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Abstract. We reformulate the problem of modularity maximization over the set of

partitions of a network as a conic optimization problem over the completely positive

cone, converting it from a combinatorial optimization problem to a convex continuous

one. A semidefinite relaxation of this conic program then allows to compute upper

bounds on the maximum modularity of the network. Based on the solution of the

corresponding semidefinite program, we design a randomized algorithm generating

partitions of the network with suboptimal modularities. We apply this algorithm to

several benchmark networks, demonstrating that it is competitive in accuracy with the

best algorithms previously known. We use our method to provide the first proof of

optimality of a partition for a real-world network.
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1. Introduction

A widely accepted measure of community structure in networks is the modularity. The

modularity was introduced in [1] and is a scalar function defined on the set of partitions

of the network. For a given partition, the modularity describes by how much the

intra-community links of the network dominate the links between different communities.

Hence the maximizer of the modularity function is the partition that is best describing

the community structure of the network.

However, the problem of maximizing the modularity function over the set of

partitions is NP-hard [2], and in practice one has to employ algorithms which yield

a suboptimal partition. A number of such algorithms have been proposed by different

authors, e.g. [1],[3],[4],[5],[6],[7],[8],[9]. A comparison of some available algorithms has

been conducted in [10]. However, none of these algorithms allows to judge the quality

of the obtained solution, i.e. to tell how close the achieved value of the modularity is to

the maximal one.

In this contribution we propose an approach which yields both an upper bound on

the maximum of the modularity function, and partitions with suboptimal values of the

modularity. We use a formalism developed by Burer [11] to replace the discrete search

space, namely the set of partitions of the network, by a compact convex set. This set can

be described as a compact affine section of the completely positive cone [12]. Thus the

combinatorial problem of modularity maximization is replaced by a convex continuous

optimization problem, and the complexity arising from the large number of partitions

to be tested translates to the difficulty of deciding membership in a convex set. Our

key idea is to replace the difficult convex set by an overbounding approximation with

an easy description, namely by a semidefinite representable [13] set. Maximizing the

modularity over this overbounding approximation amounts to a semidefinite program,

for which numerical solvers are available, and yields an upper bound on the optimal

value of the modularity.

We give a simple geometrical interpretation of the employed approximation, which

allows to design a randomized method for generating suboptimal partitions from the

maximizer of the semidefinite program. This geometric approach serves also to improve

the proposed relaxation further. These ideas can be considered as a generalization of

the semidefinite approach developed by Goemans and Williamson [14] for the max-cut

problem in combinatorial optimization.

We test the algorithm on several benchmark networks and show that it is among the

most accurate methods available in the literature. The upper bounds on the maximal

modularity are in general within a few percent of the achieved suboptimal values.

For the Zachary karate club network [19], the improved version of the semidefinite

relaxation actually closes the gap between the upper bound and the achieved value of

the modularity, thus furnishing an optimality certificate for the obtained partition. To

our knowledge, this is the first proof of optimality for a partition of a real-world network.

The principal drawback of the algorithm is the large computational effort, which
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limits the range of applicability to networks with a few hundred nodes.

The remainder of the paper is organized as follows. In the next section we provide

necessary definitions and background. In Section 3 we reformulate the problem of

modularity maximization as an equivalent convex continuous optimization problem over

a compact affine section of the completely positive cone. In Section 4 we derive a

semidefinite program yielding upper bounds on the maximal modularity. In Section

5 we develop a randomized algorithm generating suboptimal partitions of the network

into communities. In Section 6 we test the algorithm on several benchmark networks.

In the last section we discuss the results and line out some suggestions for further

improvements.

2. Definitions and preliminaries

By R
k×l we will denote the space of real k × l matrices, and by S(n) the space of

real symmetric n × n matrices. The space S(n) is equipped with an Euclidean scalar

product, the Frobenius inner product 〈·, ·〉 defined by 〈A, B〉 = tr(AB). By 1k we

denote a column vector of length k consisting of 1’s, and by 1k×l = 1k1
T
l a k × l matrix

consisting of 1’s. For a matrix A, vec(A) will denote the vector obtained by stacking

the columns of A. For matrices A, B, A ⊗ B will denote the Kronecker product of the

matrices A, B, i.e. a matrix which is obtained from A by replacing each element Aij by

the product AijB. By In we denote the n × n identity matrix. For an n × n matrix A,

denote by diag A the vector consisting of the diagonal elements of A.

A symmetric simplex in R
n is a polytope having n+1 vertices, such that each vertex

is represented by a unit length vector and the scalar product of each pair of distinct

vertices equals − 1
n
.

