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Instabilities in dusty plasmas are frequent phenomena. We show that some instabilities can be
described by mixed-mode oscillations often encountered in chemical systems or neuronal dynamics
and studied through dynamical system theories. The time evolution of these instabilities is studied
through the change in the associated waveform. Frequency and interspike interval are analyzed and
compared to results obtained in other scientific fields concerned by mixed-mode oscillations.
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Solid dust particles from a few nanometers to centime-
ters are often present in plasmas and are at the origin
of a wide variety of new phenomena. Plasmas contain-
ing dust particles are called dusty or complex plasmas.
These media are encountered in many environments such
as astrophysics, industrial processes and fusion devices.
Dust particles can come from regions in the plasma vicin-
ity or can be formed in the plasma due to the presence of
molecular precursors. In most cases, they acquire a nega-
tive charge by attaching plasma free electrons. In plasma
reactors, dust clouds are often characterized by a central
dust-free region. This region, usually named ”void” [1–6],
is considered to be maintained by an equilibrium between
inward electrostatic and outward ion drag forces. Under
certain conditions, this equilibrium can be disturbed, re-
sulting in self-excited low frequency oscillations of the
void size. The obtained instability, consisting of succes-
sive contractions and expansions of the void, is named
”heartbeat” [1, 4, 7, 8] due to its apparent similarity with
a beating heart. Nevertheless, the dust cloud behavior is
more complex than it could be supposed [7, 8]. This self-
excited instability can stop by its own through an ending
phase characterized by failed contractions that appear
more and more numerous as the end approaches. The
phenomena sustaining the instability evolve progressively
until a new stable state is reached. This phase can be
studied by analyzing the discharge current or the plasma
glow emission. These signals have a well-defined shape
that seems similar to mixed-mode oscillations (MMOs).

MMOs are complex phenomena consisting of an al-
ternation of a varying number of small amplitude oscil-
lations in between two larger ones (also named spikes).
Small and large amplitude oscillations are often consid-
ered as, respectively, subthreshold oscillations and re-
laxation mechanisms of the system. These MMOs are
encountered in a wide variety of fields. In chemistry,
reaction kinetics can take the form of MMOs [9, 10]
like in the intensively studied Belousov-Zhabotinskii re-
action [11, 12]. In natural sciences, MMOs are the sub-
ject of an intense research [13–15] since their observa-
tion in the Hodgkin-Huxley model of neuronal activity
[15, 16]. In this context, they are strongly related to

spiking and bursting activities in neurons [17, 18]. In
plasma physics, MMOs have been reported in dc glow
discharge [19, 20] but to the best of our knowledge, no
evidence of MMOs in dusty plasmas have been reported
yet. Because of the broad diversity of scientific domains
concerned by MMOs, they induced a lot of researches and
several approaches have been explored. These studies are
based on dynamical system theories, like for example ca-
nards [13, 15, 21], subcritical Hopf-homoclinic bifurca-
tion [16, 22] or Shilnikov homoclinic orbits [23, 24].

In this Letter, we report for the first time on the ex-
istence of MMOs in dusty plasmas. An example is ana-
lyzed and its main characteristics, typical frequencies and
evolution of interspike interval, are explored. Particular
attention is paid to the evolution of the number of small
amplitude oscillations in between consecutive spikes. We
thus underline very close similarities with typical MMOs
observed in neuronal activity and chemistry.

Experiments are performed in the PKE-Nefedov reac-
tor [2, 25]. A capacitively coupled radiofrequency (rf at
13.56 MHz) discharge is created between two planar par-
allel electrodes. The static argon pressure is comprised
between 0.5 and 1.6 mbar and the applied rf power is
around 2.8 W. Dust particles are grown by sputtering
a polymer layer deposited on the electrodes and consti-
tuted of previously injected melamine formaldehyde dust
particles. A few tens of seconds after plasma ignition, a
three-dimensional dense cloud of visible grown dust par-
ticles (size of a few hundreds of nanometers) is formed.
This observation is performed by laser light scattering
with standard CCD cameras. The discharge current (re-
lated to electron density) is measured on the bottom elec-
trode. Plasma emission in the center is recorded thanks
to an optical fiber with a spatial resolution of a few mil-
limeters [8]. These two diagnostics give rather similar
results and are used to characterize the ending phase
of the heartbeat instability. When void contraction oc-
curs, a high amplitude peak is observed in the signals
[8]. Failed void contractions appear as small amplitude
oscillations i.e. failed peaks. The first two oscillations
in Fig. 1(a) are representative of a typical fully devel-
oped heartbeat signal [7] without any failed peak. The
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observed shape is the one used as reference, with a main
peak corresponding to the fast contraction and a slowly
increasing signal (like a shoulder) during the slow void re-
opening [8]. Then, a transition between this regime and
a regime with one failed contraction (arrow in Fig. 1(a))
occurs. At the instant where a large amplitude oscilla-
tion is expected, a decrease in the signal occurs. The
spike occurrence is then delayed. A similar behavior is
obtained in the optical signal, as observed in Fig. 1(b)
for a transition between one and two failed peak regimes.
Signal shape clearly corresponds to typical MMOs and is
remarkably similar to waveforms measured or modeled in
chemical systems [9, 10, 12, 24] or in neuronal dynamics
[13, 15, 18, 26, 27]. For the sake of simplicity, classical
notation for MMOs [9, 12] will be used in the follow-
ing. Thus, a pattern characterized by L high amplitude
oscillations and S small amplitude ones will be noted
LS . As an example, Fig. 1(a) is a transition between 10

