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Distinguished principal series representations

for GLn over a p− adic field

June 9, 2008

1 Introduction

Let F be a non archimedean local field of characteristic zero and K a quadratic extension of F .
If π is a smooth irreducible representation of GL(n,K), the dimension of GL(n, F )-invariant linear
forms on its space is known to be at most one (proposition 11, [F]).
One says that π is distinguished if this dimension is one.
In this article, we give a description of distinguished principal series representations of GL(n,K).
For the quadratic extension C/R, it is known (cf.[P]) that the irreducible distinguished tempered
representations of GL(n,C) are (up to isomorphism) those unitarily induced from a unitary char-
acter χ = (χ1, ..., χn) of the maximal torus of diagonal matrices, such that there exists r ≤ n/2, for
which χσ

i+1 = χi
−1 for i = 1, 3, .., 2r − 1, and χi|F∗ = 1 for i > 2r. In our case, theorem 3.2 gives

an analogous result.
This gives a counter-example to a conjecture of Jacquet (Conjecture 1 in [A]).
We use this occasion to give a different proof of the result for GL(2,K) than the one in [F-H]. To
do this, in theorems 4.1 and 4.2, we extend a criterion of Hakim (th.4.1, [H]) characterising smooth
unitary irreducible distinguished representations of GL(2,K) in terms of γ factors at 1/2, to all
smooth irreducible distinguished representations of GL(2,K).

2 Preliminaries

Let φ be a group automorphism, and x an element of the group, we sometimes note xφ instead of
φ(x), and x−φ the inverse of xφ.
If φ = x 7→ h−1xh for h in the group, then xh designs xφ.

Let G be a locally compact totally disconnected group, H a closed subgroup of G.
We note ∆G the module of G.
Let X be a locally closed subspace of G, with H.X ⊂ X .
If V is a complex vector space, we note D(X,V ) the space of smooth V -valued fuctions on X with
compact support (if V = C, we simply note it D(X)).
Let ρ be a a smooth representation of H in a complex vector space Vρ, we note D(H\X, ρ, Vρ)
the space of smooth Vρ-valued fuctions f on X , with compact support modulo H , which verify
f(hx) = ρ(h)f(x) for h ∈ H and x ∈ X (if ρ is a character, we note it D(H\X, ρ)).
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We note c− indG
H(ρ) the representation by right translation of G in D(H\G, (∆G/∆H)1/2ρ, Vρ).

Let F be a non archimedean local field of characteristic zero, and K a quadratic extension of
F . We have K = F (δ) with δ2 = ∆ ∈ F .
We note | |K and | |F the modules of K and F respectively.
We note σ the non trivial element of the Galois group G(K/F ) of K over F , and we use the same
letter to design its extension to Mn(K).
We note NK/F the norm of the extension K/F and we note ηK/F the nontrivial character of F ∗

which is trivial on NK/F (K∗).
Whenever G is an algebraic group defined over F , we note G(K) itsK-points and G(F ) its F -points.

The group GL(n) will be noted Gn, its standard Borel subgroup will be noted Bn, the unipotent
radical of Bn will be noted Un, and the standard maximal split torus of diagonal matrices Tn.

We note S the space of matrices M satisfying MMσ = 1.

Everything in this paragraph, and lemma 3.1 of the next paragraph, is contained in [F1], we
give detailed proofs here for convenience of the reader.

Proposition 2.1. ([S], ch.10, prop.3)
We have a homeomorphism between Gn(K)/Gn(F ) and S given by the map Sn : g 7→ gσg−1.

Proposition 2.2. For its natural action on S, each orbit of Bn(K) contains one and only one
element of Sn of order 2 or 1.

Proof. We begin with the following:

Lemma 2.1. Let w be an element of Sn ⊂ Gn(K) of order 2.
Let θ′ be the involution of Tn(K) given by t 7→ w−1tσw, then any t ∈ Tn(K) with tθ′(t) = 1 is

of the form a/θ′(a) for some a ∈ Tn(K).