2.1. Modularity

The modularity is a scalar function on the set of partitions of a network and was

introduced in [1]. Let G be an undirected graph with n vertices, m edges and adjacency

matrix A. To any partition of the vertex set into disjoint subsets, called communities,

we associate a real number, called the modularity, defined by

Q =
1

2m

∑

(i,j):Ci=Cj

(Aij −
kikj

2m
),

where Ci is the community of vertex i and ki is the number of edges leaving vertex i.

Note that ki is the i-th element of the vector A1n. Denote the symmetric n × n matrix

with elements 1
2m

(Aij −
kikj

2m
) by B. We then have

B =
1

4m2
(A · 1T

nA1n − A1n1
T
nA), (1)

and the vector 1n is in the kernel of B.
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For a particular partition, the modularity of the partition indicates how much the

partition matches the community structure of the graph. To detect the community

structure of the graph the modularity has to be maximized over all partitions.

A partition of the vertex set into at most p subsets will be represented by a {0, 1}-

matrix S of size n × p. Here each column corresponds to a community and each row

to a vertex. The element Sij is defined as the indicator function of membership of

vertex i in the community j. Then S1p = 1n and the modularity of the partition is

given by Q = tr(STBS) = 〈B, SST 〉. The problem of modularity maximization over all

partitions into at most p communities hence becomes

max
S∈Rn×p

〈B, SST 〉 : Sij ∈ {0, 1} ∀ i = 1, . . . , n, j = 1, . . . , p, S1p = 1n.(2)

2.2. Semidefinite programs

The content of this subsection can be found in many recent standard books on convex

optimization, e.g. [15],[13]. Any real symmetric matrix X ∈ S(n) can be cosidered

as a quadratic form on R
n, defined by x 7→ xT Xx. If the quadratic form defined by

the matrix X is nonnegative everywhere on R
n, we shall call the matrix X positive

semidefinite (PSD), and write X � 0. The set of PSD matrices in S(n) forms a closed

convex cone, which will be denoted by S+(n). By the Frobenius inner product linear

functionals on S(n) can be identified with elements of S(n), namely by F (·) = 〈F, ·〉.

A semidefinite program (SDP) is an optimization problem of the form

min
X

〈F0, X〉 : X ∈ S+(n), 〈Fi, X〉 = ci, i = 1, . . . , N, (3)

where F0, . . . , FN are given elements of S(n), and c1, . . . , cN are given real numbers.

Such problems can be solved numerically in polynomial time. A list of SDP solvers can

be found e.g. in [16]. We call X a feasible solution if it satisfies the constraints X � 0,

〈Fi, X〉 = ci for all i, and an optimal solution if it in addition minimizes the objective

function 〈F0, X〉.

It is not hard to see that if we replace some of the equalities in (3) by inequalities,

we can still bring the problem back to the standard form, although with a larger

matrix X. Also, by changing the sign of F0 we can convert maximization problems

into minimization problems and vice versa.

2.3. Completely positive cone

A matrix X ∈ S(n) is said to be completely positive (CP) if it can be factorized as

X = CCT such that the factor C has only nonnegative elements. It is not hard to check

that the set of CP matrices forms a convex cone in S(n), namely the convex conic hull

of all PSD rank 1 matrices with nonnegative elements. A PSD matrix with nonnegative

elements is also called doubly nonnegative matrix, or DNN matrix. It follows that every

CP matrix is DNN. However, for n ≥ 5 there exist DNN matrices which are not CP

[17],[12], and the cone of DNN matrices is an overbounding approximation of the CP

cone.
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The following fundamental result by Burer [11] allows to transform a quadratic

optimization problem like (2) to a completely positive program, i.e. a convex continuous

optimization problem involving a constraint of membership in the CP cone. Consider

the following optimization problem.

min
x∈R

n
+

xT Qx + 2cT x : Ax = b, xi ∈ {0, 1} ∀ i ∈ I ⊂ {1, . . . , n}. (4)

Here Q ∈ S(n) and c ∈ R
n. Thus we minimize a quadratic function over the positive

orthant subject to linear and binary constraints. The linear constraints are given by

some m × n coefficient matrix A and a right-hand side vector b ∈ R
m. The binary

constraints are imposed on some subset I of elements of the search vector x.

Theorem 1. [11, Theorem 3.1] Consider optimization problem (4). Assume that its

feasible set is nonempty, that the conditions x ∈ R
n
+ and Ax = b together imply xi ∈ [0, 1]

for all i ∈ I, and that there exists a vector y ∈ R
m such that AT y ∈ R

n
+, bT y = 1. Then

the optimal value of (4) is equal to the optimal value of the completely positive program

min
X∈S(n)

〈Q, X〉 + 2cT XAT y : AXAT y = b, diag(AXAT ) = diag(bbT ),

(XAT y)i = Xii ∀ i ∈ I ⊂ {1, . . . , n}, yTAXAT y = 1, X completely positive.

