Introduction

For K/F a quadratic extension of p-adic fields, let σ be the conjugation relative to this extension, and η K/F be the character of F * with kernel norms of K * . If π is a smooth irreducible representation of GL(n, K), and χ a character of F * , the dimension of the space of linear forms on its space, which transform by χ under GL(n, F ) (with respect to the action [(L, g) → L • π(g)]) , is known to be at most one (Proposition 11, [F]). One says that π is χ-distinguished if this dimension is one, and says that π is distinguished if it is 1-distinguished. In this article, we give a description of distinguished principal series representations of GL(n, K). The result (Theorem 3.2) is that the the irreducible distinguished representations of the principal series of GL(n, K) are (up to isomorphism) those unitarily induced from a character χ = (χ 1 , ..., χ n ) of the maximal torus of diagonal matrices, such that there exists r ≤ n/2, for which χ σ i+1 = χ i -1

for i = 1, 3, .., 2r -1, and χ i|F * = 1 for i > 2r. For the quadratic extension C/R, it is known (cf. [P]) that the analogous result is true for tempered representations.

For n ≥ 3, this gives a counter-example (Corollary 3.1) to a conjecture of Jacquet (Conjecture 1 in [A]). This conjecture states that an irreducible representation π of GL(n, K) with central character trivial on F * is isomorphic to πσ if and only if it is distinguished or η K/F -distinguished (where η K/F is the character of order 2 of F * , attached by local class field theory to the extension K/F ).

For discrete series representations, the conjecture is verified, it was proved in [K]. Unitary irreducible distinguished principal series representations of GL(2, K) were described in [H], and the general case of distinguished irreducible principal series representations of GL(2, K) was treated in [F-H]. We use this occasion to give a different proof of the result for GL(2, K) than the one in [F-H]. To do this, in Theorems 4.1 and 4.2, we extend a criterion of Hakim (th.4.1,[START_REF] Hakim | Distinguished p-adic Representations[END_REF]) characterising smooth unitary irreducible distinguished representations of GL(2, K) in terms of γ factors at 1/2, to all smooth irreducible distinguished representations of GL(2, K).

Preliminaries

Let φ be a group automorphism, and x an element of the group, we sometimes note x φ instead of φ(x), and x -φ the inverse of

x φ . If φ = x → h -1 xh for h in the group, then x h designs x φ .
Let G be a locally compact totally disconnected group, H a closed subgroup of G. We note ∆ G the module of G, given by the relation d

G (gx) = ∆ G (g)d G (x), for a right Haar measure d G on G.
Let X be a locally closed subspace of G, with H.X ⊂ X. If V is a complex vector space, we note D(X, V ) the space of smooth V -valued functions on X with compact support (if V = C, we simply note it D(X)). Let ρ be a a smooth representation of H in a complex vector space V ρ , we note D(H\X, ρ, V ρ ) the space of smooth V ρ -valued functions f on X, with compact support modulo H, which verify

f (hx) = ρ(h)f (x) for h ∈ H and x ∈ X (if ρ is a character, we note it D(H\X, ρ)). We note ind G H (ρ) the representation by right translations of G in D(H\G, (∆ G /∆ H ) 1/2 ρ, V ρ ).
Let F be a non archimedean local field of characteristic zero, and K a quadratic extension of F . We have K = F (δ) with δ 2 in F * . We note | | K and | | F the modules of K and F respectively. We note σ the non trivial element of the Galois group G(K/F ) of K over F , and we use the same letter to design for its action on M n (K). We note N K/F the norm of the extension K/F and we note η K/F the nontrivial character of F * which is trivial on N K/F (K * ). Whenever G is an algebraic group defined over F , we note G(K) its K-points and G(F ) its F -points.

The group GL(n) will be noted G n , its standard Borel subgroup will be noted B n , its unipotent radical U n , and the standard maximal split torus of diagonal matrices T n .

We note S the space of matrices M in G n (K) satisfying M M σ = 1.

Everything in this paragraph is more or less contained in [F1], we give detailed proofs here for convenience of the reader.

Proposition 2.1. ( [S], ch.10, prop.3) We have a homeomorphism between G n (K)/G n (F ) and S given by the map S n : g → g σ g -1 .

Proposition 2.2. For its natural action on S, each orbit of B n (K) contains one and only one element of S n of order 2 or 1.