Proof of lemma 2.1: There exists r ≤ n/2 such that up to conjugacy, w is (1, 2)(3, 4)...(2r − 1, r).

We write t =





























z1
z1

′

. . .

zr

zr
′

z2r+1

. . .

zn





























, hence for i ≤ r, we have ziσ(z′i) = 1,

and zjσ(zj) = 1 for j ≥ 2r + 1.
Hilbert’s theorem 90 asserts that each zj , j ≥ 2r + 1 is of the form uj−2r/σ(uj−2r), for some
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uj−2r ∈ K∗.

We then take a =





























z1
1

. . .

zr

1
u1

. . .

un−2r





























.

Lemma 2.2. Let N be an algebraic connected nilpotent group. Let θ be an involutive automorphism
of N(K). If x ∈ N(K), verifies xθ(x) = 1N then, there is a ∈ N such that x = θ(a−1)a.

Proof of lemma 2.2: The group N has a composition series 1N = N0 ⊂ N1 ⊂ ...Nn−1 ⊂ Nn = N ,
such that each quotient Ni+1/Ni is isomorphic to K, and each commutator subgroup [N,Ni+1] is
a subgroup of Ni.
Now we prove the lemma by induction on n:
If n = 1, then N is isomorphic to (K,+), one concludes taking a = x/2.
n 7→ n+ 1 :
suppose the lemma is true for every N of length n.
Let N be of length n+ 1, we note x̄ the class of x in N/N1.
By induction hypothesis, one gets that there exists an element in h ∈ N1, and an element u in N
such that x = θ(u−1)uh.
Here h lies in the center of N , because [N,N1] = 1N .
As xθ(x) = 1, we get hθ(h) = 1. By induction hypothesis again, we get h = θ(b−1)b for b ∈ N1.
We then take a = ub.

We get back to the proof of the proposition 2.2.

For w in Sn, one notes Uw the subgroup of Un generated by the elementary subgroups Uα, with
α positive, and wα negative, and Uw

′ the subgroup of Un generated by the elementary subgroups
Uα, with α positive, and wα positive. Then Un = Uw

′Uw.
Let s be in S. According to Bruhat’s decomposition, there is w in Sn, and a in Tn(K), n1 in Un(K)
and n2

+ in Uw, such that s = n1awn2
+, with unicity of the decomposition.

Then s = s−σ = n2
+−σ

w−1a−σn1
−σ.

Thus we have aw = (aw)−σ , i.e. w2 = 1 and aw = a−σ.
Now we write n1

−σ = u−u+ with u− ∈ Uw
′ and u+ ∈ Uw, comparing s and s−σ, u+ must be equal

to n2
+.

Hence s = n1awu
−−1

n1
−σ, thus we suppose s = awn, with n in U ′

w.
From s = s−σ, one has the relation awn(aw)−1 = n−σ, applying σ on each side, this becomes
(aw)−1nσaw = n−1.
But θ : u 7→ (aw)−1uσaw is an involutive automorphism of U ′

w, hence from lemma 2.2, there is u′

in U ′
w such that n = θ(u−1)u.

This gives s = u−σawu, so that we suppose s = aw. Again waσw = a−1, and applying lemma 2.1
to θ′ : x 7→ wxσw, we deduce that a is of the form yθ′(y−1), and s = y−σwy.
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Let u be the following element of M2(K):

(

1 −δ
1 δ

)

, one has S2(u) =

(

0 1
1 0

)

.

Remark:

If T̃ =

{(

z 0
0 zσ

)

∈ G2(K)|z ∈ K∗

}

≃ K∗, then u−1T̃ u = T =

{(

x ∆y
y x

)

∈ G2(F )|x, y ∈ F

}

.

For r ≤ n/2, one notes Ur the n × n matrix given by the following block decomposition:










u
. . .

u
In−2r











If w is an element of Sn naturally injected in Gn(K), one notes Uw
r = w−1Urw.