and 11 states, whereas Fig. 1(b) corresponds to a 11-12

transition. A closer look to this last transition is shown
in Fig. 1(c) where the first 12 state is superimposed on
the last 11 state. A vertical dotted line marks the place
where signals differ. As it can be observed, signals are
nearly identical until this time and no clear indication an-
nounces this next change. In dynamical systems, noise
can induce drastic changes in system behavior. In the
present study, due to a low signal to noise ratio, analyses
cannot be performed on raw data. Thus, data in Fig. 1
have been processed using wavelet techniques (checking
that no signal distortion was added) in order to remove
noise and thus its effect will not be investigated.

As the similarity between our signals and MMOs is
established, a more complete study can be performed.
For that purpose, electrical signal evolution has been
recorded until the complete end of the instability. A typi-
cal sequence is shown in Fig. 2(a). The signal mean value
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FIG. 1: (color online). (a) Electrical signal with a transition
between 10 and 11 states (arrow: failed peak). (b) Optical
signal with a transition between 11 and 12 states. (c) Super-
imposition of the two consecutive states shown in (b).

is almost constant and the instability consists of a succes-
sion of high amplitude spikes separated by an interspike
interval (ISI) increasing as one goes along. As in Fig. 1,
low amplitude oscillations appear in between these spikes
giving the classical shape of MMOs. The increase in the
ISI is thus a consequence of the occurrence of more and
more failed peaks. As an example, the insert in Fig. 2(a)
shows a 14-15 transition (this time series starts during the
13 state). Just after the transition, the memory that a
transition occurred is visible. Indeed, the new failed peak
(Fig. 2(a) insert) has a higher amplitude than the other
ones, keeping partly the characteristics of a spike. Then,
its amplitude decreases during the next few patterns un-
til reaching the same amplitude as the other failed peaks.
These MMOs can be also characterized by their corre-
sponding phase space. Figures 2(b)-(c) are respectively
3D and 2D phase spaces of a representative part of the
time series presented in Fig. 2(a). To obtain these attrac-
tors, an appropriate time delay τ has been calculated
using the mutual information method proposed in [28]
in the framework of the Belousov-Zhabotinskii reaction.
The main large trajectory in phase space corresponds to
the large amplitude variation during spikes. A smaller
loop (indicated by an arrow labeled 1) corresponds to a
short additional peak sometimes observed on the right
part of the main spikes [7, 8]. This phenomenon is ob-
served in Fig. 1(a) and does not alter the present study.
Small amplitude oscillations are represented by loops in
a tiny region indicated by an arrow labeled 2 (Figs. 2(b)-
(c)). In this region, the number of loops corresponds to
the number of failed peaks (3 loops for the 13 state for
example) like observed in [15]. The analysis through ISIs
is often used in neuroscience for characterizing neural ac-
tivity [18, 29]. Figure 2(a) shows that the ISI increases by
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FIG. 2: (color online). (a) Evolution of the electrical signal
during the instability ending phase. The insert is a zoom of
a transition between 14 and 15 states. Corresponding phase
space is represented in (b) 3D and (c) 2D. Arrows labeled 1
and 2 show respectively the loop due to the additional peak
observed on the right hand side of spikes (see Fig. 1(a)) and
the region containing the loops corresponding to failed peaks.
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the progressive addition of failed peaks until the instabil-
ity stops. This behavior is better observed by performing
a spectrogram, i.e. a time resolved fast Fourier trans-
form (FFT) of this time series (Fig. 3(a)). This analysis
clearly shows a step-by-step decrease of the characteris-
tic frequencies until no more oscillations are observed (at
∼ 17.7 s). The main frequency corresponding to the spike
occurrence is indicated by an arrow labeled 1. Because of
the shape of the time series, harmonics are also obtained.
Figure 3(a) clearly shows that the frequency jumps be-
come smaller as time increases. Moreover, the duration
of a given LS state decreases with time. These last two
properties are also brought to the fore by performing a
global FFT of the time series (Fig. 3(b)). Clearly sep-
arated peaks are observed, confirming the step-by-step
evolution of the frequency. The main peaks are located
at 20.5, 17.5, 15.1, 13.3 and 11.8 Hz. Their amplitude is
proportional to the duration of each LS state. As in
Fig. 3(a), it is observed that this duration decreases with
time (as the frequency). The amplitude of the first peak
at 20.5 Hz is not representative because the time series
started to be recorded during the 20.5 Hz phase (13 state)
and part of this phase is thus missing. Another correla-
tion that can be made with Fig. 3(a), is the decrease of
the frequency jumps. Indeed, the frequency jumps are
equal to ∆f = 3, 2.4, 1.8 and 1.5 Hz. Finally, Fig. 3(a)
gives also the frequency of the failed peaks (arrow la-
beled 2). It is interesting to note that this frequency
does not strongly evolve but only slightly decreases with
time (variation of about 10%).

