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Abstract 10 

Near-field radiative heat transfer is investigated in composite media including nanoparticles. By 

modeling pair interactions only, the effective thermal conductivity due to near field radiation is 

calculated based on a thermal nodes model. We highlight the onset of a Near-Field percolation 

occurring much earlier than the mechanical percolation at critical volume fraction f=0.033. This 

mechanism drastically increases the thermal conductivity even at low volume fractions. It also 15 

indicates a simple experimental protocol to prove Near-Field contact.  
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1. Introduction 

The enhancement of the thermal conductivity of thermal insulators such as cooling liquids, glues, 

and electrical insulators is a key issue in the fields of heat exchangers and of microelectronics. 20 

Embedding nano-objects with a high thermal conductivity is an efficient solution in the case fluids1  

although the physical explanations for the unexpected high thermal conductivity increase are not 

clear yet. Efficient heat transfer in the nano-object distribution requires the formation of the 

percolation network. Accordingly, the effective thermal conductivity λ should depend on the critical 

volume fraction fc as follows:2 λ=λ0 (f-fc)t where λ0 is the thermal conductivity of the nano-object. 25 

Recent works3 proposed to use nano-cylinders or tubes because the critical volume fraction is 

reverse proportional to the aspect ratio.2 The cylinder/matrix thermal resistance however limits the 

thermal conductivity.4 

We recently have presented the Molecular Dynamics (MD) calculation of the heat flux between 

silica nanoparticles due to near-field interaction.5 When the separation distance d is larger than two 30 

nanoparticles (NP) diameters, the dipole-dipole approximation fits the MD results and predict the 

well-known d-6 dependence. When d is lower than two NP diameters, the dipole-dipole model is not 

relevant anymore and MD reveals a drastic increase of the thermal conductance. A power law of 

about –20 is obtained in this range. In those conditions, the volume fraction is lower than 0.07 

which makes thermal transfer through near-field radiation most probable in nanocomposites with 35 

adequate volume fractions.  

The percolation threshold is due to a discontinuity in the interaction between elements. For instance, 

the mechanical contact that occurs very abruptly, generates clear discontinuities in the electrical and 

thermal conduction properties. Near field radiation is a continuous interaction that should not yield 

the same behaviour.  However, the strong variation of the interaction when d=4a is likely to generate 40 

a threshold related to ‘near field contact’ between particles. This macroscopic effect could provide a 

clear experimental proof of the strong near field interaction when f<0.07.    

We implement the previously computed thermal conductance to determine the effective thermal 

conductivity of a nanoparticles distribution. We highlight the existence of an effective thermal 



conductivity - i.e. linearity between flux and temperature difference –and the dependence to volume 45 

fraction. We will show that the Near-Field heat transfer channel is indeed significant and appear at 

volume fractions below the one corresponding to the mechanical percolation. 

 

2. The Physical Model 

We propose a statistical calculation of the thermal conductivity in nanocomposites due to near-field 50 

radiation based on the following assumptions: 

(i) The contribution of the near-field heat transfer in nanocomposites can be derived from thermal 

interactions between pairs of NPs. The absence of ‘collective’ effect is due to the rapid decay of the 

thermal conductance between two NPs (d-6, d-20) and the reasonably low volume fractions (<10%); 

(ii) The thermal interactions between NPs in composite media are the same as in vacuum. We argue 55 

that near-field transfer occurs at a well defined Terra Hertz frequencies in optically or electronically 

active materials. At those frequencies, the index of conventional liquids is near to one. We assume 

that the involved matrixes will neither absorb at those frequencies. Also, the separation distance d is 

much smaller than the extinction length at any frequency.  

The system consists of an ensemble of NPs with a uniform spatial distribution. The number of NPs 60 

in a given volume – a parallelepiped - prescribes the volume fraction. As illustrated in Figure 1, the 

opposite walls of the box have different temperatures T1 and T2 along the direction z. In the 

transverse directions, adiabatic boundary conditions are applied. The heat flux crossing a given 

section referenced by a z coordinate can be expressed as: 
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where the heat flux due to a pair of NPs is expressed as a function of the thermal conductance 

GNF=

! 