Corollary 2.1. The elements Uw
r for 0 ≤ r ≤ n/2, and w ∈ Sn give a complete set of representa-

tives of classes of Bn(K)\Gn(K)/Gn(F ).

Let Gn =
∐

w∈Sn
BnwBn be the Bruhat decomposition of Gn. We call a double-class BwB a

Bruhat cell.

Lemma 2.3. One can order the Bruhat cells C1, C2,..., Cn! so that for every 1 ≤ i ≤ n!, the cell
Ci is closed in Gn −

∐i−1
k=1 Ci.

Proof. Choose C1 = Bn. It is closed in Gn. Now let w2 be an element of Sn − Id, with minimal
length. Then from 8.5.5. of [Sp], one has that the Bruhat cell Bw2B is closed in Gn − Bn with
respect to the Zariski topology, hence for the p-adic topology, we call it C2. We conclude by
repeating this process.

Corollary 2.2. One can order the classes A1,..., At of Bn(K)\Gn(K)/Gn(F ), so that Ai is closed

in Gn(K) −
∐i−1

k=1 Ai.

Proof. From the proof of proposition 2.2, we know that if C is a Bruhat cell of Gn, then Sn ∩C is
either empty, or it corresponds through the homeorphism Sn to a class A of Bn(K)\Gn(K)/Gn(F ).
The conclusion follows the preceeding lemma.

Corollary 2.3. Each Ai is locally closed in Gn(K) for the Zariski topology.

We will also need the following lemma:

Lemma 2.4. Let G, H,X, and (ρ, Vρ) be as in the beginning of the section, the map Φ from
D(X) ⊗ Vρ to D(H\X, ρ, Vρ) defined by Φ : f ⊗ v 7→ (x 7→

∫

H
f(hx)ρ(h−1)vdh) is surjective.

Proof. Let v ∈ Vρ, U an open subset of G that intersects X , small enough for h 7→ ρ(h)v to be
trivial on H ∩ UU−1.
Let f ′ be the function with support in H(X ∩ U) defined by hx 7→ ρ(h)v.
Such functions generate D(H\X, ρ, Vρ) as a vector space.
Now let f be the function of D(X,Vρ) defined by x 7→ 1U∩X(x)v, then Φ(f) is a multiple of f ′.
But for x in U ∩X , Φ(f)(x) =

∫

H ρ(h−1)f(hx)dh because h 7→ ρ(h)v is trivial on H ∩ UU−1, plus
h 7→ f(hx) is a positive function that multiplies v, and f(x) = V , so F (f)(x) is v multiplied by a
strictly positive scalar.
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Corollary 2.4. Let Y be a closed subset of X, H-stable, then the restriction map from D(H\X, ρ, Vρ)
to D(H\Y, ρ, Vρ) is surjective.

Proof. This is a consequence of the known surjectivity of the restriction map from D(X) to D(Y ),
which implies the surjectivity of the restriction from D(X,Vρ) to D(Y, Vρ) and the commutativity
of the diagramm:

D(X) → D(Y )
↓ Φ ↓ Φ

D(H\X, ρ) → D(H\Y, ρ)
.

3 Distinguished principal series

If π is a smooth representation of Gn(K) of space Vπ, and χ is a character of F ∗, we say that π is
χ-distinguished if there exists on Vπ a nonzero linear form L such that L(π(g)v) = χ(det(g))L(v)
whenever g is in Gn(F ) and v belongs to Vπ. If χ is trivial, we simply say that π is distinguished.

We first recall the following:

Theorem 3.1. ([F], proposition 12)
Let π be a smooth irreducible representation of Gn(K) which admits a nonzero Gn(F )-invariant

linear form on its space, then πσ ≃ π̌.

Let χ1, ..., χn be n characters of K∗, with none of their quotients equal to | |K . We note χ the

character of Bn(K) defined by χ







b1 ⋆ ⋆
. . . ⋆

bn






= χ1(b1)...χn(bn).