In order to improve the analysis of ISI, the occurrence
time of each spike is deduced from the time series pre-
sented in Fig. 2(a). Spike position is obtained by detect-
ing points exceeding a correctly chosen threshold. The
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FIG. 3: (color online). (a) Spectrogram of the time series pre-
sented in Fig. 2(a). Arrows labeled 1 and 2 show the occur-
rence frequency of, respectively, spikes and small amplitude
oscillations. (b) Power spectral density of the same signal.

direct time evolution of the ISI can thus be obtained as
shown in Fig. 4(a) (blue dots). A very clear step-by-step
behavior, as in [14, 16], is obtained with ISIs varying
from ∼ 0.05 s (∼ 20.5 Hz, 13 state) to ∼ 0.4 s (∼ 2.5
Hz, 140 state). Each step corresponds to the occurrence
of a new failed peak, i.e. transition from a LS to a LS+1

state. Close to the end of the instability (after 15 s), the
system evolves faster and faster with transitions between
LS and LS+n states with n increasing from 2 to 5. The
global time dependence (without taking into account the
steps) of ISI evolves as a+b/(t0−t) as in [16, 22]. Param-
eters a, b and t0 are fitted to the experimental data and
the corresponding curve is superimposed in Fig. 4(a) (or-
ange curve). The parameter t0 corresponds to the time of
the asymptotic limit (∼ 19 s) where ISI tends to infinity
which is often considered to be characteristic of a ho-
moclinic transition [16, 30]. Figure 4(a) also shows that
the ISI during a LS state is not perfectly constant and
slightly increases (left hand side insert). This increase is
non-linear (like for example in [16]) and seems to become
faster close to the transition between LS and LS+1 states.
Thus, it appears that this transition is the consequence
of a progressive increase of the ISI. It can be noted that
this ISI increase during a given LS state can also be fitted
by a function a + b/(t0 − t) (blue curve in left hand side
insert) with different a, b and t0 than the ones obtained
from the fit of the global curve. This behavior was not so
clearly marked in Fig. 3(a) due to the smoothing induced
by the time window used for calculating the time resolved
FFT. Nevertheless, a slight decrease in frequency during
each LS state can be observed on the high order har-
monics. As in Fig. 3(b), the duration of each LS state
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FIG. 4: (color online). (a) Evolution of the ISI during the in-
stability ending phase: measurements (blue dots) and corre-
sponding fit (orange curve). The two inserts are zooms show-
ing, Left: slight evolution of ISI during a L

S phase, Right:
unstable transition between two phases. (b) Corresponding
histogram of ISIs with an exponential fit (green curve).
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can also be analyzed by performing a histogram of ISIs
(Fig. 4(b)). This histogram is characterized by a clear
multimodal pattern that can be fitted by a decreasing
exponential function (green curve, first bar is not taken
into account due to missing data as in Fig. 3(b)). Same
conclusions can be drawn: when ISI increases, duration
of the corresponding state decreases.