Proof. We begin with the following:

Lemma 2.1. Let w be an element of S n ⊂ G n (K) of order at most 2. Let θ ′ be the involution of T n (K) given by t → w -1 t σ w, then any t ∈ T n (K) with tθ ′ (t) = 1 is of the form a/θ ′ (a) for some a ∈ T n (K).

Proof of Lemma 2.1. There exists r ≤ n/2 such that up to conjugacy, w is (1, 2)(3, 4)...(2r -1, 2r).

We write t =               z 1 z 1 ′ . . . z r z r ′ z 2r+1 . . . z n               , hence for i ≤ r, we have z i σ(z ′ i ) = 1,
and z j σ(z j ) = 1 for j ≥ 2r + 1. Hilbert's Theorem 90 asserts that each z j , j ≥ 2r + 1 is of the form u j-2r /σ(u j-2r ), for some

u j-2r ∈ K * .
We then take a =

              z 1 1 . . . z r 1 u 1 . . . u n-2r               . Lemma 2.2. Let N be an algebraic connected unipotent group over K. Let θ be an involutive automorphism of N (K). If x ∈ N (K), verifies xθ(x) = 1 N then, there is a ∈ N such that x = θ(a -1 )a.
Proof of Lemma 2.2: The group N (K) has a composition series 1 K), such that each quotient N i+1 /N i is isomorphic to (K, +), and each commutator subgroup [N, N i+1 ] is a subgroup of N i . Now we prove the Lemma by induction on n:

N = N 0 ⊂ N 1 ⊂ ...N n-1 ⊂ N n = N ( 
If n = 1, then N (K) is isomorphic to (K, +), one concludes taking a = x/2. n → n + 1 :
suppose the Lemma is true for every N (K) of length n.

Let N (K) be of length n + 1, we note x the class of x in N (K)/N 1 .

By induction hypothesis, one gets that there exists an element in h ∈ N 1 , and an element u in N (K) such that x = θ(u -1 )uh.

Here h lies in the center of

N (K), because [N (K), N 1 ] = 1 N . As xθ(x) = 1, we get hθ(h) = 1. By induction hypothesis again, we get h = θ(b -1 )b for b ∈ N 1 .
We then take a = ub.

We get back to the proof of the Proposition 2.2.

For w in S n , one notes U w the subgroup of U n generated by the elementary subgroups U α , with α positive, and wα negative, and U w ′ the subgroup of U n generated by the elementary subgroups U α , with α positive, and wα positive. Then U n = U w ′ U w . Let s be in S. According to Bruhat's decomposition, there is w in S n , and a in T n (K), n 1 in U n (K) and n 2 + in U w , such that s = n 1 awn 2 + , with unicity of the decomposition.

Then s = s -σ = n 2 + -σ w -1 a -σ n 1 -σ . Thus we have aw = (aw) -σ , i.e. w 2 = 1 and a w = a -σ . Now we write n 1 -σ = u -u + with u -∈ U w ′ and u + ∈ U w , comparing s and s -σ , u + must be equal to n 2 + . Hence s = n 1 awu --1 n 1 -σ , thus we suppose s = awn, with n in U ′ w . From s = s -σ , one has the relation awn(aw) -1 = n -σ , applying σ on each side, this becomes (aw) -1 n σ aw = n -1 . But θ : u → (aw) -1 u σ aw is an involutive automorphism of U ′ w , hence from Lemma 2.2, there is u ′ in U ′ w such that n = θ(u -1 )u. This gives s = u -σ awu, so that we suppose s = aw. Again wa σ w = a -1 , and applying Lemma 2.1 to θ ′ : x → wx σ w, we deduce that a is of the form yθ ′ (y -1 ), and s = ywy -σ .

Let u be the element 1 -δ

1 δ of M 2 (K); one has S 2 (u) = 0 1 1 0 (cf. Proposition 2.1).
We notice for further use (cf. proof of Proposition 3.1), that if we note T the subgroup

z 0 0 z σ ∈ G 2 (K)|z ∈ K * , then u -1 T u = T = x ∆y y x ∈G 2 (F )|x, y ∈ F .
For r ≤ n/2, one notes U r the n × n matrix given by the following block decomposition:

     u . . . u I n-2r      If w is an element of S n naturally injected in G n (K), one notes U w r = w -1 U r w.
Corollary 2.1. The elements U w r for 0 ≤ r ≤ n/2, and w ∈ S n give a complete set of representatives of classes of B n (K)\G n (K)/G n (F ).