We note π(χ1, ..., χn) the representation of Gn(K) by right translation on the space of functions

D(Bn(K)\Gn(K),∆Bn

−1/2χ).
This representation is smooth, irreducible and called the principal series attached to χ.

We will need the following lemma (see prop.10.2 of [Ok] for a different proof).

Lemma 3.1. Let m̄ = (m1, . . . ,ml) be a partition of a positive integer m, let Pm̄ be the corre-
sponding standard parabolic subgroup, and πi be smooth distinguished representations of Gmi

(K),

then π1 × · · · × πl = Ind
Gm(K)
Pm̄(K) (∆

−1/2
Pm̄(K)(π1 ⊗ · · · ⊗ πl)) is distinguished.

Proof. We note π for π1 ⊗ · · · ⊗ πl.

We want to show that HomGm(F )(c − Ind
Gm(K)
Pm̄(K) (π), 1) is of dimension at least one. But from the

relation ∆Pm̄(K) = ∆2
Pm̄(F ), we deduce that the restriction map of functions in

D(Pm̄(K)\Gm(K),∆
−1/2
Pm̄(K)π, Vπ) to Gm(F ) has value in D(Pm̄(F )\Gm(F ),∆−1

Pm̄(F )π, Vπ).

Let L be a nonzero Pm̄(F )-invariant linear form on Vπ. If φ belongs to D(Pm̄(K)\Gm(K),∆
−1/2
Pm̄(K)π),

then the function defined on Gn(F ) by g 7→ L(φ(g)) belongs to D(Pm̄(F )\Gm(F ),∆−1
Pm̄(F )).

From [B-H], ch.1, prop.3.4, there is a Gm(F )-invariant linear form Γ on

D(Pm̄(F )\Gm(F ),∆−1
Pm̄(F ))
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which is positive on positive functions.
Hence φ 7→ Γ(g 7→ L(φ(g))) gives a Gm(F )-invariant linear form on

D(Pm̄(K)\Gm(K),∆
−1/2
Pm̄(K)π).

Now let v be a vector of Vπ such that L(v) > 0, and let U be a compact open subgroup of Gm(K)
such that U ∩ Pm̄(K) is included in the fixator of v.

The function φ0 : pu 7→ ∆Pm̄(K)
−1/2(p)π(p)v with p ∈ Pm̄(K), u ∈ U is well defined and belongs to

D(Pm̄(K)\Gm(K),∆
−1/2
Pm̄(K)π).

It also verifies that g 7→ L(φ0(g)) is positive and non zero, hence Γ(g 7→ L(φ0(g))) is positive. Thus
φ 7→ Γ(g 7→ L(φ(g))) is nonzero and π1 × · · · × πl is distinguished.

Proposition 3.1. Suppose that π(χ) is distinguished, there exists a re-ordering of the χi’s, and
r ≤ n/2, such that χσ

i+1 = χi
−1 for i = 1, 3, .., 2r− 1, and that χi|F∗ = 1 for i > 2r.

Proof. We have from corollary 2.4 and lemma 2.2 the following exact sequence of smooth Gn(F )-
modules:

D(B\Gn −A1,∆Bn

−1/2χ) →֒ D(Bn(K)\Gn(K),∆Bn

−1/2χ) ։ D(B\A1,∆Bn

−1/2χ).

Hence there is a non zero distinguished linear form either on D(B\A1,∆Bn

−1/2χ), or on

D(B\Gn −A1,∆Bn

−1/2χ).
In the second case we have the exact sequence

D(B\Gn −A1 ⊔A2,∆Bn

−1/2χ) →֒ D(B\Gn −A1,∆Bn

−1/2χ) ։ D(B\A2,∆Bn

−1/2χ).

Repeating the process, we deduce the existence of a non zero distinguished linar form on one of the
spaces D(B\Ai,∆Bn

−1/2χ).
Now there exists w in Sn and r ≤ n/2 such that Ai = Bn(K)Ur

wGn(F ).