3. Reformulation as completely positive program

In this section we reformulate the problem of modularity maximization as an equivalent

completely positive program. It is not hard to verify that problem (2) satisfies the

assumptions of Theorem 1 with x = vec(S), y = 1
n
1n, AT y = 1

n
1np, Q = B, c = 0,

I = {1, . . . , np}. By this theorem, (2) is equivalent to the optimization problem

max
X∈S(np)

〈B,

p
∑

i=1

Xii〉,
1

n

p
∑

i,j=1

Xij1n = 1n,

p
∑

i,j=1

diag Xij = 1n,

1

n
X1np = diag X, X completely positive,

1

n2

p
∑

i,j=1

1T
nXij1n = 1.

Here X is an np×np matrix consisting of p×p blocks Xij of size n×n each. Note that the

above completely positive program is invariant with respect to simultaneous permutation

of the row and column indices of the blocks (with the same permutation). In other words,

the feasible set of the program and its objective function do not change if one replaces

X by the product (P ⊗ In)X(P ⊗ In)T , where P is an arbitrary p × p permutation

matrix. We can then group average the program with respect to the symmetric group

Sp, i.e. impose the additional condition that X = (P⊗In)X(P⊗In)T for all permutation

matrices P . Indeed, for any feasible matrix X of the original program, the group average
1
p!

∑

P∈Sp
(P⊗In)X(P⊗In)T will be feasible with the same value of the objective function

and satisfy the additional invariance condition. We hence assume that all diagonal
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blocks of X equal some matrix XD ∈ S(n), and all off-diagonal blocks equal some

matrix XO ∈ S(n). This leads to the symmetrized completely positive program

max
XD,XO∈S(n)

〈B, pXD〉,
p

n
XS1n = 1n, p diag XS = 1n,

1

n
XS1n = diag XD,

X is CP,
p

n2
1T

nXS1n = 1,

where XS = XD + (p − 1)XO. It is not hard to see that the conditions on XS imply

pXS = 1n1
T
n . By defining X ′ = p2

p−1
XD − 1

p−1
1n×n the program further simplifies to

max
X′∈S(n)

〈
p − 1

p
B, X ′〉, diag X ′ = 1n,

1

p
1np×np +(Ip−

1

p
1p×p)⊗X ′ is CP.(5)

We obtain the following result.

Theorem 2. Consider a graph with n vertices and m edges with adjacency matrix A

and let the matrix B be defined by (1). For every p ∈ N, p ≥ 2, the maximum of the

modularity over the set of partitions of the vertex set of the graph in at most p subsets

is given by the optimal value of the completely positive program (5).

Recall that every CP matrix is DNN. The condition that 1
p
1np×np+(Ip−

1
p
1p×p)⊗X ′

has nonnegative elements amounts to the condition that the elements of X ′ are contained

in the interval [− 1
p−1

, 1]. The condition 1
p
1np×np + (Ip −

1
p
1p×p) ⊗ X ′ � 0 is equivalent

to the condition X ′ � 0, as the Kronecker product of PSD matrices is again PSD.

Thus by relaxing the condition of membership in the CP cone in (5) to the condition

of membership in the DNN cone we obtain a semidefinite program with a feasible set

that overbounds that of the original completely positive program. The optimal value

of this semidefinite program will hence overbound the maximal value of the modularity.

However, we prefer a more intuitive geometrical derivation of this semidefinite program

in the next section, because it allows to lay out a randomized algorithm for generating

suboptimal partitions.

4. Upper bound on the maximal modularity

In this section we construct a semidefinite program whose solution yields an upper bound

on the maximal modularity of a graph. The tools employed for this bear resemblance

with the methods proposed in [14] for dealing with the so-called max-cut problem, and

in fact can be viewed as their generalization.

Recall that we represent partitions of the vertex set of the graph into at most p

subsets by {0, 1}-matrices S of size n × p. Each row of S is a standard orthonormal

basis vector in R
p. If the partition assigns the k-th vertex to the community l, then

the k-th row sk of the corresponding matrix S is the l-th basis vector el. Thus all rows

of S lie in the intersection of the unit sphere in R
p with the affine subspace given by

the linear relation 〈s, 1p〉 = 1. Any row vector s in this intersection can be represented

as a sum s = 1
p
1p +

√

p−1
p

v, where v is a unit length vector in the p − 1-dimensional
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linear subspace given by 〈v, 1p〉 = 0. In this way we can write the rows of S as sums

sk = 1
p
1p +

√

p−1
p

vk, and the matrix S as 1
p
1n×p +

√

p−1
p

V , where the rows of the matrix

V are given by the vectors vk.

