (U n,M ) n∈N is weakly relatively compact in the space C(K). We refer to the proof of Proposition 3 in [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF] for more details.

From now on we will always identify the LFSS X 0 with its random wavelet series representation (2.10).

Uniform modulus of continuity and behavior as |t

ℓ | → 0 or ∞
The goal of this section is to prove Theorem 1. An immediate consequence of Proposition 6

is that X 0 is locally C γ for any γ ∈ (0, H 1 -1/α), almost surely. Theorem 1 completes this result by providing a sharper estimate on the uniform modulus of continuity, see (1.6), and the behavior at infinity and around the axes, see (1.7). As in our note [START_REF] Ayache | Local and asymptotic properties of linear fractional stable sheets[END_REF], these results are obtained by using the representation (2.10). However, we improved the modulus of continuity estimate by relying on the independence present in the coefficients and every s, t ∈ K, the triangle inequality implies

{ǫ j,k , (j, k) ∈ Z N × Z N },
X 0 (s, ω) -X 0 (t, ω) ≤ N n=1 X 0 (t 1 , . . . , t n-1 , s n , . . . , s N ; ω) -X 0 (t 1 , . . . , t n , s n+1 , . . . , s N ; ω) ≤ C 1 (ω) N n=1 n-1 ℓ=1 T H ℓ ,1/α,η (t ℓ ; ψ H ℓ ) × N ℓ=n+1 T H ℓ ,1/α,η (s ℓ ; ψ H ℓ ) ×S Hn,1/α,η (t n , s n ; ψ Hn ) (3.1) ≤ C 2 (ω) N n=1 |t n -s n | Hn-1/α 1 + log |t n -s n | 2/α+2η .
This shows (1.6).

Similarly, using (2.10), Corollary 5 and Lemma 27, we obtain, for every ω ∈ Ω * 0 and every t ∈ R,

X 0 (t, ω) ≤ C 3 (ω) N ℓ=1 T H ℓ ,1/α,η (t ℓ ; ψ H ℓ ) ≤ C 4 (ω) N ℓ=1 1 + log |t ℓ | 1/α+η |t ℓ | H ℓ . (3.2)
The proof of Theorem 1 is finished.

Remark 10. Clearly Proposition 6 holds more generally for any process Y = {Y (t), t ∈ R N } having a wavelet series representation of the form

Y (t) = (j,k)∈Z N ×Z N c j,k λ j,k N l=1 φ l (2 j l t l -k l ) -φ l (-k l ) ,
where the φ l 's are well-localized functions, {c j,k , j, k ∈ Z N } is a sequence of complex-valued coefficients satisfying |c j,k | ≤ c2 -j,H (c > 0 being a constant) and {λ j,k , j, k ∈ Z N } is a sequence of complex-valued random variables satisfying sup j,k E[|λ j,k | ν ] < ∞ for all 0 < ν < α. We can also show that (1.7) holds with probability 1 for such a process Y . In contrast, for this more general class of process, we cannot show (1.6) but a less precise estimate for the uniform modulus of continuity. Namely, as announced in our note [START_REF] Ayache | Local and asymptotic properties of linear fractional stable sheets[END_REF], with probability 1, sup s,t∈K

|X 0 (s, ω) -X 0 (t, ω)| N j=1 |s j -t j | H j -1/α-η < ∞ for all compact sets K ⊆ R N .

Optimality of the modulus of continuity estimate

The goal of this section is to prove Theorem 2. For every n ∈ {1, . . . , N } and (

j n , k n ) ∈ N × Z, let G jn,kn = {G jn,kn ( u n ), u n ∈ R N -1
} be the α-stable field defined as the following wavelet transformation:

G jn,kn ( u n ) = 2 jn(1+Hn) R X 0 (s n , u n )ψ -Hn (2 jn s n -k n ) ds n , (4.1) 
where the notation (s n , u n ) is introduced in Theorem 2. By using (1.7) and the fact that the wavelet ψ -Hn is well-localized, the process {G jn,kn (u), u ∈ R N -1 } is well-defined and its trajectories are continuous, almost surely. The proof of Theorem 2 mainly relies on the following Lemmas 11 and 12.

Lemma 11. Let Ω * 0 be the event of probability 1 in Corollary 5 and let n ∈ {1, . . . , N }. Suppose that there exist

(u n , u n ) ∈ R N , ρ > 0, ǫ > 0 and ω ∈ Ω * 0 such that sup sn,tn∈[un-ρ,un+ρ] |X 0 (s n , u n , ω) -X 0 (t n , u n , ω)| |s n -t n | Hn-1/α 1 + log |s n -t n | -1/α-ǫ < ∞. (4.2)
Then one has

lim sup jn→∞ (j n 2 -jn ) 1/α max |G jn,kn ( u n , ω)| : k n ∈ Z, |u n -2 -jn k n | ≤ ρ/8 = 0. (4.3) Lemma 12.
Let Ω * 3 be the event of probability 1 defined as

Ω * 3 = Ω * 0 ∩ Ω * 2 ,
where Ω * 0 and Ω * 2 are respectively the events defined in Corollary 5 and Lemma 13. For all ω ∈ Ω * 3 , n ∈ {1, . . . , N }, all integers j n ∈ N, real numbers z 1 < z 2 and all 0 < τ 1 < τ 2 , one has

lim inf jn→∞ (j n 2 -jn ) 1/α inf un∈[τ 1 ,τ 2 ] N-1 max |G jn,kn ( u n , ω)|; k n ∈ [2 jn z 1 , 2 jn z 2 ] ∩ Z > 0. (4.4)
Before proving these lemmas, we show how they yield Theorem 2.

Proof of Theorem 2. For the sake of simplicity we only consider the case where u n have positive and non-vanishing coordinates. The general case is similar. Suppose ad absurdum that there exists ω ∈ Ω * 3 such that (1.8) is not satisfied. Then, for some n ∈ {1, . . . , N }, there exists u n ∈ R N -1 with positive and non vanishing coordinates, some real number u n , ρ > 0 and ǫ > 0 arbitrary small such that (4.2) holds. By Lemma 11, this implies (4.3). Then the conclusion of Lemma 12 leads to a contradiction. This proves Theorem 2.

Proof of Lemma 11. Let j n ∈ N and k n ∈ Z be such that

|u n -2 -jn k n | ≤ ρ/8. (4.5)
It follows from (4.1) and (2.7) that G jn,kn ( u n , ω) can be written as

2 jn(1+Hn) R X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) ψ -Hn (2 jn s n -k n ) ds n .
Hence, we have

G jn,kn ( u n , ω) ≤ 2 jn(1+Hn) R X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) ψ -Hn (2 jn s n -k n ) ds n = 2 jn(1+Hn) {A jn,kn ( u n , ω) + B jn,kn ( u n , ω)} , (4.6) 
where

A jn,kn ( u n , ω) = |sn-un|≤ρ/2 X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) ψ -Hn (2 jn s n -k n ) ds n (4.7)
and

B jn,kn ( u n , ω) = |sn-un|>ρ/2 X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) ψ -Hn (2 jn s n -k n ) ds n . (4.8)
Let us now give a suitable upper bound for A jn,kn ( u n , ω). It follows from (4.7) and (4.2) that

A jn,kn ( u n , ω) is at most C 5 (ω) R s n -2 -jn k n Hn-1/α 1 + log |s n -2 -jn k n | -1/α-ǫ ψ -Hn (2 jn s n -k n ) ds n . (4.9)
We claim that

sup jn≥1 R x Hn-1/α 1/j n + log 2 -(log |x|)/j n -1/α-ǫ ψ -Hn (x) dx < ∞ (4.10)
and differ its proof after we have shown (4.3).

