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Abstract

This paper considers nonlinear modeling based on a limited amount of experimental
data and a simulator built from prior knowledge. The problem of how to best
incorporate the data provided by the simulator, possibly biased, into the learning
of the model is addressed. This problem, although particular, is very representative
of numerous situations met in engine control, and more generally in engineering,
where complex models, more or less accurate, exist and where the experimental
data which can be used for calibration are difficult or expensive to obtain. The first
proposed method constrains the function to fit to the values given by the simulator
with a certain accuracy, allowing to take the bias of the simulator into account. The
second method constrains the derivatives of the model to fit to the derivatives of a
prior model previously estimated on the simulation data. The combination of these
two forms of prior knowledge is also possible and considered. These approaches
are implemented in the linear programming support vector regression (LP-SVR)
framework by the addition, to the optimization problem, of constraints, which are
linear with respect to the parameters. Tests are then performed on an engine control
application, namely, the estimation of the in-cylinder residual gas fraction in Spark
Ignition (SI) engine with Variable Camshaft Timing (VCT). Promising results are
obtained on this application. The experiments have also shown the importance of
adding potential support vectors in the model when using Gaussian RBF kernels
with very few training samples.

Key words: Support Vector Machine (SVM), nonlinear modeling, prior
knowledge, SI engine, engine control, residual gas fraction
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1 Introduction

The general problem of how to efficiently incorporate knowledge given by a
prior simulation model into the learning of a nonlinear model from experi-
mental data can be presented from an application point of view. Consider the
modeling of the in-cylinder residual gas fraction in Spark Ignition (SI) engine
with Variable Camshaft Timing (VCT) for engine control. In this context,
experimental measurements are complex and costly to obtain. On the other
hand, a simulator built from physical knowledge can be available but cannot
be embedded in a real time controller.

In engine control design (modeling, simulation, control synthesis, implemen-
tation and test), two types of models are commonly used:

e Low frequency models or Mean Value Engine Models (MVEM) with aver-
age values for the variables over the engine cycle. These models are often
used in real time engine control [1,5]. However, they must be calibrated on
experiments in sufficiently large number in order to be representative.

e High frequency simulation models that can simulate the evolution of the
variables during the engine cycle [6]. These models, of various complexity
from zero-dimensional to three-dimensional models, are mostly based on
fewer parameters with physical meaning. However, they cannot be embed-
ded in real time controllers.

The idea is thus to build an embeddable black box model by taking into ac-
count a prior simulation model, which is representative but possibly biased,
in order to limit the number of required measurements. The prior model is
used to generate simulation data for arbitrarily chosen inputs in order to com-
pensate for the lack of experimental samples in some regions of the input
space. This problem, although particular, is representative of numerous situa-
tions met in engine control, and more generally in engineering, where complex
models, more or less accurate, exist, providing prior knowledge in the form
of simulation data, and where the experimental data which can be used for
calibration are difficult or expensive to obtain. The following of the paper
studies various methods for the incorporation of these simulation data into
the training of the model.

In nonlinear function approximation, kernel methods, and more particularly
Support Vector Regression (SVR) [24], have proved to be able to give excel-
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lent performances in various applications [18,17,14]. SVR aims at learning an
unknown function based on a training set of N input-output pairs (x;,y;) in a
black box modeling approach. It originally consists in finding the function that
has at most a deviation € from the training samples with the smallest com-
plexity [22]. Thus, SVR amounts to solve a constrained optimization problem,
in which the complexity, measured by the norm of the parameters, is mini-
mized. Allowing for the cases where the constraints can not all be satisfied
(some points have larger deviation than ) leads to minimize an e-insensitive
loss function, which yields a zero loss for a point with error less than ¢ and
corresponds to an absolute loss for the others. The SVR algorithm can thus be
written as a quadratic programming (QP) problem, where both the ¢;-norm
of the errors larger than € and the /5-norm of the parameters are minimized.
To deal with nonlinear tasks, SVR uses kernel functions, such as the Radial
Basis Function (RBF) kernel, which allow to extend linear methods to nonlin-
ear problems via an implicit mapping in a higher dimensional feature space.
Compared to neural networks, SVR has the following advantages: automatic
selection and sparsity of RBF centers, intrinsic regularization, no local minima
(convex problem with a unique solution), and good generalization ability from
a limited amount of samples. In addition, the e-insensitive loss improves the
robustness to outliers compared to quadratic criteria.