Recall that the modularity Q of a partition is given by 〈B, SST 〉, where B is a fixed

real symmetric n × n matrix depending on the structure of the graph. We obtain

Q = 〈B, (
1

p
1n×p +

√

p − 1

p
V )(

1

p
1n×p +

√

p − 1

p
V )T 〉 = 〈

p − 1

p
B, V V T 〉,

because the vector 1n is in the kernel of B. The matrix V V T ∈ S+(n) is the Gram

matrix of the vectors vk. Note that 〈vk, vl〉 = 1 if the vertices k, l belong to the same

community, and 〈vk, vl〉 = − 1
p−1

if these vertices belong to different communities. Hence

the vk lie at the vertices of a symmetric simplex in the p−1-dimensional linear subspace

given by 〈v, 1p〉 = 0. The assignment of the vk to the different vertices of the simplex

corresponds to the assignment of the vertices of the graph to the different communities.

We obtain the following theorem.

Theorem 3. Consider a graph with n vertices and m edges with adjacency matrix A

and let the matrix B be defined by (1). For every p ∈ N, p ≥ 2, the optimal value of the

semidefinite program

max
X∈S(n)

〈
p − 1

p
B, X〉 : X � 0, diag X = 1n, Xkl ≥ −

1

p − 1
∀ 1 ≤ k < l ≤ n (6)

is an upper bound on the maximum of the modularity over the set of partitions of the

vertex set of the graph in at most p subsets. In particular, the optimal value of the

semidefinite program

max
X∈S(n)

〈
n − 1

n
B, X〉 : X � 0, diag X = 1n, Xkl ≥ −

1

n − 1
∀ 1 ≤ k < l ≤ n

is an upper bound on the maximal modularity over the set of all partitions.

Proof. Let S be the n × p {0, 1}-matrix corresponding to the partition realizing the

maximum of the modularity. Define a matrix V by S = 1
p
1n×p +

√

p−1
p

V . Then

X = V V T is a feasible solution for the SDP (6), and the optimal value of the SDP

is overbounding the scalar product Q = 〈p−1
p

B, V V T 〉.

Note that the condition Xkl ≤ 1 for k 6= l is automatically satisfied by all feasible

solutions of (6) due to the conditions X � 0 and diag X = 1n.

It has to be stressed that only the optimal value of the semidefinite program (6)

yields an upper bound to the considered maximum of the modularity function. An

arbitrary feasible solution of (6) has no relation to this maximum. However, the theory

of semidefinite programming allows to obtain upper bounds without actually solving

the semidefinite program.

Theorem 4. Assume the conditions of the previous theorem. Let Y ∈ S(n) be a matrix

with nonpositive off-diagonal elements satisfying Y − p−1
p

B � 0. Then the quantity
p

p−1
tr Y − 1

p−1
1T

nY 1n is an upper bound on the maximum of the modularity over the set

of partitions of the vertex set of the graph in at most p subsets.
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Proof. Assume the notations of the theorem. We will show that the quantity in question

is an upper bound on the optimal value of the semidefinite program (6). Let X be a

feasible solution to (6). Since the scalar product of two PSD matrices is nonnegative,

we have

0 ≤ 〈X, Y −
p − 1

p
B〉 = tr Y + 2

∑

i<j

XijYij − 〈X,
p − 1

p
B〉

≤ tr Y + 2
∑

i<j

(−
1

p − 1
)Yij − 〈X,

p − 1

p
B〉

=
p

p − 1
tr Y −

1

p − 1
1T

nY 1n − 〈X,
p − 1

p
B〉.

Remark 1. To look for the best matrix Y in the previous theorem amounts to the

semidefinite program

min
Y ∈S(n)

〈
p

p − 1
In −

1

p − 1
1n×n, Y 〉, Yij ≤ 0 ∀ i 6= j, Y −

p − 1

p
B � 0.

This is the dual program to (6) and it has the same optimal value [15]. Every feasible

solution of the dual program yields an upper bound on the maximum of the modularity.

4.1. Sharpening of the approximation

In this subsection we propose an improved semidefinite approximation by imposing

a generalization of the so-called metric inequalities [18], which are used to tighten

relaxations for max-cut problems.

Let us consider a symmetric simplex in R
p−1 and a collection of vectors v1, . . . , vn

lying at the vertices of this simplex. For any three distinct vectors vi, vj, vk we have three

possibilities. Either all three vectors lie at the same vertex, or two vectors lie at the

same vertex and the third at another vertex, or all three vectors lie at distinct vertices.

Recall that the scalar product between two vectors is either − 1
p−1

or 1, depending on

whether they lie at distinct vertices or not. It is not hard to see that among the scalar

products 〈vi, vj〉, 〈vj, vk〉, and 〈vk, vi〉 there cannot be exactly two equal to 1. Therefore

the inequality 〈vi, vj〉+〈vj, vk〉−〈vk, vi〉 ≤ 1 must hold for every triple of distinct indices

(i, j, k). Therefore we can add the conditions Xij +Xjk −Xki ≤ 1 to relaxation (6). We

obtain the following semidefinite program.

max
X∈S+(n)

〈
p − 1

p
B, X〉 : diag X = 1n, Xkl ≥ −

1

p − 1
∀ 1 ≤ k < l ≤ n, (7)

Xij + Xjk − Xki ≤ 1 ∀ i, j, k ∈ {1, . . . , n}.