" rij
n( ) .4 The quantity rij  is the separation distance between NPs j and i and n equals to -6 in 

the range of the dipole-dipole approximation (d>4a) and n equals to -20 when d<4a. H refers to the 

Heaviside function. The term into brackets cancels the contributions of pairs that are both on the left 

side or both on the right side of the cross section as explained in Figure 1. The one half factor takes 70 



into account the identical contributions of pairs ij and ji. Γ is material and radius dependent and is  

defined as: 
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where α’’ is the imaginary part of the particle polarisability. This quantity is currently defined as 
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(index med). 
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represents the Boltzmann constant. a is the NP radius. In the following, we will however consider 

the value of Γ fitted from the direct computation of GNF.4 

The total heat flux crossing the nanoparticle distribution, Φ,  is then defined as: 
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where LZ is the box size in the z-direction. 

 

3. The numerical calculation 

We performed a numerical calculation of Φ based on Equation (3). Several ensembles of N NPs 

positions are randomly generated based on an uniform distribution probability. Each NP is 85 

assimilated to a thermal node with a given temperature Ti. Each node is connected to its neighbours 

according to the near-field thermal conductance GNF. The temperatures of the particles situated in the 

system boundaries were set to the corresponding thermostat temperatures. The flux balance 

equation is defined for each node i as follows: 
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This system of N coupled equations is solved by an iterative technique because the thermal 



interactions are strongly non-linear and because of the high values of N. A matrix based calculation 

would be too expensive and not accurate. The calculations include silica NPs of radius a=1nm. Φ is 

proportional to the radius to the power 6 because Γ is linearly dependent to the square of the NP 

polarizability. However, when keeping the same volume fraction, the larger the radius a, the larger 95 

the distance rij. We therefore do not expect a drastic increase of the flux with the NP size. 

Contrarily, the variations of Γ due to a change in the material are of several orders of magnitude. 

Polar materials and metals are good candidates for the thermal conductivity enhancement because 

they carry confined phonon-polaritons and plasmons.  

The thermostatted regions have temperatures T1=120°C and T2=50°C. The results were not affected 100 

by a change in the thermostats properties such as temperature and number of particles in the 

thermostatted regions.  

Figure 3 shows that the temperature profile can indeed be approximated by a linear law although 

temperature steps can be observed. We presume that this effect is due to a local NP rarefaction 

which should be removed by simulating a larger number of NPs. We have checked that this profile 105 

is not dependent on the initial conditions by starting the iterative scheme from various profiles (flat, 

steps, linear).  

The effective thermal conductivity λ was derived as the ratio between the heat flux Φ and the 

temperature difference (T1-T2). Ensembles of N=1000 NPs were simulated. In those conditions, the 

fluctuation amplitude of λ is about 20%. We therefore perform twenty runs to obtain one ensemble 110 

average  with less than 5% of inaccuracy. As reported in Figure 3 when f=0.01, the dependence of λ 

to the transverse and longitudinal sizes of the box are neglectible when Lz>200 nm and Lx, Ly>40 

nm. This allows us to set the box dimensions for volume fractions f>0.01.  

 

4. Results and Discussion 115 

The effective thermal conductivity λ is reported as a function of the volume fraction in Figure 4. 

Those data were obtained from 200 calculations of temperature distributions. Those results are quite 



general from the qualitative point of view because changing the NP material or radius will only 

result in the change of the value of the parameter Γ.  The thermal conductivity will then remain 

proportional to Γ. 120 

Regarding to the quantitative aspects, the near-field contribution reaches the order of magnitude of 

the liquid conduction when the volume fraction approaches 3% and approaches the bulk SiO2 

contribution when f=0.08.  