Other formulations of the SVR problem minimizing the ¢;-norm of the param-
eters can be derived to yield linear programs (LP) [25,23,16]. Some advantages
of this latter approach can be noticed compared to the QP formulation such
as an increased sparsity of support vectors [25,23] or the ability to use more
general kernels [15]. The remaining of the paper will thus focus on the LP
formulation of SVR (LP-SVR).

After a presentation of the LP-SVR problem (section 2), the paper uses the
framework of [10] to extend the problem with additional constraints, that are
linear with respect to the parameters, in order to include prior knowledge in
the learning (section 3). The methods are exposed respectively for the inclusion
of knowledge on the output values (section 3.1), on the derivatives of the
model (section 3.2) and the addition of potential support vectors (section
3.3). Finally, the various ways of incorporating prior knowledge in the form
of simulation data with these techniques are tested on the in-cylinder residual
gas fraction data in section 4.

Notations: all vectors are column vectors written in boldface and lowercase
letters whereas matrices are boldface and uppercase, except for the ith col-
umn of a matrix A that is denoted A;. The vectors 0 and 1 are vectors of
appropriate dimensions with all their components respectively equal to 0 and
1. For A € R¥™™ and B € R?¥" containing d-dimensional sample vectors, the
“kernel” K (A, B) maps R¥*™ x R>" in R™" with K (A, B); ; = k(A;, B;),
where k : R%¢ — R is the kernel function. In particular, if £ € R? is a column



vector then K (x, B) is a row vector in R™". The matrix X € RV*? contains
all the training samples x;, i = 1,..., N, as rows. The vector y € R" gathers
all the target values y; for these samples. Uppercase Z is a set containing |Z|
vectors that constitute the rows of the matrix Z.

2 Support Vector Regression (SVR)

In nonlinear regression by kernel methods, the function of input € R? is
approximated by a kernel expansion on the N training samples

flx)=> aik(z,z;) +b=K(x, X a+b, (1)

i=1

where o = [y ... «; ... ay|T and b are the parameters of the model and
k(.,.) is the kernel function. Typical kernel functions are the linear, Gaussian
RBF, polynomial and sigmoidal kernels. In this paper, a local, the Gaussian
RBF kernel: k(x, ;) = exp (—|x — x;||*/20?), and a non-local, the polyno-
mial kernel: k(x,x;) = (x’x; + 1), are considered.

In kernel regression via linear programming (LP), the ¢;-norm of the parame-
ters a of the kernel expansion is minimized together with the ¢;-norm of the

errors §; = y; — f(x;) by

N
{gig;HaHﬁCZ\&\ : (2)

i=1

where a hyperparameter C' is introduced to tune the trade-off between the
error minimization and the maximization of the function flatness. Instead of
the absolute value |{], the e-insensitive loss function defined as

if
el = {0 il <e. 3)

|€] — e otherwise,

can be used to yield Linear Programming Support Vector Regression (LP-
SVR). A possible formulation of the corresponding problem involves 4N + 1
variables [23]. In this paper, we will follow the approach of [16] that involves
only 3N + 1 variables. Introducing two sets of optimization variables, in two
positive slack vectors a and &, this problem can be implemented as a linear
program solvable by standard optimization routines such as MATLAB linprog.



In this scheme, the LP-SVR problem becomes

LS AP
st. €< KX, XNa+bl—y<¢ )
0< 1e <g
—a < o <a.

The last set of constraints ensures that 17 a, which is minimized, bounds ||| .
In practice, sparsity is obtained as a certain number of parameters o; will tend
to zero. The input vectors «; for which the corresponding «; are non-zero are
called support vectors (SVs).

The parameter € can also be introduced as a variable in the objective function
to be tuned automatically by the algorithm [23,16].

In the LP formulation, only symmetry of the kernel is required [16]. It is not
necessary for the kernel to satisfy Mercer’s conditions (or positive semidefi-
niteness) as in the original QP form of the SVR problem [22].

Remark: In this paper, balanced formulations of the learning problems are
used. For instance, in problem (4), the sums 1Ta and 17¢ involve N terms.
They are thus normalized by adding a factor 1/N in the objective function.
When the sums involve different numbers of terms, as in the following, this
normalization simplifies the tuning of the hyperparameters.

3 Incorporating prior knowledge

In this section, two different forms of prior knowledge on the function to be
approximated are included in the learning. The first one considers knowledge,
possibly approximate, on the output of the function. The second one considers
knowledge on the derivatives of the function, possibly given by a prior model.
The combination of both types of prior knowledge is also considered and the
addition of potential support vectors is discussed at the end of the section.