A corresponding sharpened version of Theorem 3 then holds for this relaxation.

5. Randomized algorithm generating suboptimal partitions

In this section we utilize the geometrical interpretation of the semidefinite relaxation

(6) to devise a randomized algorithm yielding good partitions of the graph. We will

need the following lemma.
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Lemma 1. Let p ≥ 2 and let v1, . . . , vp be the vertices of a symmetric simplex in R
p−1.

Let further U be a random orthogonal transformation of R
p−1 drawn uniformly from the

Lie group of orthogonal (p − 1) × (p − 1) matrices, and let w1, . . . , wp be the images of

v1, . . . , vp under this transformation. Let W be the p × p matrix composed of the scalar

products 〈vk, wl〉. Then almost surely, in every row of W there will be a unique maximal

element. In case of this event, the indices of the maximal elements of all rows form the

set {1, . . . , p}.

Proof. For p = 2 the lemma is evident.

Let p ≥ 3. Consider two distinct elements of the same row of the matrix W , say Wkl

and Wkm. Equality of these elements amounts to the linear condition (vl−vm)T Uvk = 0

on the elements of U . If the measure of the set of orthogonal matrices satisfying this

condition is nonzero, then all tangent vectors to the orthogonal group at U must lie in

the corresponding linear subspace. This amounts to the condition that vk(vl − vm)T U

is a symmetric matrix, i.e. Uvk and vl − vm are collinear. This leads to a contradiction

with the condition (vl − vm)T Uvk = 0. This proves the first assertion of the lemma.

Now suppose that every row of W has a unique maximal element, and that two

rows k, l share the same index m corresponding to this maximal element. Consider the

polyhedral cone K = {v | 〈v, wm − wm′〉 ≥ 0 ∀ m′ 6= m}. It is not hard to check that

this cone is the convex conic hull of the vectors −wm′ , m′ 6= m, and the minimal scalar

product between two unit length vectors of this cone equals − 1
p−1

. This value is attained

if and only if these unit length vectors equal −wm1
,−wm2

for some m1, m2 6= m. On

the other hand, we have 〈vk, wm − wm′〉 > 0, 〈vl, wm − wm′〉 > 0 for all indices m′ 6= m.

Hence vk, vl lie in the interior of the cone K, and the scalar product of these unit length

vectors equals the minimal value − 1
p−1

. This leads to a contradiction.

Let X be the optimal solution of the semidefinite program (6). As outlined in the

previous section, X can be interpreted as the Gram matrix of a collection of vectors vk

encoding the assignment of the vertices of the graph to different communities. These

vectors can be defined as the rows of any factor F of the PSD matrix X, i.e. any n × r

matrix F such that X = FF T , where r is the rank of X.

Ideally, the rank of X does not exceed p − 1 and the elements of X take on the

values − 1
p−1

and 1. In this case, the vectors vk are vertices of a symmetric simplex in

R
p−1. The assignment of the n vectors vk to the p vertices of the simplex corresponds

to the assignment of the n vertices of the graph to p communities. One can compute

this assignment as follows.

Construct the vertex set of an arbitrary symmetric simplex in R
p, for example by

factorizing the p×p rank p−1 matrix p

p−1
Ip−

1
p−1

1p×p and taking the rows of the factor.

Subject the vertex set to a random orthogonal transformation of R
p−1 drawn uniformly

from the Lie group of orthogonal matrices, to obtain a collection of vectors w1, . . . , wp.

Construct the n × p matrix W of scalar products 〈vk, wl〉. For k = 1, . . . , n, assign

the vertex k of the graph to the community whose index corresponds to the maximal

element in the k-th row of W .
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By Lemma 1, this procedure almost surely reproduces the original assignment

defined by the vectors vk. By construction the modularity of the partition obtained

this way will equal the optimal value of (6) and will hence be optimal by Theorem 3.

However, in general the rank r of the solution matrix X exceeds p−1 and there are

elements of X which lie in the interior of the interval [− 1
p−1

, 1]. Therefore the collection

of vectors vk obtained from the factorization of X is a subset of the unit sphere in R
r such

that the scalar products between distinct vectors obey the inequality 〈vk, vl〉 ≥ − 1
p−1

.

Nevertheless, the proximity of two vectors vk, vl on the unit sphere can be considered

as a measure of the tendency of the vertices k, l of the graph to belong to the same

community. We propose to construct candidate partitions of the graph from the set

{v1, . . . , vn} by the following randomized algorithm, which is an adaptation of above

construction.