But the application f 7→ [x 7→ f(Ur
wx)] gives an isomorphism ofGn(F )-modules betweenD(B\Ai,∆Bn

−1/2χ)

andD(Ur
−wBUr

w∩Gn(F )\Gn(F ),∆′χ′) where ∆′(x) = ∆Bn

−1/2(Ur
wxUr

−w) and χ′(x) = χ(Ur
wxUr

−w).
Now there exists a nonzero Gn(F )-invariant linear form on D(Ur

−wBUr
w ∩ Gn(F )\Gn(F ),∆′χ′)

if and only if ∆′χ′ is equal to the inverse of the module of Ur
−wBUr

w ∩ Gn(F ) (cf.[B-H], ch.1,
prop.3.4).
From this we deduce that χ′ is positive on Ur

−wBUr
w ∩ Gn(F ) or equivalently χ is positive on

B ∩ Ur
wGn(F )Ur

−w.

Let T̄r be the F -torus of matrices of the form





























z1
z1

σ

. . .

zr

zr
σ

x1

. . .

xt





























with
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2r + t = n, zi ∈ K, xi ∈ F ∗, then one has T̄r
w
⊂ B ∩ Ur

wGn(F )Ur
−w, sothat χ must be positive

on T̄r
w
.

We remark that if χ is unitary, then χ is trivial on T̄r
w
, and π(χ) is of the desired form.

For the general case, we deduce from theorem 3.1, that there exists three integers 2p ≥ 0, q ≥ 0, s ≥ 0
such that up to reordering, we have χi+1 = χi

−σ for 1 ≤ i ≤ p, we have χ2p+k|F∗ = 1 for 1 ≤ k ≤ q

and these χ2p+k’s are different (sothat χ2p+k 6= χ−σ
2p+k′ for k 6= k′), and χ2p+q+j |F∗ = ηK/F for

1 ≤ j ≤ s, these χ2p+q+j ’s being different.
We note µk = χ2p+k for q ≥ k ≥ 1, and ν′k = χ2p+q+k′ for s ≥ k′ ≥ 1.
We show that if such a character χ is positive on a conjugate of T̄r by an element of Sn, then s = 0.
Supose ν1 appears, then either ν1 is positive on F ∗, but that is not possible, or it is coupled with
another χi, and (ν1, χi) is positive on elements (z, zσ), for z in K∗.
Suppose χi = νj for some j 6= 1, then (ν1, χi) is unitary, so it must be trivial on couples (z, zσ),
which implies ν1 = νj

−σ = νj , which is absurd.
The character χi cannot be of the form µj , because it would imply ν1|F∗ = 1.
The last case is i ≤ 2p, then ν1

−σ = ν1 must be the unitary part of χi because of the positivity of
(ν1, χi) on the couples (z, zσ).
But χi

−σ also appears, and must be coupled with another character χj with j ≤ 2p and j 6= i (for
the same reasons as before), such that (χi

−σ, χj) is positive on the elements (z, zσ), for z in K∗,
which implies that χj has unitary part ν1

−σ = ν1.
The character χj cannot be a µk because of its unitary part.
If it is a χk with k ≤ 2p, we consider again χk

−σ .
But repeating the process lengthily enough, we can suppose that χj is of the form νk, for k 6= 1.
Taking unitary parts, we see that νk = ν1

−σ = ν1, which is in contradiction with the fact that all
νi’s are different. We conclude that s = 0.

Theorem 3.2. The representation π(χ) is distinguished if and only if there exists r ≤ n/2, such
that χσ

i+1 = χi
−1 for i = 1, 3, .., 2r − 1, and that χi|F∗ = 1 for i > 2r.

Proof. There is one implication left.
Suppose χ is of the desired form, then π(χ) is parabolically (unitarily) induced from representations
of the type π(χi, χi

−σ) of G2(K), and distinguished characters of K∗.
Hence, because of lemma 3.1 the theorem will be proved if we know that the representations
π(χi, χi

−σ) are distinguished, but this is corollary 4.1 of the next paragraph.