3.1 Knowledge on output values

Prior knowledge on the function to approximate is assumed to take the form
of a set Z of points z,, p=1,...,|Z|, regrouped as rows in the matrix Z, for
which the output values y,, p=1,...,|Z], regrouped in y,, are provided by a



prior model or a simulator. In this setting, the aim is to enforce the equality
constraints

f(zp):yp>p:1""|z|’ (5)
on the model f. However, applying constraints such as (5) to the problem (4)
would lead to an exact fit to these points, which may not be advised if these
are given by a simulator possibly biased. Moreover, all these constraints may
lead to an unfeasible problem if they cannot all be satisfied simultaneously. To
deal with this case, the equalities (5) can rather be included as soft constraints
by introducing a vector w = [uy ... u, ... uz]" of positive slack variables
bounding the error on (5) as

lyp — f(2p)| Swpy p=1,...1Z] . (6)

The ¢1-norm of the slack vector u is then added to the criterion of (4), with
a trade-off parameter A, in order to be minimized. The trade-off parameter
A allows to tune the influence of the prior knowledge on the model and thus
incorporate approximate knowledge.

It is also possible to include almost exact or biased knowledge by authorizing
violations of the equality constraints (5) that are less than a threshold. Using
the e-insensitive loss function (3) on the prior knowledge errors w, with a
threshold ¢,, different than the one, ¢, used for the training set, leads to the
following linear program

(aggu) %1% + %1% + |—2|1Tu
st €< K(X", XNa+bl—-y <¢
0< 1e <& (7)
—a < o <a
—u < K(ZT,XT)a+b1—yp <u
0< 1e, <u,

where the two last sets of |Z]| constraints stand for the inclusion of prior
knowledge.

3.2 Knowledge on the derivatives

Knowledge on the derivatives allows to include information on local maxima
or minima, saddle-points and so on. In some applications, one may also wish to
retain certain properties of a prior model such as the shape or the roughness at
some specific points z, in Z. This problem corresponds to learn a new model



while constraining certain of its derivatives to equal those of the prior model
at these particular points.

Consider that prior knowledge on the derivative of the function f with respect
to the jth component 27 of & € R? is available as

of (z)
oI

=y, Vz, € Z. (8)

Zp

This prior knowledge can be enforced in the training by noticing that the
kernel expansion (1) is linear with respect to the parameters a, which allows
to write the derivative of the model output with respect to 27 as

Ol o rj(:E)Ta ) (9>

0f(x) -~ Ok(z, ;)
= Z a; -
i=1 O
where r;(x) = [0k(x,21)/027 ... Ok(z,x;)/027 ... Ok(z,xy)/0x7]" is of
dimension N. The derivative (9) is linear with respect to a. In fact, the form
of the kernel expansion implies that the derivatives of any order with respect
to any component are linear with respect to a. See for instance [10] for Gaus-

sian RBF kernels. The prior knowledge (8) can thus be included by defin-
T

ing R(Z",X") = |r;(z1) ... 7;(2,) ... 7j(zz)| of dimension |Z] x N,
Y, =[yi .- Y, .- ylz|" and solving the problem
1 C A
min —17a+ —17¢ + =-1"v
(a,b,€,a,0) N N é ‘Z‘
st. &< KX XNa+bl—-y<¢
0< 1e < ¢ (10)

—a < o <a

—v < R(ZT,XT)a—y; <wv,

where a vector v = [v; ... v, ... vz’ of positive slack variables bounding
the error on (8) has been introduced.

The extension to any order of derivative is straightforward. Thus, this method
allows to incorporate prior knowledge on any derivative for any set of points
possibly different for each derivative. In comparison, the methods described
in [13] and [12] require the prior derivative values on all the training points
and these points only.

Combining prior knowledge on the output values as well as on the derivative
values is also possible and amounts to a concatenation of constraints. Thus a
method that considers the case where information is available on both y, and



Y, leads to the complete problem

(a,bfgﬂl?u,v) %ﬂa + %1T§ + ‘)\71‘1T'u, + ‘)\72‘1T'v
s.t. —£ < K(XT,XT)a Fhl—y <¢
0< le <
—as @ <a (11)
—u < K(ZT’XT)oH—bl—yp <u
0< 1e, <u
—v < R(ZT,XT)a . y; <wv.

where A1 and Ay are the trade-off parameters for the knowledge on the output
values and on the derivatives, respectively. In this problem, the first three
sets of constraints correspond to the standard learning (4) on the training
set (X,y). The next two sets of constraints include prior knowledge on the
output values as in section 3.1. The last set of constraints involving the slack
vector v incorporates the information on the derivatives as in (10).