Algorithm 1. Solve the semidefinite program (6), factorize the optimal solution

X = FF T to obtain a factor F of size n×r, where r is the rank of X. Define the vectors

v1, . . . , vn as the rows of F . If p − 1 > r, then append the vectors vk, k = 1, . . . , n with

p − r − 1 zeros. Repeat the steps

1. If p− 1 < r, then draw a random (p− 1)-dimensional linear subspace of R
r from

a uniform distribution and project the vectors vk on this subspace to obtain vectors

v′
k ∈ R

p−1, k = 1, . . . , n. Otherwise define v′
k = vk.

2. Construct the vertex set of an arbitrary symmetric simplex in R
p−1 and subject

it to a random orthogonal transformation of R
p−1 drawn from a uniform distribution,

to obtain a collection of vectors w1, . . . , wp.

3. Construct the n × p matrix W of scalar products 〈v′
k, wl〉.

4. For k = 1, . . . , n, assign the vertex k of the graph to the community whose index

corresponds to the maximal element in the k-th row of W .

5. Compute the modularity of the obtained partition.

until the maximal value of the modularity obtained in the sequence of steps 5 makes

no further progress. Output the partition that furnished the maximal value of the

modularity.

The stopping rule is formulated somewhat vaguely and can be concretized in many

ways. For instance, one can stop if N ≥ N0 and the last improvement of the modularity

occured more than αN iterations ago, where N is the number of the current iteration and

α ∈ (0, 1), N0 ∈ N are prespecified constants. Note also that the algorithm can output

a partition that has strictly less than p communities, because there can be vertices of

the symmetric simplex which no vector vk was assigned to.

5.1. Partition in 2 communities

For p = 2 both the algorithm proposed above and the semidefinite program (6)

considerably simplify. Namely, the inequality constraints Xkl ≥ −1 in (6) are a
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consequence of the conditions X � 0 and diag X = 1n. We thus obtain the semidefinite

program

max
X∈S(n)

〈
1

2
B, X〉 : X � 0, diag X = 1n. (8)

Algorithm 1 simplifies to the following algorithm, because the two vertices of a

symmetric simplex in R are collinear.

Algorithm 2. Solve the semidefinite program (8), factorize the optimal solution

X = FF T to obtain a factor F of size n×r, where r is the rank of X. Define the vectors

v1, . . . , vn as the rows of F . Repeat the steps

1. Draw uniformly a random vector w from the unit sphere in R
r.

2. For k = 1, . . . , n, assign the vertex k of the graph to community 1 or community

2 depending on whether the scalar product 〈vk, w〉 has positive or negative sign.

3. Compute the modularity of the obtained partition.

until the maximal value of the modularity obtained in the sequence of steps 3 makes

no further progress. Output the partition that furnished the maximal value of the

modularity.

Relaxation (7) can also be improved in the case of two communities. Namely, for

any collection {vk} of unit length vectors distributed among the vertices of a symmetric

simplex in R we have the additional condition 〈vi, vj〉+ 〈vj, vk〉+ 〈vk, vi〉 ≥ −1, because

at least two vectors lie at the same vertex. Therefore, in addition to the conditions

Xij +Xjk −Xki ≤ 1, we can add the conditions Xij +Xjk +Xki ≥ −1 to relaxation (8).

Remark 2. For p = 2 the modularity maximization problem in its equivalent form (5)

reduces to the maximization of the linear function 1
2
〈B, ·〉 over the max-cut polytope [18].

The semidefinite relaxation (8) and Algorithm 2 are standard tools for obtaining upper

bounds and suboptimal solutions for this problem and were proposed in [14].

6. Examples

In this section we compute upper bounds on the maximal modularity and test the

algorithms presented in the previous section on several benchmark networks used in the

literature.

6.1. Zachary karate club network

The Zachary karate club network is a social network with 34 nodes studied in [19]. A

split of this network in two communities was observed. In the table below we give upper

bounds Qupper and achieved values of the modularity Qsubopt together with the number

of communities in the best partition for different values of p.

For p ≥ 4 the algorithm retuned the same partition in 4 communities. The

partition for p = 2 is the same as the one obtained by Newman [4], and
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Table 1. Upper bounds and achieved values of the modularity for the karate club

network.

p Qupper Qsubopt #comm.

2 0.376 4765 0.371 7949 2

3 0.420 4657 0.402 0381 3

4 0.432 3106 0.419 7896 4

5 0.435 3398 4

6 0.436 5051 4

7 0.437 0969 4

34 0.438 6004

Table 2. Upper bounds and achieved values of the modularity for the dolphin network.

p Qupper Qsubopt #comm.