This gives a counter-example to a conjecture of Jacquet (conjecture 1 in [A]), asserting that if
an irreducible admissible representation π of Gn(K) verifies that π̌ is isomorphic to πσ, then it is
distinguished if n is odd, and it is distinguished or ηK/F -distinguished if n is even.

Corollary 3.1. For n ≥ 3, there exist smooth irreducible representations π of Gn(K), with central
character trivial on F ∗, that are neither distinguished, nor ηK/F -distinguished, but verify that π̌ is
isomorphic to πσ.

Proof. Take χ1, . . . , χn, all different, such that χ1|F∗ = χ2|F∗ = ηK/F , and χj |F∗
= 1 for 3 ≤ j ≤ n.

Because each χi has trivial restriction to NK/F (K∗), it is equal to χ−σ
i , hence π̌ is isomorphic to πσ.

Another consequence is that if k and l are two different integers between 1 and n, then χk 6= χ−σ
l ,

because we supposed the χi’s all different.
Then it follows theorem 3.2 that π = π(χ1, . . . , χn) is neither distinguished, nor ηK/F -distinguished,
but clearly, the central character of π is trivial on F ∗ and π̌ is isomrphic to πσ.
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4 Distinction and gamma factors for GL(2)

As said in the introduction, in this section we generalize to smooth infinite dimensional irreducible
representations of G2(K) a criterion of Hakim (cf. [H], theorem 4.1) characterising smooth unitary
irreducible representations of G2(K).

Let π be a smooth infinite dimensional irreducible represenion of G2(K), it is known that it is
generic (cf.[Z]) for example).

We note M(K) the mirabolic subgroup of G2(K) of matrices of the form

(

a x
0 1

)

with a in K∗

and x in K, and M(F ) its intersection with G2(F ).

We note w the matrix

(

0 −1
1 0

)

.

Let K(π, ψ) be its Kirillov model corresponding to ψ ([J-L], th. 2.13), it contains the subspace
D(K∗) of functions with compact support on the group K∗.

If φ belongs to K(π, ψ), and x belongs to K, then φ − π

(

1 x
0 1

)

φ belongs to D(K∗) ([J-L],

prop.2.9, ch.1), from this follows that K(π, ψ) = D(K∗) + π(w)D(K∗).

We now recall a consequence of the functional equation at 1/2 for Kirillov representations (cf.
[B]).
Forall φ in K(π, ψ) and χ character of K∗, we have whenever both sides converge absolutely:

∫

K∗
π(w)φ(x)(cπχ)−1(x)d∗x = γ(π ⊗ χ, ψ)

∫

K∗
φ(x)χ(x)d∗x (1)

where d∗x is a Haar measure on K∗, and cπ is the central character of π.

Theorem 4.1. Let π be a smooth irreducible representation of infinite dimension with central
character trivial on F ∗ of G2(K), and ψ a nontrivial character of K trivial on F . If γ(π⊗χ, ψ) = 1
for every character χ of K∗ trivial on F ∗, then π is distinguished.

Proof. In fact, using a Fourier inversion in functional equation (1) and the change of variable
x 7→ x−1, we deduce that forall φ in D(K∗) ∩ π(w)D(K∗), we have

cπ(x)

∫

F∗

π(w)φ(tx−1)d∗t =

∫

F∗

φ(tx)d∗t

( d∗t is a Haar measure on F ∗) which for x = 1 gives

∫

F∗

π(w)φ(t)d∗t =

∫

F∗

φ(t)d∗t.

Now we define on K(π, ψ) a linear form λ by:

λ(φ1 + π(w)φ2) =

∫

F∗

φ1(t)d
∗t+

∫

F∗

φ2(t)d
∗t
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for φ1 and φ2 in D(K∗), which is well defined because of the previous equality and the fact that
K(π, ψ) = D(K∗) + π(w)D(K∗).

