Distinguished principal series representations for GL_n over a p–adic field

Nadir Matringe

July 10, 2008

1 Introduction

For K/F a quadratic extension of p-adic fields, let σ be the conjugation relative to this extension, and $\eta_{K/F}$ be the character of F^* with kernel norms of K^*.

If π is a smooth irreducible representation of $GL(n, K)$, and χ a character of F^*, the dimension of the space of linear forms on its space, which transform by χ under $GL(n, F)$ (with respect to the action $[(L, g) \mapsto L \circ \pi(g)]$), is known to be at most one (Proposition 11, [F]). One says that π is χ-distinguished if this dimension is one, and says that π is distinguished if it is 1-distinguished.

In this article, we give a description of distinguished principal series representations of $GL(n, K)$.

The result (Theorem 3.2) is that the irreducible distinguished representations of the principal series of $GL(n, K)$ are (up to isomorphism) those unitarily induced from a character $\chi = (\chi_1, ..., \chi_n)$ of the maximal torus of diagonal matrices, such that there exists $r \leq n/2$, for which $\chi_{i+1}^2 = \chi_i^{-1}$ for $i = 1, 3, ..., 2r - 1$, and $\chi_{i \geq 2r} = 1$ for $i > 2r$. For the quadratic extension \mathbb{C}/\mathbb{R}, it is known (cf. [F]) that the analogous result is true for tempered representations.

For $n \geq 3$, this gives a counter-example (Corollary [11] to a conjecture of Jacquet (Conjecture 1 in [A]). This conjecture states that an irreducible representation π of $GL(n, K)$ with central character trivial on F^* is isomorphic to $\tilde{\pi}^\sigma$ if and only if it is distinguished or $\eta_{K/F}$-distinguished (where $\eta_{K/F}$ is the character of order 2 of F^*, attached by local class field theory to the extension K/F). For discrete series representations, the conjecture is verified, it was proved in [K].

Unitary irreducible distinguished principal series representations of $GL(2, K)$ were described in [H], and the general case of distinguished irreducible principal series representations of $GL(2, K)$ was treated in [F-H]. We use this occasion to give a different proof of the result for $GL(2, K)$ than the one in [F-H]. To do this, in Theorems 4.1 and 4.2, we extend a criterion of Hakim (th.4.1, [H]) characterising smooth unitary irreducible distinguished representations of $GL(2, K)$ in terms of γ factors at $1/2$, to all smooth irreducible distinguished representations of $GL(2, K)$.

2 Preliminaries

Let ϕ be a group automorphism, and x an element of the group, we sometimes note x^ϕ instead of $\phi(x)$, and $x^{-\phi}$ the inverse of x^ϕ. If $\phi = x \mapsto h^{-1}xh$ for h in the group, then x^h designs x^ϕ.
Let G be a locally compact totally disconnected group, H a closed subgroup of G.

We note Δ_G the module of G, given by the relation $d_G(gx) = \Delta_G(g)d_G(x)$, for a right Haar measure d_G on G.

Let X be a locally closed subspace of G, with $H.X \subset X$. If V is a complex vector space, we note $D(X,V)$ the space of smooth V-valued functions on X with compact support (if $V = \mathbb{C}$, we simply note it $D(X)$).

Let ρ be a smooth representation of H in a complex vector space V, we note $D(H \setminus G, \Delta_G/\Delta_H \rho, V \rho)$ the space of smooth $V\rho$-valued functions f on X, with compact support modulo H, which verify $f(hx) = \rho(h)f(x)$ for $h \in H$ and $x \in X$ (if ρ is a character, we note it $D(H \setminus G, \rho)$).

We note $\text{ind}_{G}^{H}(\rho)$ the representation by right translations of G in $D(H \setminus G, (\Delta_G/\Delta_H)^{1/2} \rho, V \rho)$.

Let F be a non archimedean local field of characteristic zero, and K a quadratic extension of F. We have $K = F(\delta)$ with $\delta^2 \in F^*$.

We note $| |_K$ and $| |_F$ the modules of K and F respectively.

We note σ the non trivial element of the Galois group $G(K/F)$ of K over F, and we use the same letter to design for its action on $M_n(K)$.