2 0.411 9486 0.402 7333 2

3 0.515 4178 0.494 1854 3

4 0.545 1018 0.526 7988 4

5 0.549 8893 0.528 5194 5

6 0.551 6863 5

7 0.552 6765 5

62 0.555 2841

differs from the observed split by the assignment of one vertex. The partition

obtained for p = 4 is given by {1, 2, 3, 4, 8, 12, 13, 14, 18, 20, 22}, {5, 6, 7, 11, 17},

{9, 10, 15, 16, 19, 21, 23, 27, 30, 31, 33, 34}, {24, 25, 26, 28, 29, 32}. It has a slightly larger

modularity than the best one obtained so far in the literature: Duch and Arenas give a

value of 0.4188 [5], Newman gives a value of 0.419 [9].

The solution of the semidefinite program (6) took approximately 1 sec for each

value of p. 100 iterations of Algorithm 1 were sufficient to obtain the solution for each

value of p, which took a fraction of a second of CPU time.

For the karate club network we ran also the sharpened semidefinite program (7)

for the values p = 3, 34. For p = 3 the upper bound improved to 0.404 6578. For

p = 34, the optimal solution to relaxation (7) is the one generated by above partition

in 4 communities. This proves global optimality of this partition. The running time for

solving (7) for each value of p was approximately 3 hours.

6.2. Dolphin network

The dolphin network is a social network with 62 nodes studied in [20]. In the table below

we give upper bounds Qupper and achieved values of the modularity Qsubopt together with

the number of communities in the best partition for different values of p.

For values p > 5 the algorithm returned partitions in 5 communities.

The solution of the semidefinite program (6) took approximately 36 sec for each
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value of p. 100 iterations of Algorithm 1 were sufficient to obtain the solution for each

value of p, which took a fraction of a second of CPU time.

6.3. Random graph

In this subsection we present results on an artificial benchmark problem which was

introduced in [1] and used in the literature to compare different algorithms for detecting

community structure. We consider a graph with 128 vertices. The vertex set is

artificially divided in 4 communities of 32 vertices each. We will refer to this partition

as to the canonical partition. The edges of the graph are generated randomly and

independently such that there are nout expected edges from each vertex to vertices in

different canonical communities, and nin expected edges to vertices within the same

canonical community. These numbers are normalized to satisfy nout + nin = 16.

The probability of presence of an edge between a given pair of vertices in different

communities is hence pout = nout/96, and the probability of presence of an edge between

a pair of vertices in the same community is pin = nin/31. The higher the value of

nout, the more difficult it becomes to detect the community structure of the random

graph. The performance of an algorithm is measured by the fraction of vertices that

were assigned correctly as defined by the canonical partition, as a function of nout.

The expected modularity of the canonical partition equals approximately 3/4 −

nout/16. This value is empirically valid with an error of 5 · 10−4. The graph becomes

completely random for nout = 1536/127 ≈ 12.0945, namely when pin = pout = 16/127.

We tested Algorithm 1 for the values nout = 6, 7, 8, 9, 10, generating 10 random

graphs for each value. For each random graph, we computed an upper bound on the

modularity and ran Algorithm 1 for the values p = 4 and p = 5. For p = 5 the algorithm

often returned a partition in 4 subsets, especially for lower values of nout. If it returned

a partition in 5 subsets, then its modularity was almost always smaller than the best

one obtained for p = 4. There were three exceptions, in one out of 10 graphs for the

values nout = 7, 8, 10 each. In these cases, the vertices in the fifth community were all

considered as incorrectly classified.

For each value of nout, we estimated the mean and the standard deviation of the

upper bound on the modularity, of the best modularity achieved by Algorithm 1, and

of the fraction of correctly classified vertices, on the basis of the random sample of 10

graphs. Thus the estimated error on the provided values of the mean equals one third

of the listed standard deviations.

Based on the results of the comparative analysis presented in [10], our algorithm is

outperformed only by the simulated annealing algorithm of [6] for nout ≤ 8, and is the

most accurate for the higher values of nout.

The solution of the semidefinite program (6) took approximately 50 min for each

random graph and each value of p. 106 iterations of Algorithm 1 were performed to

obtain the solution for each value of p, which took approximately 1 hour of CPU time.
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Table 3. Upper bounds, achieved values of the modularity, fraction of correctly

classified vertices for random graphs.

nout Qupper Qsubopt %correct vertices

6 0.3760 ± 0.0104 0.375± 0.011 99.06 ± 0.62

7 0.3238 ± 0.009 0.313± 0.012 96.8 ± 1.58

8 0.2915 ± 0.006 0.251± 0.015 85 ± 5.47

9 0.2762 ± 0.004 0.207± 0.008 56.02 ± 9.08

10 0.268 ± 0.005 0.196± 0.006 42.27 ± 4.09

Table 4. Upper bounds and achieved values of the modularity for the Jazz musicians

network.

p Qupper Qsubopt #comm.