By setting x = 2 jn s nk n in the integral in (4.9) and using (4.10), one obtains, for all j n ≥ 1 and k n ∈ Z satisfying (4.5),

A jn,kn ( u n , ω) ≤ C 6 (ω)2 jn(-1-Hn+1/α) j -1/α-ǫ n . (4.11) 
In order to derive an upper bound for B jn,kn ( u n , ω), we use the fact that ψ -Hn is a well-localized function and (4.5) to get

B jn,kn ( u n , ω) ≤ c |sn-un|>ρ/2 X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) 1 + |2 jn s n -k n | -2 ds n ≤ c |sn-un|>ρ/2 X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) × 1 + 2 jn |s n -u n | -|u n -2 -jn k n | -2 ds n ≤ c 2 -2jn |sn-un|>ρ/2 X 0 (s n , u n , ω) -X 0 (2 -jn k n , u n , ω) s n -u n -2 ds n .
This last inequality, together with (1.7), implies that, since ω ∈ Ω * 0 ,

B jn,kn ( u n , ω) ≤ C 7 (ω) 2 -2jn ,
where C 7 is a random variable that does not depend on the integers j n and k n satisfying (4.5).

Hence, putting together the last inequality, (4.11) and (4.6) one obtains (4.3).

Finally, to conclude the proof of the lemma, it remains to show (4.10). We separate the integral in (4.10) into two domains, |x| > 2 jn/2 and |x| ≤ 2 jn/2 . We bound 1/j n + log 2 -(log |x|)/j n -1/α-ǫ from above by j 1/α+ǫ n on the first domain, and by (log 2)/2 -1/α-ǫ on the second domain, yielding that the integral in (4.10) is at most

j 1/α+ǫ n |x|>2 jn/2
x Hn-1/α ψ -Hn (x) dx + (log 2)/2

-1/α-ǫ R x
Hn-1/α ψ -Hn (x) dx .

Using that H n -1/α ∈ (0, 1) and that ψ -Hn is well localized, we thus get (4.10).

In order to prove Lemma 12, we first prove a weaker result, namely the following lemma.

Lemma 13. There exists Ω * 2 , an event of probability 1, such that for all ω ∈ Ω * 2 , n ∈ {1, . . . , N } and real numbers M > 1,

z 1 < z 2 , 0 < τ 1 < τ 2 , one has lim inf jn→∞ (j n 2 -jn ) 1/α ν(n, j n ; M ; z 1 , z 2 ; τ 1 , τ 2 ; ω) > 0 , (4.12) 
where ν(n, j n ; M ; z 1 , z 2 ; τ 1 , τ 2 ; ω)

= min kn∈[M jn τ 1 ,M jn τ 2 ] N-1 ∩Z N-1 max G jn,kn (M -jn k n , ω) ; k n ∈ 2 jn z 1 , 2 jn z 2 ∩ Z . (4.13)
In order to prove Lemma 13 we need to show that the random variables G jn,kn ( u n ) satisfy some nice properties, namely the following proposition.

Proposition 14. Let u n ∈ R N -1 be an arbitrary fixed vector with non-vanishing coordinates.

Then the following results hold:

(a) {G jn,kn ( u n ), (j n , k n ) ∈ N × Z} is a sequence of strictly α-stable random variables with identical scale parameters given by

G jn,kn ( u n ) α = ψ L α (R) l =n (u l -•) H l -1/α + -(-•) H l -1/α + L α (R) (4.14) (b) Let L > 0 be a constant such that the support of ψ is included in [-L, L].
Then for all integers p > 2L and j n ≥ 0, {G jn,qnp ( u n ); q n ∈ Z} is a sequence of independent random variables.

Proposition 14 is in fact a straightforward consequence of the following proposition and the fact that any two functions s n → ψ(2 jn s nq n p) with different values of q n have disjoint supports.

Proposition 15. For every vector u n with non-vanishing coordinates and for every

(j n , k n ) ∈ N × Z one has almost surely G jn,kn ( u n ) = R N 2 jn/α ψ(2 jn s n -k n ) l =n (u l -s l ) H l -1/α + -(-s l ) H l -1/α + dZ α (s) . (4.15)
Proof of Proposition 15. As in (3.2), we have 

sup t∈R N (j,k)∈Z N ×Z N 2 -j,H |ǫ j,k | N l=1 ψ H l (2 j l t l -k l ) -ψ H l (-k l ) N j=1 |t j | H j 1 + log |t j | 1/α+η < ∞. ( 4 
of finite sets in Z × Z such that ∪ m D m = Z × Z, G jn,kn ( u n ) = lim m→∞ (j,k)∈D N m 2 jn-jn, Hn ǫ j,k × R N l=1 ψ H l (2 j l s l -k l ) -ψ H l (-k l ) ψ -Hn (2 jn s n -k n ) ds n = lim m→∞ ( jn, kn)∈D N-1 m l =n κ l,j l ,k l (u l ) ǫ (jn, jn);(kn, kn) , (4.17) 
where κ l,j l ,k l (u l ) is defined in (2.13). On the other hand, it follows from (2.12) that

ψ jn,kn (s n ) l =n (u l -s l ) H l -1/α + -(-s l ) H l -1/α + = ( jn, kn)∈Z 2(N-1) l =n κ l,j l ,k l (u l ) N l=1 ψ j l ,k l (s l ), (4.18) 
where for all fixed u n ∈ R N -1 the convergence of the series in the RHS (4.18), as a function of s ∈ R N , holds in L α (R N ). Next using (4.18) and (2.3) one has, for every fixed

u n ∈ R N -1 , R N ψ jn,kn (s n ) l =n (u l -s l ) H l -1/α + -(-s l ) H l -1/α + dZ α (s) =
( jn, kn)∈Z 2(N-1) l =n κ l,j l ,k l (u l )ǫ (jn, jn);(kn, kn) , (4. [START_REF] Samko | Fractional integrals and derivatives[END_REF] where the convergence of the series holds in probability. Finally, putting together (4.17), (4. [START_REF] Samko | Fractional integrals and derivatives[END_REF] and (2.11), one obtains the proposition.

We are now in position to prove Lemma 13.