It is clear that λ is w-invariant.
As the central character of π is trivial on F ∗, it is also clear that λ is F ∗-invariant.
Because GL2(F ) is generated by M(F ), its center, and w, it remains to show that λ is M(F )-
invariant.
It is clear that if φ ∈ D(K∗), and m ∈M(F ), λ(π(m)φ) = λ(φ) ( since ψ is trivial on F ).
Now if φ = π(w)φ2 ∈ π(w)D(K∗).

If a belongs to F ∗, then π

(

a 0
0 1

)

π(w)φ2 = π(w)π

(

1 0
0 a

)

φ2 = π(w)π

(

a−1 0
0 1

)

φ2 be-

cause the central character of π is trivial on F ∗, and λ(π

(

a 0
0 1

)

φ) = λ(φ).

If x ∈ F , then π

(

1 x
0 1

)

φ−φ is a function ofD(F ∗), which vanishes on F ∗, hence λ(

(

1 x
0 1

)

φ−

φ) = 0.

Eventually λ is M(F )-invariant, hence G2(F )-invariant, it is clear that its restriction to D(K∗)
is non zero.

Corollary 4.1. Let µ be a character of K∗, then π(µ, µ−σ) is distinguished.

Proof. Indeed, first we notice that the central character µµ−σ of π(µ, µ−σ) is trivial on F ∗.
Now let χ be a character ofK∗/F ∗, then γ(π(µ, µ−σ)⊗χ, ψ) = γ(µχ, ψ)γ(µ−σχ, ψ) = γ(µχ, ψ)γ(µ−1χσ, ψσ),
and as ψ|F = 1 and χ|F∗ = 1, one has ψσ = ψ−1 and χσ = χ−1, sothat γ(π(χ, χ−σ), ψ) =
γ(µχ, ψ)γ(µ−1χ−1, ψ−1) = 1. The conclusion falls from proposition 4.1.

The converse of theorem 4.1 is also true:

Theorem 4.2. Let π be a smooth irreducible distinguished representation of infinite dimension of
G2(K) and ψ a non trivial character of K/F , then γ(π, ψ) = 1.

Proof. Suppose λ is a non zero G2(F )-invariant linear form on K(π, ψ), it is shown in the proof of
the corollary of proposition 3.3 in [H], that its restriction to D(K∗) must be a multiple of the Haar
measure on F ∗.
Hence for any function in D(K∗) ∩ π(w)D(K∗), we must have

∫

F∗
φ(t)d∗t =

∫

F∗
π(w)φ(t)d∗t.

From this one deduces that for any function in D(K∗) ∩ π(w)D(K∗):
∫

K∗
π(w)φ(x)c−1

π (x)d∗x =
∫

K∗/F∗
c−1
π (a)

∫

F∗
π(w)φ(ta)d∗tda

=
∫

K∗/F∗
c−1
π (a)

∫

F∗
π(

a 0
0 1

)π(w)φ(t)d∗tda

=
∫

K∗/F∗
c−1
π (a)

∫

F∗
π(w)cπ(a)π(

a−1 0
0 1

)φ(t)d∗tda

This last quantity is equal to
∫

K∗/F∗

∫

F∗
π(

a−1 0
0 1

)φ(t)d∗tda

=
∫

K∗/F∗

∫

F∗
φ(ta−1)d∗tda =

∫

K∗/F∗

∫

F∗
φ(ta)d∗tda =

∫

K∗
φ(x)d∗x.

From this we deduce that either γ(π, ψ) is equal to one, either
∫

K∗
φ(x)d∗x is equal to zero on
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D(K∗) ∩ π(w)D(K∗).
In the second case, we could define two independant K∗-invariant linear forms on K(π, ψ) =
D(K∗) + π(w)D(K∗), given by φ1 + π(w)φ2 7→

∫

K∗
φ1(x)d

∗x, and φ1 + π(w)φ2 7→
∫

K∗
φ2(x)d

∗x.
This would contradict theorem 1.2 of [A-G].
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