Let G n = w∈Sn B n wB n be the Bruhat decomposition of G n . We call a double-class BwB a Bruhat cell.

Lemma 2.3. One can order the Bruhat cells C 1 , C 2 ,..., C n! so that for every

1 ≤ i ≤ n!, the cell C i is closed in G n - i-1 k=1 C i . Proof. Choose C 1 = B n . It is closed in G n . Now
let w 2 be an element of S n -Id, with minimal length. Then from 8.5.5. of [Sp], one has that the Bruhat cell Bw 2 B is closed in G n -B n with respect to the Zariski topology, hence for the p-adic topology, we call it C 2 . We conclude by repeating this process.

Corollary 2.2. One can order the classes A 1 ,...,

A t of B n (K)\G n (K)/G n (F ), so that A i is closed in G n (K) - i-1 k=1 A i . Proof. From the proof of Proposition 2.2, we know that if C is a Bruhat cell of G n , then S n ∩C is ei- ther empty, or it corresponds through the homemorphism S n to a class A of B n (K)\G n (K)/G n (F ).
The conclusion follows the preceeding Lemma.

Corollary 2.3. Each A i is locally closed in G n (K) for the Zariski topology.

We will also need the following Lemma: Lemma 2.4. Let G, H,X, and (ρ, V ρ ) be as in the beginning of the section, the map Φ from D(X) ⊗ V ρ to D(H\X, ρ, V ρ ) defined by Φ :

f ⊗ v → (x → H f (hx)ρ(h -1 )vdh) is surjective. Proof. Let v ∈ V ρ , U an open subset of G that intersects X, small enough for h → ρ(h)v to be trivial on H ∩ U U -1 . Let f ′ be the function with support in H(X ∩ U ) defined by hx → ρ(h)v.
Such functions generate D(H\X, ρ, V ρ ) as a vector space. Now let f be the function of D(X, V ρ ) defined by

x → 1 U∩X (x)v, then Φ(f ) is a multiple of f ′ . But for x in U ∩ X, Φ(f )(x) = H ρ(h -1 )f (hx)dh because h → ρ(h)v is trivial on H ∩ U U -1 , plus h → f (hx)
is a positive function that multiplies v, and f (x) = V , so F (f )(x) is v multiplied by a strictly positive scalar.

Corollary 2.4. Let Y be a closed subset of X, H-stable, then the restriction map from D(H\X, ρ, V ρ ) to D(H\Y, ρ, V ρ ) is surjective.

Proof. This is a consequence of the known surjectivity of the restriction map from D(X) to D(Y ), which implies the surjectivity of the restriction from D(X, V ρ ) to D(Y, V ρ ) and of the commutativity of the diagram:

D(X) → D(Y ) ↓ Φ ↓ Φ D(H\X, ρ) → D(H\Y, ρ)
.

Distinguished principal series

If π is a smooth representation of G n (K) of space V π , and χ is a character of F * , we say that π is χ-distinguished if there exists on V π a nonzero linear form L such that L(π(g)v) = χ(det(g))L(v) whenever g is in G n (F ) and v belongs to V π . If χ is trivial, we simply say that π is distinguished.

We first recall the following:

Theorem 3.1. ([F], Proposition 12)
Let π be a smooth irreducible distinguished representation of G n (K), then π σ ≃ π.

Let χ 1 , ..., χ n be n characters of K * , with none of their quotients equal to | | K . We note χ the character of B n (K) defined by χ

   b 1 ⋆ ⋆ . . . ⋆ b n    = χ 1 (b 1 )...χ n (b n ).
We note π(χ) the representation of G n (K) by right translation on the space of functions D(B n (K)\G n (K), ∆ Bn -1/2 χ). This representation is smooth, irreducible and called the principal series attached to χ. If π is a smooth representation of G n (K), we note pi its smooth contragredient.