Proof of Lemma 13. For any constants M, c 1 > 0, n ∈ {1, . . . , N }, integer j n ≥ 0 and rational numbers r 1 < r 2 , 0 < θ 1 < θ 2 and ζ > 0, let Γ(n, j n ) = Γ(n, j n ; M, c 1 ; r 1 , r 2 ; θ 1 , θ 2 ; ζ) be the event defined as

Γ(n, j n ; M, c 1 ; r 1 , r 2 ; θ 1 , θ 2 ) = ω : ν(n, j n ; M ; r 1 , r 2 ; θ 1 , θ 2 ; ω) ≤ (c 1 j n 2 -jn ) -1/α . (4.20)
First we will show that, there exists c 1 large enough such that

jn∈N P Γ(n, j n ; M, c 1 ; r 1 , r 2 ; θ 1 , θ 2 ) < ∞. (4.21) 
Using (A.2), (4.14) and that (u l -•)

H l -1/α + -(-•) H l -1/α + L α (R)
is increasing with |u l | and non-zero for u l = 0, we have

c 2 := min n=1,...,N inf t≥1 inf (jn,kn)∈N×Z inf un∈[θ 1 ,θ 2 ] N-1 t α P (|G jn,kn ( u n )| > t) > 0 . (4.22)
Observe finally that ν(n, j n ; M ; r 1 , r 2 ; θ 1 , θ 2 ; ω)

≥ min kn∈[M jn θ 1 ,M jn θ 2 ] N-1 ∩Z N-1 max G jn,qnp (M -jn k n , ω) ; q n ∈ 2 jn r 1 p , 2 jn r 2 p ∩ Z .
It follows from Proposition 14 and (4.22) and this inequality that

P Γ(n, j n ) ≤ kn qn∈[ 2 jn r 1 p , 2 jn r 2 p ]∩Z P |G jn,qnp (M -jn k n )| ≤ (c 1 j n 2 -jn ) -1/α ≤ c 3 M (N -1)jn 1 -c 2 j n 2 -jn /c 1 c 4 2 jn , (4.23) 
where the summation is taken over all k n ∈ [M jn θ 1 , M jn θ 2 ] N -1 ∩ Z N -1 and the constants c 2 , c 3 and c 4 do not depend on j n . Using the last inequality one can prove that (4.21) holds by choosing c 1 > 0 large enough. Hence the Borel-Cantelli Lemma implies that, for such a constant c 1 ,

P m∈N jn≥m Γ c (n, j n ; M, c 1 ; r 1 , r 2 ; θ 1 , θ 2 ) = 1,
where Γ c (n, j n ; M, c 1 , r 1 , r 2 ; θ 1 , θ 2 ) denotes the complement event of Γ(n, j n ; M, c 1 ; r 1 , r 2 ; θ 1 , θ 2 ).

But this implies that the event ω : lim inf jn→∞ (j n 2 -jn ) 1/α ν(n, j n ; M ; r 1 , r 2 ; θ 1 , θ 2 ; ω) > 0 has probability 1. Finally setting Ω * 2 as the intersection of such sets over (M ; r 1 , r 2 ; θ 1 , θ 2 ) ∈ Q 5 : M > 0, r 1 < r 2 and 0 < θ 1 < θ 2 , one obtains the lemma.

The following proposition will allow us to derive Lemma 12 starting from Lemma 13. Roughly speaking it means that the increments of the random field {G jn,kn ( u n ), u n ∈ [τ 1 , τ 2 ] N -1 } can be bound uniformly in the indices j n and k n .

Proposition 16. Let Ω * 0 be the event of probability 1 that was introduced in Corollary 5. Then for any reals z 1 < z 2 , 0 < τ 1 < τ 2 and η > 0 arbitrarily small, there exists an almost surely finite random variable C 8 > 0 such that for every n ∈ {1, . . . , N },

j n ∈ N, k n ∈ [2 jn z 1 , 2 jn z 2 ], u n ∈ [τ 1 , τ 2 ] N -1 , v n ∈ [τ 1 , τ 2 ] N -1 and ω ∈ Ω * 0 , one has G jn,kn ( u n , ω) -G jn,kn ( v n , ω) ≤ C 8 (ω) 2 jnHn l =n |u l -v l | H l -1/α-η . (4.24) 
Proof. Lemma 27 applied to (3.1) shows that, for all ω ∈ Ω * 0 and any η > 0, there exists C(ω) > 0 such that, for every n ∈ {1, . . . , N },

s n ∈ R, u n ∈ [τ 1 , τ 2 ] N -1 and v n ∈ [τ 1 , τ 2 ] N -1 , X 0 (s n , u n , ω)-X 0 (s n , v n , ω) ≤ C(ω) l =n |u l -v l | H l -1/α-η |s n | Hn (1+| log(|s n |)|) 1/α+η . (4.25)
Let ζ > 0 be arbitrary small and consider the integral

I(j n , k n ) = 2 jn R (1 + |s n |) Hn+ζ ψ -Hn (2 jn s n -k n ) ds n . By setting x = 2 jn s n -k n we derive that sup jn∈N max kn∈[2 jn z 1 , 2 jn z 2 ] I(j n , k n ) = sup jn∈N max kn∈[2 jn z 1 , 2 jn z 2 ] R 1 + 2 -jn |x + k n | Hn+ζ ψ -Hn (x) dx ≤ R 1 + |x| + max{|z 1 |, |z 2 |} Hn+ζ ψ -Hn (x) dx < ∞. (4.26)
The inequality (4.24) then follows from (4.1), (4.25) and (4.26).

We are now in position to prove Lemma 12.

Proof of Lemma 12. We set ν(n, j n ; z 1 , z 2 ; τ 1 , τ 2 ; ω) = inf

un∈[τ 1 ,τ 2 ] N-1 max |G jn,kn ( u n , ω)|; k n ∈ [2 jn z 1 , 2 jn z 2 ] ∩ Z . (4.27)
In view of Lemma 13 it is sufficient to show that there exists γ > 0 small enough and M > 0 such that, for all n ∈ {1, . . . , N }, ω ∈ Ω 3 and reals z 1 < z 2 , 0 < τ 1 < τ 2 , one has lim jn→∞ 2 -jn(1/α-γ) ν(n, j n ; M ; z 1 , z 2 ; τ 1 , τ 2 ; ω)ν(n, j n ; z 1 , z 2 ; τ 1 , τ 2 ; ω) = 0. (4.28)

As the function f jn (•) = max G jn,kn (•, ω) ; k n ∈ [2 jn z 1 , 2 jn z 2 ] is continuous, there exists

u 0 n (j n ) ∈ [τ 1 , τ 2 ] N -1 such that f jn ( u 0 n (j n )) = inf f jn ( u n ); u n ∈ [τ 1 , τ 2 ] N -1 . (4.29)
Moreover, when j n is big enough, one has for some

k 0 n (j n ) ∈ [M jn τ 1 , M jn τ 2 ] N -1 ∩ Z N -1 , M -jn k 0 n (j n ) -u 0 n (j n ) ∞ ≤ M -jn . (4.30)
Then it follows from Proposition 16 that there exists a constant c 5 > 0 (independent of (j n , k n ))

such that the following inequality holds

G jn,kn (M -jn k 0 n (j n ), ω) -G jn,kn ( u 0 n (j n ), ω) ≤ c 5 2 jnHn M -jn(H 1 -1/α-η) .
The last inequality implies that

f jn (M -jn k 0 n (j n )) ≤ f jn ( u 0 n (j n )) + c 5 2 jnHn M -jn(H 1 -1/α-η) . (4.31) 
By using (4.29) and (4.31) one obtains that

f jn ( u 0 n (j n )) ≤ min f jn (M -jn k n ); k n ∈ [M jn τ 1 , M jn τ 2 ] n-1 ≤ f jn ( u 0 n (j n )) + c 5 2 jnHn M -jn(H 1 -1/α-η) .
(4.32)