This ISI analysis reveals also a particular behavior
which is the unstable transition between a LS and a LS+1

state (right hand side insert in Fig. 4(a)). The system
changes from a LS state to a LS+1 one but returns to the
LS state once again before changing of state definitively.
Experimental observations, not presented here, show that
an alternation of two states differing by one failed peak
can be observed during several periods. Thus, transi-
tions can take place through the progressive occurrence
of LS+1 patterns during a LS state. It suggests that the
step-by-step evolution of Fig. 4(a) could be compared to
the devil’s staircase which is an infinite self-similar stair-
case structure. This specific structure has been observed
in chemistry in the framework of MMOs [9, 10, 12, 31]
but also in a wide range of other fields like in physiology
[32] or in wave-particle interaction [33]. In chemical sys-
tems, this structure is often obtained by representing the
firing number F = L/(L+S) as a function of the control
parameter. The number of steps is then nearly infinite
and in between two parent states, an intermediate state
exists with a firing number related to the ones of the
parent states by the Farey arithmetic [9, 12, 31]. Thus,
the structure obtained in Fig. 4(a) can be an incomplete
devil’s staircase with an unidentified control parameter
evolving with time and not perfectly flat plateaus. More
intermediate states could be obtained with a more slowly
varying system and thus it can be speculated that the
staircase could be partly completed.

In this Letter, we evidenced and characterized mixed-
mode oscillations in dusty plasmas. This work highlights
new situations of MMOs that can be of interest for im-
proving dynamical system theories related to these struc-
tures. The obtained structures are very similar to what
is observed in oscillating chemical systems and in neu-
ronal activity. These fields use well-known sets of equa-
tions giving rise to MMOs. This scientific background
can thus be used to explore and develop new theoretical
approaches in dusty plasma dynamics.
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[8] M. Mikikian, L. Couëdel, M. Cavarroc, Y. Tessier, and

L. Boufendi, New J. Phys. 9, 268 (2007).
[9] F. N. Albahadily, J. Ringland, and M. Schell, J. Chem.

Phys. 90, 813 (1989).
[10] V. Petrov, S. K. Scott, and K. Showalter, J. Chem. Phys.

97, 6191 (1992).
[11] J. L. Hudson, M. Hart, and D. Marinko, J. Chem. Phys.

71, 1601 (1979).
[12] J. Maselko and H. L. Swinney, J. Chem. Phys. 85, 6430

(1986).
[13] H. G. Rotstein, T. Oppermann, J. A. White, and

N. Kopell, J. Comput. Neurosci. 21, 271 (2006).
[14] G. Medvedev and Y. Yoo, Physica D 228, 87 (2007).
[15] J. Rubin and M. Wechselberger, Biol. Cybern. 97, 5

(2007).
[16] J. Guckenheimer, R. Harris-Warrick, J. Peck, and

A. Willms, J. Comput. Neurosci. 4, 257 (1997).
[17] E. M. Izhikevich, Int. J. Bifurcation Chaos 10, 1171

(2000).
[18] A. L. Shilnikov and N. F. Rulkov, Phys. Lett. A 328, 177

(2004).
[19] T. Braun, J. A. Lisboa, and J. A. C. Gallas, Phys. Rev.

Lett. 68, 2770 (1992).
[20] T. Hayashi, Phys. Rev. Lett. 84, 3334 (2000).
[21] A. Milik, P. Szmolyan, H. Löffelmann, and E. Gröller,

Int. J. Bifurcation Chaos 8, 505 (1998).
[22] J. Guckenheimer and A. Willms, Physica D 139, 195

(2000).
[23] P. Gaspard and X.-J. Wang, J. Stat. Phys. 48, 151

(1987).
[24] M. T. M. Koper, Physica D 80, 72 (1995).
[25] A. P. Nefedov, G. E. Morfill, V. E. Fortov, H. M. Thomas,

H. Rothermel, T. Hagl, A. Ivlev, M. Zuzic, B. A. Klumov,
A. M. Lipaev, et al., New J. Phys. 5, 33 (2003).

[26] G. S. Medvedev and J. E. Cisternas, Physica D 194, 333
(2004).

[27] M. A. Zaks, X. Sailer, L. Schimansky-Geier, and A. B.
Neiman, Chaos 15, 026117 (2005).

[28] A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134
(1986).

[29] G. S. Medvedev, Phys. Rev. Lett. 97, 048102 (2006).
[30] U. Feudel, A. Neiman, X. Pei, W. Wojtenek, H. Braun,

M. Huber, and F. Moss, Chaos 10, 231 (2000).
[31] K.-R. Kim, K. J. Shin, and D. J. Lee, J. Chem. Phys.

121, 2664 (2004).
[32] S. De Brouwer, D. H. Edwards, and T. M. Griffith, Am.

J. Physiol. Heart Circ. Physiol. 274, 1315 (1998).
[33] A. Macor, F. Doveil, and Y. Elskens, Phys. Rev. Lett.

95, 264102 (2005).