We will need the following Lemma: Lemma 3.1. (Proposition 26 in [F1]) Let m = (m 1 , . . . , m l ) be a partition of a positive integer m, let P m be the corresponding standard parabolic subgroup, and for each

1 ≤ i ≤ l, let π i be a smooth distinguished representation of G mi (K), then π 1 × • • • × π l = ind Gm(K) P m(K ) (∆ -1/2 P m (K) (π 1 ⊗ • • • ⊗ π l )) is distinguished.
We now come to the principal results: Proposition 3.1. Let χ = (χ 1 , . . . , χ n ) be a character of T n (K), suppose that the principal series representation π(χ) is distinguished, there exists a re-ordering of the χ i 's, and r ≤ n/2, such that χ σ i+1 = χ i -1 for i = 1, 3, .., 2r -1, and that χ i|F * = 1 for i > 2r.

Proof. We write B = B n (K), G = G n (K). We have from Corollary 2.2 and 2.4 the following exact sequence of smooth G n (F )-modules:

D(B\G -A 1 , ∆ -1/2 B χ) ֒→ D(B\G, ∆ -1/2 B χ) → D(B\A 1 , ∆ -1/2 B χ).
Hence there is a non zero distinguished linear form either on

D(B\A 1 , ∆ -1/2 B χ), or on D(B\G -A 1 , ∆ -1/2 B χ).
In the second case we have the exact sequence

D(B\G -A 1 ⊔ A 2 , ∆ -1/2 B χ) ֒→ D(B\G -A 1 , ∆ -1/2 B χ) → D(B\A 2 , ∆ -1/2 B χ).
Repeating the process, we deduce the existence of a non zero distinguished linar form on one of the spaces 1, prop.3.4). From this we deduce that χ ′ is positive on

D(B\A i , ∆ -1/2 B χ). From Corollary 2.1, we choose w in S n and r ≤ n/2 such that A i = BU w r G n (F ). The applica- tion f → [x → f (U w r x)] gives an isomorphism of G n (F )-modules between D(B\A i , ∆ -1/2 B χ) and D(U -w r BU w r ∩ G n (F )\G n (F ), ∆ ′ χ ′ ) where ∆ ′ (x) = ∆ -1/2 B (U w r xU -w r ) and χ ′ (x) = χ(U w r xU -w r ). Now there exists a nonzero G n (F )-invariant linear form on D(U -w r BU w r ∩ G n (F )\G n (F ), ∆ ′ χ ′ ) if and only if ∆ ′ χ ′ is equal to the inverse of the module of U -w r BU w r ∩ G n (F ) (cf.[B-H], ch.
U -w r BU w r ∩ G n (F ) or equivalently χ is positive on B ∩ U w r G n (F )U -w r .
Let Tr be the F -torus of matrices of the form

              z 1 z 1 σ . . . z r z r σ x 1 . . . x t               with 2r + t = n, z i ∈ K * , x i ∈ F * , then one has Tr w ⊂ B ∩ U w r G n (F )U -w
r , so that χ must be positive on Tr w .

We remark that if χ is unitary, then χ is trivial on Tr w , and π(χ) is of the desired form.

For the general case, we deduce from Theorem 3.1, that there exists three integers p ≥ 0, q ≥ 0, s ≥ 0 such that up to reordering, we have

χ 2i = χ -σ 2i-1 for 1 ≤ i ≤ p, we have χ 2p+k |F * = 1 for 1 ≤ k ≤ q
4 Distinction and gamma factors for GL(2)

As said in the introduction, in this section we generalize to smooth infinite dimensional irreducible representations of G 2 (K) a criterion of Hakim (cf. [H], Theorem 4.1) characterising smooth unitary irreducible distinguished representations of G 2 (K). In proof of Theorem 4.1 of [H], Hakim deals with unitary representations so that the integrals of Kirillov functions on F * with respect to a Haar measure of F * converge. We skip the convergence problems using Proposition 2.9 of chapter 1 of [J-L].

We note M (K) the mirabolic subgroup of G 2 (K) of matrices of the form a x 0 1 with a in K * and x in K, and M (F ) its intersection with G 2 (F ). We note w the matrix 0 -1 1 0 .

Let π be a smooth infinite dimensional irreducible representation of G 2 (K), it is known that it is generic (cf. [Z] for example). Let K(π, ψ) be its Kirillov model corresponding to ψ ([J-L], th. 2.13), it contains the subspace D(K * ) of functions with compact support on the group K * . If φ belongs to K(π, ψ), and x belongs to K, then φ -π 1 x 0 1 φ belongs to D(K * ) ([J-L], prop.2.9, ch.1), from this follows that K(π, ψ) = D(K * ) + π(w)D(K * ).