3.8 Adding potential support vectors

In the case where the training data do not cover the whole input space, ex-
trapolation occurs, which can become a problem when using local kernels such
as the RBF kernel. To avoid this problem, the points z, can be included as
potential support vectors (or RBF centers). However, these samples are not
introduced in the training set, so that the model is not required to fit to the
corresponding output values y,.

For instance, in this setting, the problem (7) may be written as

C A
1Ta+ =1T¢ + =1Tu

(@bgaw N + |7 N 1Z|
st.  —¢< KX'[XT"ZNa+bl-y <¢
0< 1e <€ (12)
—a < o <a
—u< K(Z"[X"Z")a+bl-y, <u
0< le, <u.

The difference with (7) is that the samples in Z are added as potential support
vectors. It must be noted that the number of parameters in the vector « is



now N + |Z| and that the dimension of the kernel matrix K(X*,[XT ZT))
has increased to N x (N + |Z]).

Potential SVs can also be added in algorithms (10) and (11) by replacing the
matrices K (X7, X"), K(Z",X") and R(Z",X") by K(X",[ X" Z™)),
K(Z" (X" Z")) and R(Z",[ X" Z™)).

4 Estimation of the in-cylinder residual gas fraction

The application deals with the estimation of residual gases in the cylinders of
Spark Ignition (SI) engines with Variable Camshaft Timing (VCT). VCT al-
lows the timing of the intake and exhaust valves to be changed while the engine
is in operation. VCT is used to improve performance in terms of emissions,
fuel economy, peak torque, and peak power [8].

The air path control of SI engines is a crucial task because the torque provided
by the engine is directly linked to the air mass trapped in the cylinders [2].
When considering new air actuators such as VCT, the estimation of in-cylinder
air mass is more involved than for basic SI engines. Indeed, VCT authorizes
phenomena such as air scavenging (from intake to exhaust manifolds, with
turbocharging) or backflow (from exhaust manifold to cylinders).

In this context, it is important to estimate the residual gas mass fraction

mT’@S

Xres = 5 13
Mot ( )

where my,; is the total gas mass trapped in the cylinder and m,..s is the mass
of residual gases, which are burned gases present in the cylinder when the
valves are closed before the new combustion and which are due to the dead
volumes or the backflow. Knowing this fraction allows to control torque as
well as pollutant emissions.

There is no standard sensor to measure this fraction online. There exists a
corresponding mean value model, proposed by Fox et al. [3], that includes
some constants to be identified from experiments on a particular engine. As
mentioned in the introduction, only average values of the variables over the
cycle are considered in mean value models. In this context, the residual gas
mass fraction y,., can be expressed as a function of the engine speed N,
the ratio pman/Desn, Where ppan and pep, are respectively the intake manifold
pressure and the exhaust pressure, and an overlapping factor OF', which is an
image of the time during which the valves are opened together. This residual



gas fraction also depends, but only slightly, on the opening and closing instants
of the valves, which are not taken into account here, as in [3].

The available data are provided, on one hand, by the modeling and simula-
tion environment Amesim [7], which uses a high frequency zero-dimensional
thermodynamic model [4] and, on the other hand, by off line measurements,
which are accurate, but complex and costly to obtain, by direct in-cylinder
sampling [4]. The problem is thus as follows. How to obtain a simple, embed-
dable, black box model with a good accuracy and a large validity range for
the real engine, from precise real measurements as less numerous as possible
and a representative, but possibly biased, prior simulation model?

4.1 Setup of the experiments

Three datasets are built from the available data composed of 26 experimental
samples plus 26 simulation samples:

e the training set composed of a limited amount of real data (/N samples),

e the test set composed of independent real data (N = 26 — N samples),

e the simulation set composed of data provided by the simulator (N, = 26
samples).

It must be noted that the inputs of the simulation data do not exactly coincide
with the inputs of the experimental data. Various sizes N of the training set
will be considered in order to study the effect of the number of training samples
on the model.

The residual gas mass fraction y,.s, given in percentages, takes values in
the range [5,30]. The ranges of values for the three inputs are: N, (rpm)
€ {1000, 2000}, pman/Pezn € [0.397,0.910] and OF (°CA/m) € [0,2.8255]. Ta-
ble 1 presents the chosen values for OF with the corresponding opening and
closing instants of the valves. The datasets are shown in Figure 1.

Table 1
Intake valve opening (IVO) and exhaust valve closing (EVC) timings (at 0 mm lift)
for the different values of the overlapping factor OF'.

