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Abstract 

We compute the thermal conductance between two nanoparticles in contact based on the 

Molecular Dynamics technique. The contact is generated by letting both particles stick 

together under van der Waals attractions. The thermal conductance is derived from the 

fluctuation-dissipation theorem and the time fluctuations of the exchanged power. We show 

that the conductance is proportional to the atoms involved in the thermal interaction. In the 

case of silica, the atomic contribution to the thermal conductance is in the range of 0.5 to 3 

nW.K-1. This result fits to theoretical predictions based on characteristic times of the 

temperature fluctuation. The order of magnitude of the contact conductance is 1 μW.K-1 when 

the cross section ranges from 1 to 10nm2.  
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The aerospace and building industries are showing increasing interest in nanoporous materials 

owing to their outstanding thermal insulating properties. 1-5 The thermal conductivity of these 

materials can be lower than that of air, which is generally considered to be a good heat 

insulator, with a value of 25 mW.m-1.K-1 at ambient temperature and pressure. Observation of 

the structure of the material on a nanometric scale explains how this thermal insulating 

performance is possible. The material is composed of a serie of strings of coalesced silica 

nanoparticles as illustrated in Figure 1. Despite the low solid volume fraction, heat transfer 

chiefly occurs by conduction through the coalesced nanoparticles. The two reasons for this: i) 

the nanoparticles have higher thermal conductivity than air, and ii) the characteristic pore size 

(around 100 nm) makes convection or conduction in air negligible.6 In these nanoporous 

structures, coalescence zones between nanoparticles present a primordial importance in heat 

transfer. They govern the magnitude of the heat flux that is exchanged between nanoparticles 

and explain in the same time the thermal insulating capacity of these materials despite the 

relatively high thermal conductivity of the solid constituent. The determination of the contact 

conductances appears to be an essential target that will permit to understand and monitor the 

heat transfer through the nanoporous material. 

In this article, we plan to present an original method, based on Molecular Dynamics 

simulations (MD), that leads to the calculation of contact conductances between 

nanoparticles. 

After a brief description of the Molecular Dynamics technique, we establish the methodology 

to calculate the thermal conductances based on the application of the fluctuation-dissipation 

theorem.7 

The method to put two nanoparticles in contact by MD is shown in the second part. We then 

present the thermal conductances versus contact surface. These conductances are finally 

compared to a theoretical model.    



 

Figure 1 : TEM image of a nanoporous matrix of silica. Coalesced nanoparticle chains and 

stacks appear in dark and grey. The white zones correspond to the porosity. 

 

1. Determination of the thermal interaction between nanoparticles 

 

1.1 Description of the numerical approach  

 

This section addresses the question of heat transfer on the nanoparticle scale using the MD 

method. This deterministic method8 is used to describe the time trajectories of the atoms in 

the system by modeling them as point masses to which the fundamental law of dynamics is 

applied: 

iij rf &&i
j

M=∑       (1) 

where iij rf &&,, iM  represent the interaction  force between atom i and j, the mass and 

acceleration of atom i respectively. 

Forces derive from an interaction potential which is specific to each material and which 

determines the accuracy of both thermal and mechanical variables. In the case of silica 

nanoparticles, the BKS potential was used9 because of its accurate representation of thermal 

properties.10 This potential breaks down into two terms, a Coulomb potential, which models 



interactions between the different charges, and a Buckingham potential, which defines the 

attraction and repulsion between atoms: 
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where ijji rqq ,,  correspond to the partial charges of atoms i and j, and the interatomic 

distance, ijijij CBA ,,  are parameters of the BKS interaction potential, 0ε  being the permitivity 

of free space. 

Applying the fundamental law of dynamics to all the N atoms of the system yields a set of 3N 

equations with non linear, coupled, partial derivatives, which are integrated to obtain the 

velocity vectors vi and positions ri of the atoms. Integration was achieved by using a 5th order 

Gear predictor-corrector,11 which offers a high degree of accuracy and a good stability. The 

MD method can be used to express the physical variables associated with the nanoparticle 

solely based on the knowledge of atomic accelerations, velocities and positions. 

 

 1.2 Calculation of the contact conductances 

 

Contact conductance values were calculated using a procedure inspired from studies on the 

characterization of heat exchanges between silica nanoparticles out of contact.7 The 

microscopic expression of the power generated by a nanoparticle NP1 and dissipated in a 

second nanoparticle NP2 was used: 
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to determine the flux ultimately exchanged between two nanoparticles (NP1 and NP2): 
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Since the force, related to the thermal amplitude between two nanoparticles TΔ , multiplied 

by the term TQ 21↔  yields a power, the fluctuation-dissipation theorem can be applied12 to 

those quantities. This leads to the expression of conductance between two nanoparticles, with 

or without contact: 
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where Bk  is the Boltzmann constant. 

 

 1.3 Simulation of contacts between nanoparticles 

 

If thermal conductances were simulated at given distances between nanoparticles,7  we 

proceed to the generation of contact.  

Two β-cristobalite crystals were first generated and placed at various distances from each 

other, without applying boundary conditions. The crystals are governed by van der Waals 

forces. They lose their crystalline form and move closer together. Once they come in contact, 

a thermostat was applied for 2000 time steps of 0.7 fs each, and the exchanged power defined 

by expression (4) were considered for 200.000 time steps. These data are necessary to 

calculate contact conductances expressed in Eq. (5).  