Let us choose M large enough so that

H N -1/α H 1 -1/α < log M log 2 .
and then, using (1.5), we choose η > 0 and γ > 0 small enough so that 2 jnHn M -jn(H 1 -1/α-η) = o(2 -jn(1/α-γ) ) as j n → ∞. Finally combining this with (4.31), we obtain (4.28). This proves Lemma 12.

Proof of Theorem 3

As usual, the proof of Theorem 3 is divided into proving the upper and lower bounds separately.

The proofs of the lower bounds rely on the standard capacity argument and the following Lemma 17. However, the proofs of the upper bounds are significantly different from that in [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF], due to the fact that both dim H X [0, 1] N and dim H GrX [0, 1] N are not determined by the exponent for the uniform modulus of continuity of X. Our argument is based on the moment method in [START_REF] Lin | Dimension properties of the sample paths of self-similar processes[END_REF]. Combining this argument with the methods in [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF], we are able to determine the Hausdorff dimension of the image X(E) for all nonrandom Borel sets E ⊆ (0, ∞) N .

We start by proving some results on the scale parameters of the increments of real-valued LFSS X 0 between two points (i.e., X 0 (s) -X 0 (t)) and over intervals; see Lemmas 17 and 18 below.

Combining the latter with the maximal moment inequality due to Moricz [START_REF] Móricz | A general moment inequality for the maxium of the rectangular partial sums of multiple series[END_REF], we derive sharp upper bounds for the moments of the supremum of X 0 .

Lemma 17 is an extension of Lemma 3.4 in [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF] for fractional Brownian sheets. Since d(s, t) := X 0 (s) -X 0 (t) α can be used as a pseudometric for characterizing the regularity properties of X 0 via metric entropy methods (cf. [START_REF] Samorodnitsky | Stable non-Gaussian processes: stochastic models with infinite variance[END_REF]Chapter 12]), these results will be useful for studying other properties of LFSS X as well.

Lemma 17. For any constant ε > 0, there exist positive and finite constants c 6 and c 7 such that for all s, t ∈

[ε, 1] N , c 6 N ℓ=1 s ℓ -t ℓ H ℓ ≤ X 0 (s) -X 0 (t) α ≤ c 7 N ℓ=1 s ℓ -t ℓ H ℓ . (5.1)
Proof. To prove the upper bound in (5.1), we use induction on N . When N = 1, X 0 is an (H, α)-linear fractional stable motion and one can verify directly that (5.1) holds as an equality.

Suppose the upper bound in (5.1) holds for any linear fractional stable sheet with n parameters.

We now show that it holds for a linear fractional stable sheet X 0 with n + 1 parameters.

It follows from the representation (1.1) that, for any s, t ∈ [ε, 1] n+1 , X 0 (s) -X 0 (t) α α is a constant multiple of the following integral:

R n+1 n+1 ℓ=1 (t ℓ -r ℓ ) H ℓ -1 α + -(-r ℓ ) H ℓ -1 α + - n+1 ℓ=1 (s ℓ -r ℓ ) H ℓ -1 α + -(-r ℓ ) H ℓ -1 α + α dr ≤ c R n n ℓ=1 (t ℓ -r ℓ ) H ℓ -1 α + -(-r ℓ ) H ℓ -1 α + - n ℓ=1 (s ℓ -r ℓ ) H ℓ -1 α + -(-r ℓ ) H ℓ -1 α + α dr × R (t n+1 -r n+1 ) H n+1 -1 α + -(-r n+1 ) H n+1 -1 α + α dr n+1 + c R n n ℓ=1 (s ℓ -r ℓ ) H ℓ -1 α + -(-r ℓ ) H ℓ -1 α + α dr × R (t n+1 -r n+1 ) H n+1 -1 α + -(s n+1 -r n+1 ) H n+1 -1 α + α dr n+1 ≤ c n ℓ=1 |s ℓ -t ℓ | H ℓ α + |t n+1 -s n+1 | H n+1 α ,
where, in deriving the last inequality, we have used the induction hypothesis, the fact that the

function t → R {(t -r) H-1/α + -(-r)
H-1/α + } α dr is locally uniformly bounded for any H > 1/α and that, by a change of variable r n+1 = t n+1 + |t n+1s n+1 |u, the last integral in the previous display is less than |t n+1s n+1 | αH n+1 up to a multiplicative constant. Hence we have proved the upper bound in (5.1).

For proving the lower bound in (5.1), we define the stable field Y = {Y (t), t ∈ R N + } by

Y (t) = [0, t] h H (t, r) Z α (dr), (5.2) 
where the function h H (t, r) is defined in (1.2). Then by using (1.1) again we can write

X 0 (s) -X 0 (t) α ≥ Y (t) -Y (s) α . (5.3)
To proceed, we use the same argument as in [3, pp. 428-429] to decompose Y as a sum of independent stable random fields. For every t ∈ [ε, 1] N , we decompose the rectangle [0, t] into the following disjoint union:

[0, t] = [0, ε] N ∪ N j=1 R(t j ) ∪ ∆(ε, t), (5.4) 
where 

R(t j ) = {r ∈ [0, 1] N : 0 ≤ r i ≤ ε if i = j, ε < r j ≤ t j }
Y (t) = [0,ε] N h H (t, r) Z α (dr) + N j=1 R(t j ) h H (t, r) Z α (dr) + ∆(ε,t) h H (t, r) Z α (dr) := Y (ε, t) + N j=1
Y j (t) + Z(ε, t).

(5.5)

Since the processes {Y (ε, t), t ∈ R N }, {Y j (t), t ∈ R N } (1 ≤ j ≤ N ) and {Z(ε, t), t ∈ R N } are defined by the stochastic integrals with respect to Z α over disjoint sets, they are independent.

Only the Y j (t)'s will be useful for proving the lower bound in (5.1). Now let s, t ∈ [ε, 1] N and j ∈ {1, . . . , N } be fixed. Without loss of generality, we assume

s j ≤ t j . Then Y j (t) -Y j (s) α α = R(s j ) h H (t, r) -h H (s, r) α dr + R(s j ,t j ) h α H (t, r) dr, (5.6) 
where R(s j , t j ) = {r ∈ [0, 1] N : 0 ≤ r i ≤ ε if i = j, s j < r j ≤ t j }. By (5.6) and some elementary calculations we derive

Y j (t) -Y j (s) α α ≥ R(s j ,t j ) h α H (t, r) dr = [0,ε] N-1 k =j (t k -r k ) αH k -1 t j s j (t j -r j ) αH j -1 dr ≥ c |t j -s j | αH j , (5.7) 
where c > 0 is a constant depending on ε, α and H k (1 ≤ k ≤ N ) only. The lower bound in (5.1) follows from (5.5), (5.6) and (5.7).