2 0.354 1669 0.315 3506 2

3 0.450 0446 0.444 4694 3

4 0.459 7013 0.445 1041 4

5 0.461 4191 4

6 0.462 1197 4

7 0.462 4950 4

198 0.463 6604

6.4. Jazz musicians

The Jazz musicians network is a social network with 198 nodes studied in [21]. In the

table below we give upper bounds Qupper and achieved values of the modularity Qsubopt

together with the number of communities in the best partition for different values of p.

The obtained modularity value is slightly smaller than that of the best known

partition of this network, namely 0.4452 reported in [5].

The solution of the semidefinite program (6) took approximately 11 hours for each

value of p. 106 iterations of Algorithm 1 were made to obtain the solution for each value

of p, which took approximately 1 hour of CPU time.

7. Conclusions

In this paper we considered the problem of community detection in networks. A widely

accepted approach to this problem is to maximize the modularity function over the set

of all partitions of the network. We studied the problem of modularity maximization

from the viewpoint of convex analysis. Our contribution is threefold.

Firstly, we reformulated the discrete problem of modularity maximization over

the set of partitions as a convex continuous optimization problem (Theorem 2). This

problem appears in the form of a completely positive program, that is the problem of

optimizing a linear objective function over an affine section of the cone of completely

positive matrices. This contribution is more of theoretical nature, because efficient
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algorithms to solve completely positive programs are not available due to their NP-

hardness.

Secondly, we relaxed the obtained completely positive program to a semidefinite

program, for which efficient means of solution exist. This relaxation was achieved by

a standard approach in convex optimization, namely the replacement of the cone of

CP matrices by the overbounding cone of doubly nonnegative matrices. The optimal

value of the semidefinite relaxation is an upper bound on the maximal achievable

modularity. Our approach explicitly includes the possibility to limit the number of

allowed communities in the partitions of the network, and so in fact yields a series of

upper bounds indexed by the maximal number of communities. We provided a simple

and intuitive geometrical interpretation of the semidefinite relaxation. These results are

formalized in Theorem 3.

Thirdly, we proposed a randomized algorithm to generate partitions of the network

with suboptimal modularity. This algorithm uses the solution of the above-mentioned

semidefinite relaxation as a starting point, so this semidefinite program must be solved

in a preliminary step. The algorithm is described in Section 5 (Algorithm 1).

If we consider only divisions of the network in two communities, the problem of

modularity maximization becomes equivalent to the well-known problem of optimization

of a linear objective function over the max-cut polytope. In this case both the

semidefinite relaxation and the randomized algorithm considerably simplify. In fact,

they reduce to the standard semidefinite optimization approach to the max-cut

problem. We provided explicit descriptions of the simplified semidefinite relaxation

and randomized algorithm in Subsection 5.1.

We tested our approach on a number of standard benchmark problems. The

proposed algorithm proved to be among the most accurate algorithms known to date,

and in many cases it yields the best results known so far. For the karate club network,

the improved relaxation (7) actually proves optimality of the obtained partition.

A drawback of the algorithm is the high computational effort, and as a consequence

of this, its limited range of applicability to networks with a few hundred nodes. However,

with the development of available SDP solvers this range of applicability will increase.

While the cost of solving the semidefinite relaxation is almost independent (with

the exception of partitions in at most 2 communities) of the maximal number of allowed

communities, the amount of required iterations of the randomized algorithm increases

with this number. This is because the rank of the solution matrix of the semidefinite

program increases more quickly than the number of allowed communities, and more

dimensions have to be projected out. But the projection step in the algorithm tends

to destroy the information contained in the solution matrix, and more iterations of the

algorithm have to be conducted to compensate for this loss. However, given the relatively

small size of the networks that can be treated, the number of considered communities

is also small, and this is not (yet) a critical issue.

It can be observed that the computed upper bounds rapidly converge when

increasing the number of allowed communities in the partition. In most cases the bounds
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are quite tight, with a relative error in the percent range between the bound and the

achieved value of the modularity. For the random network with parameter value nout = 6

the precision of the bound lies at astonishing 0.3% and is an order of magnitude lower

than the standard deviation of the maximal modularity itself.

There are several ways to improve the semidefinite relaxations (6) and (8) further,

although at a higher computational cost.

One approach is to pursue the path leading to relaxation (7). More inequalities can

be obtained by considering subsets of 4 and more vectors. The resulting optimization

problems are characterized by the presence of one matrix inequality constraint and a

large number of linear inequality constraints. For this type of problems special solution

methods exist [22], which can treat larger problem instances than standard SDP solvers.

Another approach consists in using tighter semidefinite relaxations for the

completely positive cone (see e.g. [23]).

The methods proposed in this contribution also work for graphs with weighted

edges. Therefore it is imaginable to combine them with other modularity optimization

methods to treat larger networks. One way would be to first use some hierachical

clustering scheme to reduce the size of the network to several hundred nodes, and then

to apply the algorithms proposed here to perform the final optimization.
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