OF (°/m) 1IVO (°CA) EVC (°CA) overlap duration (°C'A)

0 0 0 0
0.41 0 42 42
0.58 -24 24 48
1.16 -33 30 63
2.83 -42 42 84

10
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Fig. 1. Residual gas mass fraction x,.s in percentages as a function of the ratio
Dman/Pezn for two engine speeds N, and different overlapping factors OF. The 26
experimental data are represented by plus signs (4), with a superposed circle (®)
for the training samples when N = 6. The 26 simulation data appear as asterisks

().

Different situations and various ways of incorporating the simulation data are
considered in the following models.

(1)
(2)
(3)

Ezperimental model. The simulation data are not available. Standard LP-
SVR training (4) on the training set only is used to determine the model.
Prior model. The experimental data are not available. LP-SVR training
(4) on the simulation set only is used to determine the model.

Mized model. All the data are available and mixed together. LP-SVR
training (4) on the training set extended with the simulation data is used
to determine the model. This may be the first and most simple approach,
similar to the virtual sample approach, which has been extensively studied
in pattern recognition for the incorporation of transformation-invariance
[19,20,9] and has been very successful in this field [21,11]. However, in the
case considered here, the simulation data can be biased as the physical
model is not fully accurate.

O-model. The simulation data are considered as prior knowledge on Out-
put values. Algorithm (7) is used to train the model. This approach allows

11



to take into account a possible bias of €, between the simulation and real
data.

(5) OP-model. Same as the O-model but with the simulation data as Potential
SVs. Algorithm (12) is used to train the model. This approach allows to
compensate for the local behavior of RBF kernels which may become a
serious drawback when reducing the number of training samples.

(6) D-model. The simulation data are used to build the prior model, which is
then used to provide prior knowledge on Derivative values with respect to
the input pran /Pecn, taken at the simulation input points. Algorithm (10)
with derivative constraints is used to train the final model. This approach
allows to retain the overall shape of the prior model while fitting it to the
available real data.

(7) DP-model. Same as the D-model but with the simulation data as Potential
SVs.

(8) OD-model. The simulation data are both considered as prior knowledge
on QOutput values and used to build a prior model in order to give prior
knowledge on Derivative values as for model 5. Algorithm (11) is used to
train the OD-model.

(9) ODP-model. Same as the OD-model but with the simulation data as Po-
tential SVs.

These models are evaluated on the basis of three indicators defined below.

e RMSE test: root mean square error on the test set (Ny.q samples)

e RMSE total: root mean square error on the whole real dataset (N + Nyeg
samples)

e MAFE total: maximum absolute error on the whole real dataset (N + Ny
samples)

Before training, the variables are normalized with respect to their mean and
standard deviation. When both experimental and simulation data are avail-
able, the simulation data are preferred since they are supposed to cover a
wider region of the input space. Thus, the mean and standard deviation are
determined on the simulation data for all the models except for the experi-
mental model, in which case the training set must be used to determine the
normalization parameters.

The hyperparameters of the method can be classified in two categories: in-
ternal parameters, such as the kernel parameters o or d; and the user-level
parameters, such as C, A (or A\; and \y), € and ¢,, allowing to tune the algo-
rithm in accordance with some prior knowledge. As kernel parameter tuning
is out of the scope of the paper, the kernel parameters are set according to the
following heuristics. Since all standard deviations of the inputs equal 1 after
normalization, the RBF kernel width o is set to 1. The degree v of the poly-
nomial kernels is set to the lowest value yielding a reasonable training error on

12



N = 15 samples, i.e. v = 4. For the threshold parameters of the e-insensitive
loss functions, ¢ is set to 0.001 in order to approximate the real data well. In
addition, when using prior knowledge on output values (O-, OP-, OD- and
ODP-models) and setting ¢, one has both the real and simulation data at
hand. Thus, it is possible to compute an estimate of the maximum absolute
error (MAE) obtained by the simulator by looking at the MAE obtained by
the prior model on the training set (available real data). €, is then set ac-
cordingly by taking into account the normalization step (g, = 1.6). Regarding
the remaining hyperparameters, the following sections respectively discuss the
use of fixed values, the sensitivity of the algorithm to their values, and their
tuning by cross-validation.

4.2 Fized hyperparameters

The hyperparameters C, A (or A\; and \y) are first set as follows. One goal of
the problem is to obtain a model that is accurate on both the training and test
samples (the training points are part of the performance index RMSE total).
Thus C' is set to a large value (C' = 1000) in order to ensure a good approxi-
mation of the training points. The additional hyperparameter of the method
Ais set to A = C' = 1000 to give as much weight to the prior knowledge than
to the data. For the OD- and ODP-models, the two types of prior knowledge
are considered with the same weight, i.e. A\; = Ay = C' = 1000.