Our next lemma determines the scalar parameter of the increment of X 0 over any interval

[s, t] = N j=1 [s j , t j ].
Recall that the increment of X 0 over [s, t], denoted by X 0 ([s, t]), is defined as

X 0 ([s, t]) := δ∈{0,1} N (-1) N -i δ i X 0 ( s j + δ j (t j -s j ) ).
(

This corresponds to the measure of the set [s, t] by interpreting X 0 as a signed measure defined by X 0 ([0, t]) = X 0 (t) for all t ∈ R N (convention: [0, t j ] := [t j , 0] if t j < 0). It may be helpful to note that for N = 2, we have

X 0 ([s, t]) = X 0 (t) -X 0 ((s 1 , t 2 )) -X 0 ((t 1 , s 2 )) + X 0 (s).
Similarly, we will denote the increment of the function h H (•, r) over [s, t] by h H ([s, t], r).

Lemma 18. For any interval [s, t] = N j=1 [s j , t j ], we have

X 0 ([s, t]) α α = N j=1 (t j -s j ) αH j . (5.9) 
Proof. Since the kernel h H (t, s) in (1.2) is a tensor product, it can be verified that

X 0 ([s, t]) α α = R N h H ([s, t], r) α dr = R N κ α N ℓ=1 (t ℓ -r ℓ ) H ℓ -1 α + -(s ℓ -r ℓ ) H ℓ -1 α + α dr = N j=1
(t js j ) αH j .

(5.10)

This proves Lemma 18.

In order to estimate

E sup t∈T |X 0 (t)-X 0 (a)| for all intervals T = [a, b] ⊆ [ε, 1
] N , we will make use of a general moment inequality of Móricz [START_REF] Móricz | A general moment inequality for the maxium of the rectangular partial sums of multiple series[END_REF] for the maximum partial sums of multi-indexed random variables. This approach has the advantage that it is applicable to non-stable random fields as well. Another way for proving Lemma 20 below is to establish sharp upper bounds for the tail probability P sup t∈T |X 0 (t) -X 0 (a)| > u by modifying the arguments in [START_REF] Rosinski | Distributions of subadditive functionals of sample paths of infinitely divisible processes[END_REF].

First we adapt some notation from [START_REF] Móricz | A general moment inequality for the maxium of the rectangular partial sums of multiple series[END_REF] to our setting. Let {ξ k , k ∈ N N } be a sequence of random variables. For any m ∈ Z N + (Z + is the set of nonnegative integers) and

k ∈ N N , let R = R(m, k) = (m, m + k] ∩ Z N
+ , which will also be called a rectangle in Z N + , and we denote

S(R) = S(m, k) = p∈R ξ p and M (R) = max 1≤q≤k S(m, q) . (5.11) 
It can be verified that

M (R) ≤ max Q⊆R S(Q) ≤ 2 N M (R)
, where the maximum is taken over all rectangles Q ⊆ R. Let f (R) be a nonnegative function of the rectangle R with left-lower vertex in Z N + . We call f superadditive if for every rectangle R = R(m, k) the inequality

f (R j1 ) + f (R j2 ) ≤ f (R) (5.12) 
holds for every 1 ≤ j ≤ N and 1 ≤ q j < k j , where

R j1 = R (m 1 , . . . , m N ), (k 1 , . . . , k j-1 , q j , k j+1 , . . . , k N )
and

R j2 = R (m 1 , . . . , m j-1 , m j + q j , m j+1 , . . . , m N ), (k 1 , . . . , k j-1 , k j -q j , k j+1 , . . . , k N ) .
In other words, R j1 ∪ R j2 = R is a disjoint decomposition of R by a hyperplane which is perpendicular to the jth axis. Together with the nonnegativity of f , (5.12) implies that, for every fixed

m ∈ Z N + , f (R(m, k)) is nondecreasing in each variable k j (1 ≤ j ≤ N ).
The following moment inequality for the maximum M (R) follows from Corollary 1 in [START_REF] Móricz | A general moment inequality for the maxium of the rectangular partial sums of multiple series[END_REF].

Lemma 19. Let β > 1 and γ ≥ 1 be given constants. If there exists a nonnegative and superad-

ditive function f (R) of the rectangle R in Z N + such that E |S(R)| γ ≤ f β (R) for every R, then E M (R) γ ≤ 5 2 N 1 -2 (1-β)/γ N γ f β (R) (5.13) 
for every rectangle R in Z N + .

It is useful to notice that the constant in (5.13) is independent of R. Applying Lemma 19 to the linear fractional stable sheets, we obtain Lemma 20. Let the assumption (1.5) hold. Then there exists a positive and finite constant c 8 , independent of the skewness intensity β(s), such that for all rectangles

T = [a, b] ⊆ [ε, 1] N , E sup t∈T X 0 (t) -X 0 (a) ≤ c 8 N j=1 (b j -a j ) H j . (5.14) 
Proof. We prove this lemma by using induction on N . In the case of N = 1 it is well known (cf. [START_REF] Lin | Dimension properties of the sample paths of self-similar processes[END_REF] or [START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF]) that (5.14) holds. Observe that the term δ = 1 in the sum appearing in (5.8) is X 0 (t), and since δ∈{0,1} N (-1) N -i δ i = 0, we have

X 0 ([s, t]) = δ∈{0,1} N (-1) N -i δ i (X 0 ( s j + δ j (t j -s j ) ) -X 0 (s)) = X 0 (t) -X 0 (s) + δ∈{0,1} N \ 1 (-1) N -i δ i {X 0 ( s j + δ j (t j -s j ) ) -X 0 (s)} . (5.15)
For every δ ∈ {0, 1} N \ 1 , there is some n ∈ {1, . . . , N } such that δ n = 0• Observing that, using the notation introduced in Theorem 2, u n → X 0 (a n , u n ) is an (N -1, 1)-LFSS as defined by (1.1) and (1.2) but with N replaced by N -1, κ multiplied by a constant only depending on a n and bounded independently of a n (since a n ∈ [ε, 1]) and a modified skewness intensity β. Hence using the induction hypothesis, we have, for every δ ∈ {0, 1} N \ 1 ,

E sup t∈T X 0 ( a j + δ j (t j -a j ) ) -X 0 (a) ≤ c N j=1 (b j -a j ) H j .
(5.16)

Applying (5.15) with s = a and (5.16), the bound (5.14) is implied by

E sup t∈T X 0 ([a, t]) ≤ c N j=1 (b j -a j ) H j , (5.17) 
which we are now going to prove. This is where Lemmas 18 and 19 will be applied.