We now recall a consequence of the functional equation at 1/2 for Kirillov representations (cf. [B], section 4.7). Forall φ in K(π, ψ) and χ character of K * , we have whenever both sides converge absolutely:

K * π(w)φ(x)(c π χ) -1 (x)d * x = γ(π ⊗ χ, ψ) K * φ(x)χ(x)d * x (1)
where d * x is a Haar measure on K * , and c π is the central character of π. Proof. In fact, using a Fourier inversion in functional equation 1 and the change of variable x → x -1 , we deduce that forall φ in D(K * ) ∩ π(w)D(K * ), we have

c π (x) F * π(w)φ(tx -1 )d * t = F * φ(tx)d * t
(d * t is a Haar measure on F * ) which for x = 1 gives

F * π(w)φ(t)d * t = F * φ(t)d * t.
Now we define on K(π, ψ) a linear form λ by:

λ(φ 1 + π(w)φ 2 ) = F * φ 1 (t)d * t + F * φ 2 (t)d * t
for φ 1 and φ 2 in D(K * ), which is well defined because of the previous equality and the fact that

K(π, ψ) = D(K * ) + π(w)D(K * ).
It is clear that λ is w-invariant. As the central character of π is trivial on F * , λ is also F *invariant. Because GL 2 (F ) is generated by M (F ), its center, and w, it remains to show that λ is

M (F )-invariant. Since ψ is trivial on F , one has if φ ∈ D(K * ) and m ∈ M (F ) the equality λ(π(m)φ) = λ(φ) . Now if φ = π(w)φ 2 ∈ π(w)D(K * ), and if a belongs to F * , then π a 0 0 1 π(w)φ 2 = π(w)π 1 0 0 a φ 2 = π(w)π a -1 0 0 1 φ 2 because the central character of π is trivial on F * , and λ(π a 0 0 1 φ) = λ(φ). If x ∈ F , then π 1 x 0 1 φ-φ is a function in D(K * ), which vanishes on F * , hence λπ( 1 x 0 1 φ- φ) = 0. Eventually λ is M (F )-invariant, hence G 2 (F )-invariant, it is clear that its restriction to D(K * ) is non zero. Corollary 4.1. Let µ be a character of K * , then π(µ, µ -σ ) is distinguished. Proof. indeed, first we notice that the central character µµ -σ of π(µ, µ -σ ) is trivial on F * . Now let χ be a character of K * /F * , then γ(π(µ, µ -σ )⊗χ, ψ) = γ(µχ, ψ)γ(µ -σ χ, ψ) = γ(µχ, ψ)γ(µ -1 χ σ , ψ σ ),
and as ψ|F = 1 and χ |F * = 1, one has ψ σ = ψ -1 and χ σ = χ -1 , so that γ(π(χ, χ -σ ), ψ) = γ(µχ, ψ)γ(µ -1 χ -1 , ψ -1 ) = 1. The conclusion falls from Proposition 4.1.

Assuming Theorem 1.2 of [A-G], the converse of Theorem 4.1 is also true: Theorem 4.2. Let π be a smooth irreducible representation of infinite dimension of G 2 (K) with central character trivial on F * and ψ a non trivial character of K/F , it is distinguished if and only if γ(π ⊗ χ, ψ) = 1 for every character χ of K * trivial on F * .

Proof. It suffices to show that if π is a smooth irreducible distinguished representation of infinite dimension of G 2 (K), and ψ a non trivial character of K/F , then γ(π, ψ) = 1. Suppose λ is a non zero G 2 (F )-invariant linear form on K(π, ψ), it is shown in the proof of the corollary of Proposition 3.3 in [H], that its restriction to D(F * ) must be a multiple of the Haar measure on F * . Hence for any function φ in D(K * ) ∩ π(w)D(K * ), we must have F * φ(t)d * t = F * π(w)φ(t)d * t. 

Theorem 4. 1 .

 1 Let π be a smooth irreducible representation of G 2 (K) of infinite dimension with central character trivial on F * , and ψ a nontrivial character of K trivial on F . If γ(π ⊗ χ, ψ) = 1 for every character χ of K * trivial on F * , then π is distinguished.