The first experiments are performed with RBF kernels, which exhibit a local
behavior. The number N of points retained as training samples is first set
to 15, which is about half of the available experimental data. The results
in this setting appear at the top of Table 2. These show that the model of
the simulator, the prior model, is actually biased and leads to a large error
when tested on the real data. As a consequence, the mized model that simply
considers simulation data as training samples cannot yield good results from
inhomogeneous and contradictory data. Regarding the various forms of prior
knowledge considered, it seems that the information on the derivative is the
most relevant. However, in order to improve the model, potential support
vectors must be added, as in the DP- and ODP-models.

Now, the effect of reducing the number of training samples to N = 6 is studied.
The results in Table 2 show that a good experimental model cannot be deter-
mined with so few samples. On the other hand, adding prior knowledge allows
to obtain good results as shown on Figure 2 for the ODP-model. Incorporating
prior information on the derivative, as in the DP- and ODP-models, is more
efficient than simply incorporating simulation samples with a large threshold
€, on the corresponding error as implemented in the O- and OP-models. It
must be noted that the test error of the DP- and ODP-models is less than half

13
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Fig. 2. Errors on the experimental data (training and test samples) for the prior
model (%) and the ODP-model (o) trained with a RBF kernel on only six samples
(N =6).

the test errors obtained by the prior and mized models, which correspond to
the standard methods to include simulation data.

When the number of training points becomes too small (N = 3), the O-,
D- and OD-models, that do not incorporate the simulation data as potential
SVs, become almost constant and thus inefficient. This is due to the fact
that these models have not enough free parameters (only 3 plus a bias term)
and corresponding RBF's; thus they cannot accurately model the data. On
the contrary, the OP-, DP- and ODP-models do not suffer from this problem.
However, as discussed below, the method becomes more sensitive to the tuning
of A which leads to a very large error for the DP-model. On the other hand, the
ODP-model achieves a reasonable performance considering that only N = 3
experimental samples were used.

Table 3 shows that, for a non-local kernel, i.e. a polynomial kernel of degree 4,
the method also allows to improve the model. Due to the non-local behavior of
this kernel, the effect of considering the simulation data as potential support
vectors is less obvious and the OD-model without additional SVs yields the
best performance for N = 6. A common feature of the experiments with the
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Fig. 3. RMSE test versus C' and the ratio C'/\ for the D-, DP-, OP- and ODP-models
trained on N = 15 data points with a RBF kernel.

two kernels is the superiority of the prior knowledge applied to the derivatives
compared to the output values.

4.8 Influence of the hyperparameters C' and X

As shown in the previous section, the models that do not use information on
the derivative (O- and OP-models) always lead to poor performance. Thus
only the results for the D-, DP-, OD-models and ODP-models are reported
here.

The effect of the hyperparameter A (or A\; and \s) depends on the value of C'
as the ratio A/C' defines the weight of the prior knowledge with respect to the
weight of the training data. The first set of experiments considers A\; = Ay = .
The balance between A\; and )\, is studied at the end of this section.

Figures 3 and 4 show the variations of the RMSFE test for the models using
respectively RBF and polynomial kernels, trained on N = 15 data points with
1< A<2C and 1 < C < 2000. In this setting, the RMSFE test is not very
sensitive to A, except for a slight increase observed for large values A > C.
The data are in sufficient number to cover the whole input space and the
approximative nature of the knowledge may decrease the performance if more
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Fig. 4. RMSE test versus C' and the ratio C'/\ for the D-, DP-, OP- and ODP-models
trained on N = 15 data points with a polynomial kernel (y = 4).

weight is given to the prior knowledge, i.e. if A > C.

For N = 6 experimental data points, the test error is also not very sensitive
to the tuning of A, as shown in Figure 5 for RBF kernels and Figure 6 for
polynomial kernels. However, the D- and OD-models with RBF kernels are
improved for large values of A > C. These models have not enough support
vectors, are thus more dependent on the prior knowledge and require a ratio
A/C > 1. However, even for large values of A, they still lead to larger test errors
than the models with additional support vectors. The models with polynomial
kernels are less sensitive to this issue.

When training the models with only N = 3 experimental data points, the
method becomes more sensitive to A and the tuning of this hyperparameter
may become critical. As shown in Figure 7, a better test error than the one
reported in Table 2 for A\/C' = 1 could be obtained by the ODP-model with
RBF kernels for values of A around 0.1C. With polynomial kernels, the DP-
model actually leads to divergent outputs for many values of the couple C, .
The other models using polynomial kernels are also more sensitive to A (Fig.
8).