For all n ∈ N we define a grid in [a, b] with mesh 2 -n by the collection of points

τ n (p) = a j + p j (b j -a j )2 -n , p ∈ R(0, 2 n ) = {1, . . . , 2 n } N .
For each p ∈ R(0, 2 n ), we define the random variable ξ p to be the increment of X 0 over the elementary rectangle with upper-right vertex τ n (p), [τ n (p -1 ), τ n (p)]. Interpreting X 0 as a signed measure, we get that for any rectangle R(m, k) ⊆ R(0, 2 n ) for m = 0, p∈R(m,k)

ξ p = X 0 ([τ n (m), τ n (m + k)]). (5.18) 
We are now ready to prove (5.17). By the continuity of the sample function X 0 (t) and the monotone convergence theorem, since the set

∪ n≥1 {τ n (p) : p ∈ R(0, 2 n )} is dense in [a, b], it is sufficient to show that for all integers n ≥ 1, E max p∈R(0, 2 n ) X 0 ([a, τ n (p)]) ≤ c 9 N j=1 (b j -a j ) H j , (5.19) 
where c 9 > 0 is a finite constant independent of [a, b] ⊆ [ε, 1] N and n.

It follows from Lemma 23 in the Appendix that for any strictly α-stable random variable Z with scale parameter 1 and every 0 < γ < α, we have E(|Z| γ ) ≤ c 10 , where c 10 depends on α and γ only. This fact, (5.18) and Lemma 18 imply that for every 1 < γ < α and every rectangle

R = R(m, k) ⊆ R(0, 2 n ), E p∈R ξ p γ = E X 0 ([τ n (m), τ n (m + k)]) γ ≤ c 10 N j=1 k j (b j -a j ) 2 n H j γ ≤ c 11 N j=1 k j (b j -a j ) 2 n H j /H 1 H 1 γ , (5.20) 
where

c 11 = c 1/(H 1 γ) 10 
. For every rectangle R = R(m, k) included in R(0, 2 n ), let

f (R) = c 11 N j=1 k j (b j -a j ) 2 n H j /H 1 .
Note that, under assumption (1.5), we have α ∈ (1, 2), H 1 α > 1 and H j ≥ H 1 for j = 1, . . . , N .

Hence the inequality x H j /H 1 +y H j /H 1 ≤ (x+y) H j /H 1 for all x, y > 0 implies that f is superadditive.

We take γ ∈ (1, α) such that β = γH 1 > 1 and apply Lemma 19 to derive

E sup k∈R(0, 2 n ) p∈R(0,k) ξ p γ ≤ c 12 N j=1 (b j -a j ) H j /H 1 H 1 γ = c 12 N j=1 (b j -a j ) H j γ , (5.21) 
where c 12 > 0 is a finite constant independent of [a, b] and n. This proves (5.17) and thus Lemma 20.

We now proceed to prove Theorem 3.

Proof of Theorem 3. We only prove (1.9), which is done by modifying the proof of Theorem 4

in [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF] and by making use of Lemmas 17 and 20. The formula (1.10) can be proven using similar arguments and we leave it to the interested reader.

First we prove the lower bound in (1.9). Let ε ∈ (0, 1) be given and let I = [ε, 1] N . We will prove that for every 0 < γ < min{d,

N ℓ=1 1 
H ℓ }, dim H X(I) ≥ γ almost surely. By Frostman's theorem (see e.g. [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF] pages 64 and 65), it is sufficient to show that we have

E I I 1 X(s) -X(t) γ dsdt < ∞, (5.22) 
where • denotes the Euclidean norm in R d .

It is known that for any d-dimensional distribution function F in R d with characteristic function ϕ and any γ > 0, we have

2 γ/2-1 Γ γ 2 R d x -γ F (dx) = (2π) -d/2 +∞ 0 u γ-1 du R d exp - x 2 2 ϕ(ux) dx. (5.23) 
This equality can be verified by replacing ϕ in the right side of (5.23) by its expression as a Fourier integral and then performing a routine calculation. Applying (5.23) to the distribution of the stable random variable ξ = X(s) -X(t) / X(s) -X(t) α and using Fubini's theorem,

we obtain

E ξ -γ ≤ c 14 R d exp - x 2 2 dx ∞ 0 u γ-1 exp -c 15 |u| α x α du = c 16 R d exp - x 2 2 x -γ dx < ∞, (5.24) 
where the last integral is convergent because γ < d. Combining (5.24) with Lemma 17 yields

E I I 1 X(s) -X(t) γ dsdt ≤ I I 1 N ℓ=1 |s ℓ -t ℓ | H ℓ γ dsdt < ∞, (5.25)
where the finiteness of the last integral is proved in [3, p. 432]. This proves (5.22) and hence the lower bound in (1.9).

To prove the upper bound in (1.9), we use the covering argument in [START_REF] Lin | Dimension properties of the sample paths of self-similar processes[END_REF] and [START_REF] Ayache | Asymptotic properties and Hausdorff dimensions of fractional brownian sheets[END_REF]. Since clearly dim H X [0, 1] N ≤ d a.s. and Hausdorff dimension is σ-stable [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF], it is sufficient to show that for

every ε ∈ (0, 1), dim H X [ε, 1] N ≤ N j=1 1 H j a.s. (5.26) 
This will be done by using a covering argument.

For any integer n ≥ 2, we divide [ε, 1] N into m n sub-rectangles {R n,i } with sides parallel to the axes and side-lengths n -1/H j (j = 1, . . . , N ), respectively. Then

m n ≤ c n N j=1 1 H j (5.27) and X [ε, 1] N can be covered by X(R n,i ) (1 ≤ i ≤ m n ).
Denote the lower-left vertex of R n,i by a n,i . Note that the image X(R n,i ) is contained in a rectangle in R d with sides parallel to the axes and side lengths at most 2 sup s∈R n,i X k (s) -X k (a n,i ) (k = 1, . . . , d), respectively. Hence each

X(R n,i ) can be covered by at most d k=1 2 sup s∈R n,i X k (s) -X k (a n,i ) n -1 + 1
cubes of side-lengths n -1 . In this way, we have obtained a (

√ d n -1 )-covering for X [ε, 1] N .
By Lemma 20, we derive that for every 1 ≤ i ≤ m n and 1

≤ k ≤ d, E sup s∈R n,i X k (s) -X k (a n,i ) ≤ c n -1 .
(5.28) It follows from (5.27), (5.28) and the independence of X 1 , . . . , X d that for any γ > N j=1 1

H j , we have

E mn i=1 d k=1 2 sup s∈R n,i X k (s) -X k (a n,i ) n -1 + 1 √ d n -1 γ ≤ c n N j=1 1 
H j n -γ → 0 as n → ∞.

( along rational numbers, we derive (5.26). This completes the proof of Theorem 3.

The above method can be extended to determine the Hausdorff dimension of the image X(E)

for every nonrandom Borel set E ⊆ (0, ∞) N , thus extending the results in Wu and Xiao [START_REF] Wu | Geometric properties of fractional Brownian sheets[END_REF] and Xiao [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF] for anisotropic Gaussian random fields to (N, d)-LFSS.