From

  this one deduces that for any function inD(K * ) ∩ π(w)D(K * ): -1 )d * tda = K * /F * F * φ(ta)d * tda = K * φ(x)d * x .This implies that either γ(π, ψ) is equal to one, or K * φ(x)d * x is equal to zero on D(K * ) ∩ π(w)D(K * ). In the second case, we could define two independant K * -invariant linear forms onK(π, ψ) = D(K * ) + π(w)D(K * ), given by φ 1 + π(w)φ 2 → K * φ 1 (x)d * x, and φ 1 + π(w)φ 2 → K * φ 2 (x)d * x.This would contradict Theorem 1.2 of[A-G].
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and these χ 2p+k 's are different (so that χ 2p+k = χ -σ 2p+k ′ for k = k ′ ), and χ 2p+q+j |F * = η K/F for 1 ≤ j ≤ s, these χ 2p+q+j 's being different. We note µ k = χ 2p+k for q ≥ k ≥ 1, and ν ′ k = χ 2p+q+k ′ for s ≥ k ′ ≥ 1. We show that if such a character χ is positive on a conjugate of Tr by an element of S n , then s = 0. Supose ν 1 appears, then either ν 1 is positive on F * , but that is not possible, or it is coupled with another χ i , and (ν 1 , χ i ) is positive on elements (z, z σ ), for z in K * . Suppose χ i = ν j for some j = 1, then (ν 1 , χ i ) is unitary, so it must be trivial on couples (z, z σ ), which implies ν 1 = ν j -σ = ν j , which is absurd. The character χ i cannot be of the form µ j , because it would imply ν 1|F * = 1. The last case is i ≤ 2p, then ν 1 -σ = ν 1 must be the unitary part of χ i because of the positivity of (ν 1 , χ i ) on the couples (z, z σ ). But χ i -σ also appears and is not trivial on F * , hence must be coupled with another character χ j with j ≤ 2p and j = i, such that (χ i -σ , χ j ) is positive on the elements (z, z σ ), for z in K * , which implies that χ j has unitary part ν 1 -σ = ν 1 . The character χ j cannot be a µ k because of its unitary part. If it is a χ k with k ≤ 2p, we consider again χ k -σ . But repeating the process lengthily enough, we can suppose that χ j is of the form ν k , for k = 1. Taking unitary parts, we see that ν k = ν 1 -σ = ν 1 , which is in contradiction with the fact that all ν i 's are different. We conclude that s = 0.

Theorem 3.2. Let χ = (χ 1 , . . . , χ n ) be a character of T n (K), the principal series representation π(χ) is distinguished if and only if there exists r ≤ n/2, such that χ σ i+1 = χ i -1 for i = 1, 3, .., 2r -1, and that χ i |F * = 1 for i > 2r.

Proof. There is one implication left. Suppose χ is of the desired form, then π(χ) is parabolically (unitarily) induced from representations of the type π(χ i , χ i -σ ) of G 2 (K), and distinguished characters of K * . Hence, because of Lemma 3.1 the Theorem will be proved if we know that the representations π(χ i , χ i -σ ) are distinguished, but this is Corollary 4.1 of the next paragraph.

This gives a counter-example to a conjecture of Jacquet (conjecture 1 in [A]), asserting that if an irreducible admissible representation π of G n (K) verifies that π is isomorphic to π σ , then it is distinguished if n is odd, and it is distinguished or η K/F -distinguished if n is even.

Corollary 3.1. For n ≥ 3, there exist smooth irreducible representations π of G n (K), with central character trivial on F * , that are neither distinguished, nor η K/F -distinguished, but verify that π is isomorphic to π σ .

Proof. Take χ 1 , . . . , χ n , all different, such that χ 1|F * = χ 2|F * = η K/F , and χ j |F * = 1 for 3 ≤ j ≤ n. Because each χ i has trivial restriction to N K/F (K * ), it is equal to χ -σ i , hence π is isomorphic to π σ . Another consequence is that if k and l are two different integers between 1 and n, then χ k = χ -σ l , because we supposed the χ i 's all different. Then it follows from Theorem 3.2 that π = π(χ 1 , . . . , χ n ) is neither distinguished, nor η K/Fdistinguished, but clearly, the central character of π is trivial on F * and π is isomorphic to π σ .