These experiments also show that the tuning of C'is not critical as the models

are mostly insensitive to its value, except for N = 3. In general, the polynomial
models appear less sensitive to the tuning of C' than the RBF models.
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Fig. 5. RMSE test versus C and the ratio C'/X for the D-, DP-, OP- and ODP-models
trained on N = 6 data points with a RBF kernel.
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Fig. 6. RMSE test versus C and the ratio C'/X for the D-, DP-, OP- and ODP-models
trained on N = 6 data points with a polynomial kernel (y = 4).
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Fig. 7. RMSE test versus C and the ratio C'/X for the D-, DP-, OP- and ODP-models
trained on N = 3 data points with a RBF kernel.
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Fig. 8. RMSE test versus C and the ratio C'/X for the D-, DP-, OP- and ODP-models
trained on N = 3 data points with a polynomial kernel (y = 4).
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However, the models with RBF kernels are more stable with respect to the
tuning of A\. Moreover, for different training set sizes NV, the ODP-model al-
ways leads to the best performance, whereas this is not the case with the
polynomial models. Thus, for practical reasons, it is preferable to use the
RBF kernel, though using a polynomial kernel may lead to a better test error
for a particular value of the hyperparameter.

Balance between A1 and )y. Studying the effect of the balance between the
prior knowledge on the ouptut (weighted by A;) and the prior knowledge on
the derivative (weighted by As) shows that the ODP-modelis mostly influenced
by the information on the derivative for both the RBF and the polynomial
kernels. Indeed, for a fixed value of Ay, the model is rather insensitive to A;
as long as A; is not too close to zero. Besides, tests with N = 15, 6 and 3
have shown that an almost minimal test error can always be obtained with
A2 = A1. Thus in practice, when mixing two types of prior knowledge without
further information on the optimal balance between the two, it is advised to
choose \s = A1, as this reduces the number of hyperparameters to tune.

4.4 Tuning X\ by cross validation

The trade-off parameter \ weighting the prior knowledge with respect to the
experimental data can be tuned by Leave-One-Out (LOO) cross validation.
The LOO procedure allows to compute an estimate of the generalization error,
here the generalization root mean square error (RMSE), as follows. The model
is trained on N — 1 samples from the training set, leaving one sample aside
for validation, on which the performance of the model is evaluated. This pro-
cedure is repeated N times providing an average performance of the training
algorithm for a particular value of the hyperparameter.

This procedure is relevant only for a sufficiently large number of training
samples. Thus, only one experiment of Sect. 4.2, for N = 15, is reproduced
here with, for the training of the O-, OP-, D- and DP-models, the opti-
mal value of A determined by the LOO procedure in the set of 10 values
{1, 10, 50, 100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000}. These
values are to be related to the value of C' = 1000, which represents the
weight of the experimental data in the training. For the OD- and ODP-models,
the relevance of both types of prior knowledge is equivalently balanced and
A1 = Ay = A, where A is also tuned by the LOO procedure.

Tables 4 and 5 show, respectively for the RBF and polynomial kernels, the
optimal value of A and the corresponding results. The test errors obtained by
this tuning procedure are very close to the ones obtained with A = 1000 and
reported in Tables 2 and 3. Moreover, an improvement in terms of the RMSE
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total and the MAFE total can be observed for the two best models using RBF
kernels (DP- and ODP-models). Thus, when no information is available on the
optimal balance between the prior knowledge and the data, and when the size
of the training set permits it, a cross validation procedure can be used to tune
the hyperparameters.

5 Conclusion

This paper uses simple and effective techniques for the incorporation of prior
knowledge into LP-SVR learning. This prior information may be given in
terms of output values as well as derivative values on a set of points. Various
methods based on these techniques have been studied for the inclusion of
knowledge in the form of simulation data. The proposed methods have been
tested on the estimation of in-cylinder residual gas fraction application. In
this context, real data are available only in a limited number due to the cost
of experimental measurements, but additional data can be obtained thanks
to a complex physical simulator. The output of the simulator being biased
but providing rather good information on the overall shape of the model,
prior information on the derivatives, provided by a prior model trained on
the simulation data, is the most relevant. Models enhanced by this knowledge
thus allow to obtain the best performance.

The additional hyperparameters of the method weight the prior knowledge
with respect to the data and can thus be chosen in accordance with the con-
fidence in the prior information. Moreover, the sensitivity of the method with
respect to the tuning of these hyperparameters has been experimentally shown,
but only on a particular example, to be very low as long as the data are not
too few. Besides, the experiments have also shown the importance of adding
potential support vectors in the model when using a local kernel, such as the
Gaussian RBF kernel, with few training samples.
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Table 2

Errors on the residual gas mass fraction for various training set sizes N with A\ =
C' = 1000 and a RBF kernel. =" appears when the result is irrelevant (model mostly

constant).