For this purpose, let us first recall from [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF] the definition of a Hausdorff-type dimension which is more convenient to capture the anisotropic nature of X.

For a fixed (H 1 , . . . , H N ) ∈ (0, 1) N , let ρ be the metric on R N defined by

ρ(s, t) = N j=1 |s j -t j | H j , ∀ s, t ∈ R N . (5.30) 
For any β > 0 and

E ⊆ R N , define the β-dimensional Hausdorff measure [in the metric ρ] of E by H β ρ (E) = lim δ→0 inf ∞ n=1 (2r n ) β : E ⊆ ∞ n=1 B ρ (r n ), r n ≤ δ , (5.31) 
where B ρ (r) denotes a closed (or open) ball of radius r in the metric space (R N , ρ). Then H β ρ is a metric outer measure and all Borel sets are H β ρ -measurable. The corresponding Hausdorff dimension of E is defined by

dim ρ H E = inf β > 0 : H β ρ (E) = 0 . (5.32)
We refer to [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF] for more information on the history and basic properties of H β ρ and dim ρ H .

Theorem 21. Let the assumption (1.5) hold. Then, for every nonrandom Borel set

E ⊆ (0, ∞) N , dim H X(E) = min d; dim ρ H E a.s. ( 5 

.33)

Proof. The proof is a modification of those of Theorem 3 above and Theorem 6.11 in [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF]. For any

γ > dim ρ H E, there is a covering {B ρ (r n ), n ≥ 1} of E such that ∞ n=1 (2r n ) γ ≤ 1. Note that X(E) ⊆ ∪ ∞ n=1 X B ρ (r n
) and we can cover each X B ρ (r n ) as in the proof of Theorem 3. The same argument shows that dim H X(E) ≤ γ almost surely, which yields the desired upper bound for dim H X(E).

By using the Frostman lemma for H β ρ (Lemma 6.10 in [START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF]) and the capacity argument in the proof of Theorem 3, one can show dim H X(E) ≥ min d; dim ρ H E almost surely. We omit the details.

Appendix A. Technical lemmas

The following lemma allows to control the growth of an arbitrary sequence of strictly α-stable random variables having the same scale parameter.

Lemma 22. Let {ǫ λ , λ ∈ Z d } be an arbitrary sequence of strictly α-stable random variables having the same scale parameter. Then, there exists an event Ω * 1 of probability 1, such that for any η > 0 and any ω ∈ Ω * 1 ,

|ǫ λ (ω)| ≤ C(ω) d l=1 (3 + |λ l |) 1/α+η , (A.1)
where C > 0 is an almost surely finite random variable, only depending on η.

Proof This lemma simply follows from the fact that for any ν ∈ ((1/α + η) -1 , α) one has

E sup λ∈Z d |ǫ λ | ν d j=1 (3 + |λ j |) ν(1/α+η) ≤ c λ∈Z d d j=1 (3 + |λ j |) -ν(1/α+η) < ∞.
Lemma 23. Let α ∈ (0, 2). There exists a constant c 17 depending only on α such that for any strictly α-stable random variable Z with scale parameter Z α > 0 and skewness parameter

β ∈ [-1, 1] and all t ≥ Z α , c -1 17 Z α α t -α ≤ P(|Z| > t) ≤ c 17 Z α α t -α . (A.2)
Let N ≥ 1. Suppose now that {Z j,k , j ℓ ≥ 1, k ℓ ≥ 2 for ℓ = 1, . . . , N } is a sequence of strictly α-stable random variables such that (i) For all j ∈ (N \ {0}) N , {Z j,k , k ℓ ≥ 2 for ℓ = 1, . . . , N } are independent;

(ii) For all j ∈ (N \ {0}) N and k ∈ (N \ {0, 1}) N , Z j,k α ≤ 1.

Then, with probability 1, one has, for any γ > 0, with the convention that A n (x, x) = B n (x, x) = 0 for any x ∈ R. These quantities converge to 0, uniformly in x, y ∈ [-M, M ], as n goes to infinity.

Proof. Let x, y ∈ [-M, M ] and J 0 ≥log 2 (2M ) be the unique integer such that

2 -J 0 -1 < |x -y| ≤ 2 -J 0 . (A.7)
Let us first prove that A n (x, y) converges to 0, uniformly in x, y as n goes to infinity. From now on we suppose that J is an arbitrary integer satisfying |J| ≤ n. We need to derive suitable upper bounds for the quantity A (J) n (x, y) = For this purpose, we consider two cases J ≤ J 0 and J ≥ J 0 + 1 separately. First we suppose that J ≤ J 0 . (A.9)

Using the Mean Value Theorem, (2.2), (A.7) and (A.9) one obtains that

|φ(2 J x -K) -φ(2 J y -K)| ≤ c 2 J |x -y| sup u∈I (3 + |u|) -2 ≤ c 2 J |x -y|(2 + |2 J x -K|) -2 ,
where I denotes the compact interval with end-points 2 J x -K and 2 J y -K, whose length is at most 1 by (A.7) and (A.9). Next the last inequality and (A.8) entail that Inserting these two bounds into (A.30) and using (A.29), we get (A.25) and the proof is finished.

A (J) n (x, y) ≤ c 2 J |x -y| 1-β |K|>M 2 n+1

  and ∆(ε, t) can be written as a union of 2 N -N -1 sub-rectangles of [0, t]. It follows from (5.2) and (5.4) that for every t ∈ [ε, 1] N ,