We note $N_{K/F}$ the norm of the extension K/F and we note $\eta_{K/F}$ the nontrivial character of F^* which is trivial on $N_{K/F}(K^*)$.

Whenever G is an algebraic group defined over F, we note $G(K)$ its K-points and $G(F)$ its F-points.

The group $GL(n)$ will be noted G_n, its standard Borel subgroup will be noted B_n, its unipotent radical U_n, and the standard maximal split torus of diagonal matrices T_n.

We note S the space of matrices M in $G_n(K)$ satisfying $MM^\sigma = 1$.

Everything in this paragraph is more or less contained in [F1], we give detailed proofs here for convenience of the reader.

Proposition 2.1. ([S], ch.10, prop.3) We have a homeomorphism between $G_n(K)/G_n(F)$ and S given by the map $S_n : g \mapsto g\sigma g^{-1}$.

Proposition 2.2. For its natural action on S, each orbit of $B_n(K)$ contains one and only one element of S_n of order 2 or 1.

Proof. We begin with the following:

Lemma 2.1. Let w be an element of $S_n \subset G_n(K)$ of order at most 2.

Let θ' be the involution of $T_n(K)$ given by $t \mapsto t^{-1}t^\sigma w$, then any $t \in T_n(K)$ with $t\theta'(t) = 1$ is of the form $a/\theta'(a)$ for some $a \in T_n(K)$.

Proof of Lemma 2.1. There exists $r \leq n/2$ such that up to conjugacy, w is $(1,2)(3,4)...(2r-1,2r)$.

2
Let s be in S. According to Bruhat’s decomposition, there is w in \mathfrak{S}_n, and a in $T_n(K)$, n_1 in $U_n(K)$ and n_2^+ in U_w, such that $s = n_1 w n_2^+$, with unicity of the decomposition.
Corollary 2.1. The elements \(t \) in \(\text{classes of } B \).

The conclusion follows the preceding Lemma.

From the proof of Proposition 2.2, we know that if \((aw)^{-1}n^\sigma aw = n^{-1} \), applying \(\sigma \) on each side, this becomes \((aw)^{-1}n^\sigma aw = n^{-1} \).

But \(\theta : u \mapsto (aw)^{-1}u^\sigma aw \) is an involutive automorphism of \(U_w' \), hence from Lemma 2.2 there is \(u' \) in \(U_w' \) such that \(n = \theta(u^{-1})u \).

This gives \(s = u^{-\sigma}awu \), so that we suppose \(s = aw \). Again \(wa^\sigma w = a^{-1} \), and applying Lemma 2.1 to \(\theta' : x \mapsto wx^\sigma w \), we deduce that \(a \) is of the form \(y\theta'(y^{-1}) \), and \(s = ywy^{-\sigma} \).

Let \(u \) be the element \(\begin{pmatrix} 1 & -\delta \\ 1 & \delta \end{pmatrix} \) of \(M_2(K) \); one has \(S_2(u) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) (cf. Proposition 2.1).

We notice for further use (cf. proof of Proposition 3.1), that if we note \(\tilde{T} \) the subgroup \(\left\{ \begin{pmatrix} z & 0 \\ 0 & z^\sigma \end{pmatrix} \in G_2(K) \mid z \in K^* \right\} \), then \(u^{-1}\tilde{T}u = T = \left\{ \begin{pmatrix} x & \Delta y \\ y & x \end{pmatrix} \in G_2(F) \mid x, y \in F \right\} \).

For \(r \leq n/2 \), one notes \(U_r \) the \(n \times n \) matrix given by the following block decomposition:

\[
\begin{pmatrix}
u & \cdots & \cdots \\
\vdots & \ddots & \\
\vdots & & u_{I_n-2r} \\
\end{pmatrix}
\]

If \(w \) is an element of \(\mathfrak{S}_n \) naturally injected in \(G_n(K) \), one notes \(U_r^w = w^{-1}U_r w \).

Corollary 2.1. The elements \(U_r^w \) for \(0 \leq r \leq n/2 \), and \(w \in \mathfrak{S}_n \) give a complete set of representatives of classes of \(B_n(K) \backslash G_n(K)/G_n(F) \).

Let \(G_n = \coprod_{w \in \mathfrak{S}_n} B_n w B_n \) be the Bruhat decomposition of \(G_n \). We call a double-class \(BwB \) a Bruhat cell.