The resulting simulations reveal a large dispersion of contacts between nanoparticles which 

suggests also that contact conductances values are different from one structure to another as 

shown in Figure 2.  

 

Figure 2 : Image of contact between two nanoparticles. 

 

2. Results and discussion  

 

To analyze the results according to relevant criteria, we check that the cross section is circular 

and defined a contact diameter and section from atomic positions. The evolution of the 

contact conductances with respect to calculated surfaces are presented in Figure 3. Thermal 

conductances are derived from Eq. (5) for nanoparticles diameters ranging from 1.5 to 5nm. 



 

Figure 3 : Evolution of thermal conductances versus contact surface. 

 

Figure 3 shows the dependence of thermal conductances on the contact cross section. The 

results for different NP diameters are reported. The increase of thermal conductance with 

cross section implies that atoms at contact govern the magnitude of the exchanged heat flux. 

Each atom can be described by a thermal conductance of value derived from the slope of the 

line crossing the data in Figure 3. The slope has to be divided by the cross section and 

multiplied by the effective surface of one atom, i.e. 10-20 m2. This latter data is calculated 

from the interatomic distance of 0.1nm as provided by the potential. The atomic conductance 

is then deduced to be in the range of g0= 0.5-3 nW.K-1.  

The data scattering can be explained by the fact that two configurations with different NP 

diameters might have the same cross section. Another cause of deviation towards the linear 

behaviour is the difference in coordination numbers between atoms at contact. In the region of 

contact, the core atoms have a larger coordination number than surface atoms. Surface atoms 



thus have a smaller velocity and have a weaker potential interaction with the neighbouring 

NP. The product of the force by the velocity that is the exchanged power, is decreased. 

Consequently, the contribution of surface atoms to thermal conductance has to be smaller than 

the one of core atoms. Besides, the rate of surface atoms decreases with increasing cross 

section. Finally, when the section decreases, the averaged atomic thermal conductance 

decreases and the total conductance versus cross section deviates from the linear behaviour. 

This is especially true for small contact surfaces. 

Comparing our simulated values with reference data is an impossible task since experimental 

devices are not able to measure thermal conductances at nanometric scale in irregular 

structures. To validate the g0 value, we derive an approximated value of the atom i Gi to the 

thermal conductance. Rewriting Eq. (4) as follows: 
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and introducing this expression in the conductance leads to: 
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The above equation was obtained by discarding the cross terms vi. vj. We now concentrate on 

the first term in the sum. The second term has to be on the same order of magnitude with the 

first because the quantities vi and vj are physically similar: atoms i and j have the same type of 

motion. Noting that Eq. (3) is the sum of atomic terms, the power Qi applied by NP2 on atom 

i can be written as: 
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The force applied by particle 2 on atom i is assumed to be the half of the total force applied on 

the same atom. Indeed, the forces applied by the two NPs on contact atoms have the same 

modulus. The reason is that atoms of both NPs have the same separation distance with the 

contact atoms. Note that Qi also appears as the time variation of the potential energy of atom i 

in the force field of NP2. The corresponding conductance is: 
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We have multiplied Gi by a factor of two to include the 2nd term of the sum in Eq. (7). The 

kinetic energy is related to the temperature as follows Ec=(3/2)NkBT. The thermal 

conductance Gc can hence be expressed as: 

 

Gc ≈ kB N 2 9
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where N is the number of atoms involved in the thermal interaction. Using the property of the 

derivative of a correlation function, it turns out that: 
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where f t( )=
T 0( )T t( )

T 0( )2 . Using the basic law of fluctuational thermodynamics 
T 0( )2

T 2 =
1
N

, 

and the thermal conductance can be written in the following form: 

 

Gc ≈ kB N 9
8
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The frequency τ−1 =
∂f
∂t

0( ) can be estimated by the highest frequency in the system: τ-1≈40 

THz. The largest atomic conductance can therefore be estimated to Gi=9/8.kB.fo≈ 0.6 nW.K-1 

which seems reasonable when compared to the value of g0 ranging between 0.5 and 3 nW.K-1. 

Another key point of Eq. (12) is that the conductance Gc is proportional to the number of 

atoms N involved in the interaction. If the cut-off radius of the interatomic potential is small 

compared to the size of the nanoparticle, then the thermal conductance is essentially 

proportional to the number of atoms at the contact, i.e. the contact cross section. And in the 

limit of very large ratios of cut-off radius by nanoparticle size, the conductance is proportional 

to the volume of the nanoparticle. Of course, intermediate situations appear when the previous 

ratio is of the order of one. 

 

3. Conclusion 

We performed MD computations to estimate the thermal conductance between two 

nanoparticles in contact. The system geometry was partially random but the thermal 

conductance appears as increasing with contact cross section. By using a fluctuation-

dissipation approach, the contribution of one atom to the contact conductance is retrieved 

within a satisfying accuracy compared to the value predicted by the direct calculation. The 

range of atomic conductance is between 0.5 and 3 nW.K-1 whereas the theoretical prediction 



is 0.6 nW.K-1. Our predictions remain approximate because the characteristic time might not 

be equal to the period of the optical mode. Finally, we have shown that the thermal 

conductance is proportional to the number of atoms involved in the thermal interaction. The 

conductance is therefore proportional to the contact cross section if the particle is large 

compared to the cut-off radius of the interatomic potential, but it is proportional to the NP 

volume if this cut-off is larger than the particle size. 
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