½P 1 .n 0 θ ( 1 +(A. 4 ) 1 n=n 0 2 nθ ( 1 +2 mθ 1 +.|J|≤n |K|>M 2 n+1 2 - 2 -

 114101122 α-γ k ℓ : j ℓ ≥ 1, k ℓ ≥ 2 for ℓ = 1, . . . , N < ∞ . (A.3) Proof Relation (A.2) follows from Property 1.2.15 in[START_REF] Samorodnitsky | Stable non-Gaussian processes: stochastic models with infinite variance[END_REF]. Let us now show (A.3) for N = 1, the proof for N > 1 is similar. By using (A.2), we obtain, for all j ≥ 1 and n ≥ 1,P max{|Z j,2 |, . . . , |Z j,n |} > u j,n ≤ 1 -(1c 17 u -α j,n ) n ,where u j,n = j 1/α+γ n 1/α log 1/α+γ n. Defining n m = [exp(m)], we obtain max{|Z j,2 |,...,|Z j,nm |}>u j,nm max{|Z j,2 |, . . . , |Z j,nm |} > u j,nm < ∞ .Thus the random variable j≥1 m≥1 ½ max{|Z j,2 |,...,|Z j,nm |}>u j,nm is a.s. finite. As a consequence there exists an a.s. finite positive random variable C such thatmax{|Z j,2 |, . . . , |Z j,nm |} ≤ C u j,nm for all j ≥ 1, m ≥ Let m(k) be the unique integer satisfying n m(k) ≤ k < n m(k)+1 . Thus for all j ≥ 1, k ≥ 2, we have |Z j,k | ≤ C u j,n m(k)+1 = C j 1/α+γ n 1/α m(k)+1 log 1/α+γ (n m(k)+1) , Observe now that we have, for all k ≥ 2,n m(k)+1 ≤ exp(m(k) + 1) ≤ e (n m(k) + 1) ≤ e (k + 1) .Relation (A.3) follows from the last two displays.Lemma 24. For any γ ∈ [0, 1) and η ≥ 0, there exists a constant c > 0 such that, for all u ∈ R,k∈Z (2 + |u -k|) -2 (1 + |k|) γ log η (2 + |k|) ≤ c (1 + |u|) γ log η (2 + |u|) . Proof Put k ′ = [u]k, where [u] is the integer part of u. Hence k∈Z (1 + |k|) γ log η (2 + |k|) (2 + |u -k|) 2 = k ′ ∈Z (2 + |u -[u] + k ′ |) -2 (1 + |[u]k ′ |) γ log η (2 + |[u]k ′ |) ≤ k ′ ∈Z (1 + |k ′ |) -2 (2 + |u| + |k ′ |) γ log η (2 + |u| + |k ′ |) .The result then follows by observing that (2+|u|+|k′ |) γ ≤ (1+|u|) γ (2+|k ′ |) γ , log η (2+|u|+|k ′ |) ≤ c log η (2 + |u|) log η (2 + |k ′ |)} and γ -2 < -1. Lemma 25. Let θ = 0 and γ ∈ R. Set c := n≥0 2 -|θ|n (1 + n) |γ| < ∞. Then for any n 0 < n 1 in {0, ±1, ±2, . . . , ±∞}, |n 0 |) γ if θ < 0 2 n 1 θ (1 + |n 1 |) γ if θ > 0.Proof. Take e.g. θ < 0 and writen |n|) γ ≤ 2 n 0 θ (1 + |n 0 |) γ m≥0 |m + n 0 | 1 + |n 0 | γ Now observe that 1 1 + |m| ≤ 1 + |m + n 0 | 1 + |n 0 | ≤ 1 + |m| so that sup n 0 m≥0 2 mθ 1+|m+n 0 | 1+|n 0 | γ < ∞ for any γ ∈ R.Lemma 26. For any M > 0, η > 0 small enough, δ ∈ (1/α + η, 1), β ∈ [0, δ -1/αη), any well-localized function φ and x, y ∈ R, let A n (x, y) := A n (x, y; M, φ, δ, β, η) be the quantity defined asA n (x, y) = Jδ |φ(2 J x -K)φ(2 J y -K)| |x -y| β (3 + |J|)1/α+η (3 + |K|) 1/α+η (A.5) and let B n (x, y) := B n (x, y; φ; δ, β, η) be the quantity defined as B n (x, y) = |J|≥n+1 K∈Z Jδ |φ(2 J x -K)φ(2 J y -K)| |x -y| β (3 + |J|) 1/α+η (3 + |K|) 1/α+η , (A.6)

|K|>M 2 n+1 |φ( 2 J

 2 x -K)φ(2 J y -K)| |x -y| β (3 + |K|) 1/α+η . (A.8)

( 3 +

 3 |K|) 1/α+η (2 + |2 J x -K|) 2 .(A.10)On the other hand, using that |x| ≤ M and |J| ≤ n, for all |K| > M 2 n+1 , one gets(3 + |K|) 1/α+η (2 + |2 J x -K|) 2 ≤ (3 + |K|) 1/α+η (2 + |K| -M 2 n ) 2 ≤ c 1 + |K| -(2-1/α-η) . (A.11) 

  .29) This and Fatou's lemma imply that dim H X [ε, 1] N ≤ γ almost surely. By letting γ ↓ N

	j=1	1 H j
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Putting together (A.10), (A.11) and (A.7), one obtains that A (J) n (x, y) ≤ c 2 J 0 (β-1) 2 J-n(1-1/α-η) . (A.12)

Let us now study the second case where

It follows from (A.7), (A. [START_REF] Maejima | A self-similar process with nowhere bounded sample paths[END_REF]) and (A.8) that

On the other hand, using (2.2) and the fact that |J| ≤ n one has, for any real u ∈ [-M, M ] and

Combining (A.14) with (A.15) one gets that

It follows from (A.5), (A.8), (A.12) and (A.16) that

where we used Lemma 25 to bound the series and then the fact 2 -J 0 ≤ 2M (see (A.7)). Since c 20 does not depend on (x, y), the last inequality proves that A n (x, y) converges to 0, uniformly in x, y ∈ [-M, M ] as n goes to infinity.

Let us now prove that B n (x, y) converges to 0, uniformly in x, y as n goes to infinity. In all the sequel J denotes an arbitrary integer satisfying |J| ≥ n + 1. First, we derive a suitable upper bound for the quantity

As above, we distinguish two cases: J ≤ J 0 and J ≥ J 0 + 1. First we suppose that (A.9) is verified. As in (A.10), we have

Next, using (A.7) and Lemma 24 and the fact that |x| ≤ M , one obtains that

Now let us suppose that (A.13) is verified. By using this relation, (A.7), the triangle inequality, (2.2), Lemma 24 and the fact that x, y ∈ [-M, M ], one gets

Since 2 -J 0 ≤ M , for all n ≥ log 2 (2M ), we have -n ≤ J 0 , and thus, by (A.18),

where we used Lemma 25 and 2 -J 0 ≤ M . Applying Lemma 25 with (A.18) and (A. [START_REF] Samko | Fractional integrals and derivatives[END_REF]) yields

and for any n ≥ J 0 , J≥n

Since β + 1/a + ηδ < 0, the function t → 2 t(β+1/a+η-δ) (3 + t) 1/α+η is decreasing for t large enough, and hence for n large enough, either n ≥ J 0 and we may apply (A.22), or n ≤ J 0 and we may apply (A.21) whose right-hand side is smaller than the right-hand side of (A.22).

Hence (A.22) holds for all n large enough independently of J 0 . This, with (A.20), shows that B n (x, y) converges uniformly in x, y, as n goes to infinity.

Lemma 27. Let φ be a well-localized function i.e. a function satisfying the condition (2.2). For any δ ∈ (0, 1), γ ∈ (0, δ) and η ≥ 0, define

and

Then, there exists a constant c > 0, only depending on δ, γ and φ, such that the inequalities

and

hold for all x, y ∈ R (with the convention that 0 a × log b 0 = 0 for all a, b > 0).

Proof. We only prove (A.25), the proof of (A.26) is similar. By (2.2), there is a constant c > 0 such that, for all J, K ∈ Z and x, y ∈ R,

The quantity |φ(2 J x -K)φ(2 J y -K)| can be bounded more sharply when the condition 2 J |x -y| ≤ 1 holds, namely by using (2.2) and the Mean Value Theorem one obtains that

where I denotes the compact interval whose end-points are x and y. From now on we will assume that x = y (Relation (A.25) is trivial otherwise) and let J 0 ∈ Z be the unique integer satisfying