Let us estimate the percolation thresholds to approach the qualitative aspect. The literature indicates 

that a 2-dimensionnal disk distribution is characterized by a percolation threshold (apparition of the 125 

first infinite cluster) at the critical volume fraction f=0.5.6 Considering that the particles are equally 

spaced and occupying each a square (in 2D) or a cube (in 3D) allows us to write 
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=0.266. Now considering that the Near-Field interaction doubles the effective 

radius,4 we define a new percolation value 
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=0.266/8=0.033. This calculation is an 130 

approximation because the transition to Near-Field contact is continuous while the percolation 

threshold is estimated based on contact/no-contact states. However, this estimation quite well 

predicts the change in behaviour observed for the thermal conductivity in Figure 4. This 

percolation appears much earlier than the expected one. f3D
NF is also smaller than the volume 

fraction defined when the separation distance d=4a, i.e. at the Near-Field ‘contact’. This Near-135 

Field threshold is entirely due to the change of behaviour when the dipole-dipole approximation 

breaks down. It is therefore decoupled from the NP radius or material. The radius and 

polarizability will only affect the level of the radiation.  If the thermal interaction is as intense as 

predicted by the MD calculations, those remarks could lead to simple experimental proofs of the 



Near-Field radiation in NPs based composites with adequate volume fractions. For instance, 140 

studies on nanofluids have revealed an unexpected thermal conductivity increase at low volume 

fraction. 1 The NPs materials were oxydes which are efficient media regarding to Near-Field 

interaction. 

Note that the Near-Field interaction does not depend on the NP-matrix thermal contact. This 

discards the issues encountered in Carbone Nanotubes solutions. Increasing the thermal 145 

conductivity could finally be performed by including nano-objects with a high aspect ratio and 

adequate polarizabilities. In the case of embedded metallic particles in a dielectric media, the 

electrical insulation can be preserved while thermal transport is enhanced. This point is crucial 

for heat sinks in microelectronics. 

 150 

5. Conclusion 

We have shown that the near-field radiation between NPs might generate an early percolation in 

nano-object distributions. The onset of Near-Field percolation was shown to happen for the volume 

fraction f=0.033 which is a much lower value than the one obtained for the mechanical percolation.  

A clear experimental proof of the radiation contribution could be performed by measuring the 155 

thermal conductivity of materials or fluids with various volume fractions. Following our previous 

calculations performed with no interaction between the particle and the matrix, the effective thermal 

conductivity due to radiation reaches the level of the bulk materials.  
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CAPTIONS 

Figure 1: top: Schematic of the simulation box. A random distribution of nanoparticles is placed in 175 

a parallepiped with transverse adiabatic boundary conditions. Two thermostatted zones at 

temperature T1=120°C and T2=50°C are driving the heat flux across the medium. Bottom: 

Schematic of the local heat flux calculation of φ(z) (Equation (1)). The heat flux across a section 

(vertical dashed line) is computed as the sum of all the pair interactions. Only the links crossing the 

section are taken into account.     180 

Figure 2 : Effective thermal conductivity λ of the nanocomposite versus the length of the simulation 

box Lz. When Lz>200nm, the thermal conductivity does not vary significantly. The insert shows the 

dependence of λ versus the transverse length of the simulation box. When Lx>40nm, the value of l 

becomes reliable. The NP radius a=1nm and the volume fraction f=0.01. 

Figure 3 : Top: temperature profile in the nanocomposite obtained from the numerical calculation. 185 

Each data point represents a NP. The NP radius a is set to 1nm and the volume fraction f=0.01. A 

linear dependence is observed except in a few intervals were steps are observed. Bottom: 3-

dimensionnal representation of the NP distribution. The colour indicates the temperature, spatial 

units are nanometers. 

Figure 4 : Effective thermal conductivity λ of the nanocomposite against volume fraction. The 190 

numerical results (diamonds) are compared to the bulk SiO2 thermal conductivity (black continuous 



line) and to a hundredth of the water thermal conductivity (grey continuous line). The Near-Field 

and mechanical percolation thresholds are indicated as vertical dashed lines. The threshold between 

the d-6 and d-20 (n=-6 and n=-20) behaviors for GNF is also indicated. The thermal conductivity due 

to the mechanical percolation λ=λ0 (f-fc)2 is reported (thick line).   195 
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