Lemma 2.3. One can order the Bruhat cells \(C_1, C_2, \ldots, C_n! \) so that for every \(1 \leq i \leq n! \), the cell \(C_i \) is closed in \(G_n - \coprod_{k=1}^{i-1} C_k \).

Proof. Choose \(C_1 = B_n \). It is closed in \(G_n \). Now let \(w_2 \) be an element of \(\mathfrak{S}_n - Id \), with minimal length. Then from 8.5.5. of [17], one has that the Bruhat cell \(Bw_2B \) is closed in \(G_n - B_n \) with respect to the Zariski topology, hence for the p-adic topology, we call it \(C_2 \). We conclude by repeating this process.

Corollary 2.2. One can order the classes \(A_1, A_2, \ldots, A_i \) of \(B_n(K) \backslash G_n(K)/G_n(F) \), so that \(A_i \) is closed in \(G_n(K) - \coprod_{k=1}^{i-1} A_i \).

Proof. From the proof of Proposition 2.2 we know that if \(C \) is a Bruhat cell of \(G_n \), then \(S_n \cap C \) is either empty, or it corresponds through the homomorphism \(S_n \) to a class \(A \) of \(B_n(K) \backslash G_n(K)/G_n(F) \).

The conclusion follows the preceeding Lemma.

Corollary 2.3. Each \(A_i \) is locally closed in \(G_n(K) \) for the Zariski topology.
We will also need the following Lemma:

Lemma 2.4. Let G, H, X, and (ρ, V_ρ) be as in the beginning of the section, the map Φ from $D(X) \otimes V_\rho$ to $D(H \setminus X, \rho, V_\rho)$ defined by $\Phi : f \otimes v \mapsto (x \mapsto \int_H f(hx) \rho(h^{-1})vdh)$ is surjective.

Proof. Let $v \in V_\rho$, U an open subset of G that intersects X, small enough for $h \mapsto \rho(h)v$ to be trivial on $H \cap UU^{-1}$.

Let f' be the function with support in $H(X \cap U)$ defined by $hx \mapsto \rho(h)v$.

Such functions generate $D(H \setminus X, \rho, V_\rho)$ as a vector space.

Now let f be the function of $D(X, V_\rho)$ defined by $x \mapsto 1_{U \cap X}(x)v$, then $\Phi(f)$ is a multiple of f'.

But for x in $U \cap X$, $\Phi(f)(x) = \int_H \rho(h^{-1})f(hx)dh$ because $h \mapsto \rho(h)v$ is trivial on $H \cap UU^{-1}$, plus $h \mapsto f(hx)$ is a positive function that multiplies v, and $f(x) = V$, so $F(f)(x)$ is v multiplied by a strictly positive scalar. \hfill \Box

Corollary 2.4. Let Y be a closed subset of X, H-stable, then the restriction map from $D(H \setminus X, \rho, V_\rho)$ to $D(H \setminus Y, \rho, V_\rho)$ is surjective.

Proof. This is a consequence of the known surjectivity of the restriction map from $D(X)$ to $D(Y)$, which implies the surjectivity of the restriction from $D(X, V_\rho)$ to $D(Y, V_\rho)$ and of the commutativity of the diagram:

$$
\begin{array}{ccc}
D(X) & \rightarrow & D(Y) \\
\downarrow \Phi & & \downarrow \Phi \\
D(H \setminus X, \rho) & \rightarrow & D(H \setminus Y, \rho)
\end{array}
$$

\hfill \Box

3 Distinguished principal series

If π is a smooth representation of $G_n(K)$ of space V_π, and χ is a character of F^*, we say that π is χ-distinguished if there exists on V_π a nonzero linear form L such that $L(\pi(g)v) = \chi(\text{det}(g))L(v)$ whenever g is in $G_n(F)$ and v belongs to V_π. If χ is trivial, we simply say that π is distinguished.

We first recall the following:

Theorem 3.1. (\cite{I}, Proposition 12)

Let π be a smooth irreducible distinguished representation of $G_n(K)$, then $\pi^{\sigma} \simeq \pi$.