N Model RMSE test RMSE total MAEF total

1 (experimental model) 1.69 1.54 3.77
2 (prior model) 5.02 4.93 9.74

3 (mixed model) 5.07 4.22 7.80
4 (O-model) 2.26 1.47 4.11

15 5 (OP-model) 3.23 2.10 4.95
6 (D-model) 2.89 2.67 8.92
7 (DP-model) 1.07 1.24 4.84
8 (OD-model) 2.89 2.67 8.91
9 (ODP-model) 1.07 1.24 4.84
1 (experimental model) 4.89 4.42 10.16
2 (prior model) 4.86 4.93 9.74
3 (mixed model) 4.84 4.88 9.75
4 (O-model) 3.86 3.38 9.78

6 5 (OP-model) 4.43 3.88 9.08
6 (D-model) 3.99 3.50 10.42
7 (DP-model) 2.24 1.96 5.99
8 (OD-model) 3.15 2.83 5.79
9 (ODP-model) 2.24 1.96 5.99
1 (experimental model) — - -
2 (prior model) 4.92 4.93 9.74
3 (mixed model) 4.89 4.86 9.75
4 (O-model) - - -

3 5 (OP-model) 5.80 5.46 11.53
6 (D-model) — — —
7 (DP-model) 38.5 36.2 70.0
8 (OD-model) - - —
9 (ODP-model) 3.24 3.05 6.04

23



Table 3

Errors on the residual gas mass fraction for various training set sizes N with A =
C = 1000 and a polynomial kernel.

N Model RMSE test RMSE total MAE total
1 (experimental model) 2.06 2.17 4.89
2 (prior model) 4.92 4.89 9.77
3 (mixed model) 4.97 4.55 9.73
4 (O-model) 3.58 2.33 5.58
15 5 (OP-model) 8.97 5.83 15.99
6 (D-model) 2.70 2.66 7.25
7 (DP-model) 1.29 1.66 5.10
8 (OD-model) 2.70 2.66 7.25
9 (ODP-model) 1.29 1.66 5.10
1 (experimental model) 13.79 12.31 29.59
2 (prior model) 4.84 4.89 9.77
3 (mixed model) 4.84 4.87 9.77
4 (O-model) 2.93 2.57 6.17
6 5 (OP-model) 4.79 4.20 14.87
6 (D-model) 1.88 1.70 3.54
7 (DP-model) 2.42 2.12 6.34
8 (OD-model) 1.75 1.60 3.53
9 (ODP-model) 2.42 2.13 6.35
1 (experimental model) 6.39 6.06 14.25
2 (prior model) 4.87 4.89 9.77
3 (mixed model) 4.92 4.89 9.78
4 (O-model) 5.65 5.31 11.25
3 5 (OP-model) 6.01 5.65 11.38
6 (D-model) 5.59 5.26 10.11
7 (DP-model) 12.52 11.77 27.65
8 (OD-model) 5.22 4.93 11.21
9 (ODP-model) 3.59 3.38 5.68
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Table 4
Errors on the residual gas mass fraction obtained by the models using RBF kernels
for a training set size of N = 15 and A tuned by cross validation.

N Model A RMSE test RMSE total MAE total
1 (experimental model) 1.69 1.54 3.77
2 (prior model) 5.02 4.93 9.74
3 (mixed model) 5.07 4.22 7.80
4 (O-model) 1 2.29 1.49 4.05

15 5 (OP-model) 2000 3.70 241 5.78
6 (D-model) 1500 2.93 2.98 8.88
7 (DP-model) 500 1.12 0.73 1.88
8 (OD-model) 1500 2.93 2.98 8.88
9 (ODP-model) 500 1.12 0.73 1.88

Table 5

Errors on the residual gas mass fraction obtained by the models using polynomial
kernels (y = 4) for a training set size of N = 15 and A tuned by cross validation.

N Model A RMSE test RMSE total MAEF total
1 (experimental model) 2.06 2.17 4.89
2 (prior model) 4.92 4.89 9.77
3 (mixed model) 4.97 4.55 9.73
4 (O-model) 1 3.04 1.98 5.38
15 5 (OP-model) 1 3.26 2.12 5.91
6 (D-model) 400 2.22 1.98 6.22
7 (DP-model) 10 0.83 0.54 1.54
8 (OD-model) 300 2.20 1.83 5.81
9 (ODP-model) 200 0.84 0.54 1.50
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