Let χ_1, \ldots, χ_n be n characters of K^*, with none of their quotients equal to $| \cdot |_K$. We note χ the character of $B_n(K)$ defined by $\chi \left(\begin{array}{ccc}
b_1 & \ast & \ast \\
\ast & \ddots & \ast \\
b_n & & \ast
\end{array} \right) = \chi_1(b_1) \ldots \chi_n(b_n)$.

We note $\pi(\chi)$ the representation of $G_n(K)$ by right translation on the space of functions $D(B_n(K) \setminus G_n(K), \Delta B_n^{-1/2} \chi)$. This representation is smooth, irreducible and called the principal series attached to χ.

If π is a smooth representation of $G_n(K)$, we note $\bar{\pi}$ its smooth contragredient.

We will need the following Lemma:

Lemma 3.1. (Proposition 26 in \cite{F}) Let $\bar{m} = (m_1, \ldots, m_l)$ be a partition of a positive integer m, let $P_{\bar{m}}$ be the corresponding standard parabolic subgroup, and for each $1 \leq i \leq l$, let π_i be a smooth...
distinguished representation of $G_{m_1}(K)$, then $\pi_1 \times \cdots \times \pi_t = \text{ind}_{F_{m_1}(K)}^{G_{m_1}(K)}(\Delta_{m_1}^{-1/2}(\pi_1 \otimes \cdots \otimes \pi_t))$ is distinguished.

We now come to the principal results:

Proposition 3.1. Let $\chi = (\chi_1, \ldots, \chi_n)$ be a character of $T_n(K)$, suppose that the principal series representation $\pi(\chi)$ is distinguished, there exists a re-ordering of the χ_i's, and $r \leq n/2$, such that $\chi_{i+1} = \chi_i^{-1}$ for $i = 1, 3, \ldots, 2r - 1$, and that $\chi_i|_{\mathbb{F}_r} = 1$ for $i > 2r$.

Proof. We write $B = B_n(K), G = G_n(K)$. We have from Corollary 2.2 and 3.1, the following exact sequence of smooth $G_n(F)$-modules:

$$D(B \setminus G - A_1, \Delta_B^{-1/2}) \hookrightarrow D(B \setminus G, \Delta_B^{-1/2}) \rightarrow D(B \setminus A_1, \Delta_B^{-1/2}).$$

Hence there is a non zero distinguished linear form either on $D(B \setminus A_1, \Delta_B^{-1/2})$, or on $D(B \setminus G - A_1, \Delta_B^{-1/2})$.

In the second case we have the exact sequence

$$D(B \setminus G - A_1 \sqcup A_2, \Delta_B^{-1/2}) \hookrightarrow D(B \setminus G - A_1, \Delta_B^{-1/2}) \rightarrow D(B \setminus A_2, \Delta_B^{-1/2}).$$

Repeating the process, we deduce the existence of a non zero distinguished linear form on one of the spaces $D(B \setminus A_1, \Delta_B^{-1/2})$.

From Corollary 2.2 we choose ω in S_n and $r \leq n/2$ such that $A_i = BU_r^wG_n(F)$. The application $f \mapsto [x \mapsto f(U_r^w x)]$ gives an isomorphism of $G_n(F)$-modules between $D(B \setminus A_1, \Delta_B^{-1/2})$ and $D(U_r^{-w}B^{-w}U_r^w \cap G_n(F) \setminus G_n(F), \Delta'_\chi')$ where $\Delta'(x) = \Delta_B^{-1/2}(U_r^w x U_r^{-w})$ and $\chi'(x) = \chi(U_r^w x U_r^{-w})$.

Now there exists a nonzero $G_n(F)$-invariant linear form on $D(U_r^{-w}B^{-w}U_r^w \cap G_n(F) \setminus G_n(F), \Delta'_\chi')$ if and only if $\Delta'\chi'$ is equal to the inverse of the module of $U_r^{-w}B^{-w}U_r^w \cap G_n(F)$ (cf. [B-H], ch.1, prop.3.4). From this we deduce that χ' is positive on $U_r^{-w}B^{-w}U_r^w \cap G_n(F)$ or equivalently χ is positive on $B \cap U_r^{-w}G_n(F)U_r^{-w}$.

Let \widehat{T}_r be the F-torus of matrices of the form

$$\begin{pmatrix}
 z_1 & & & \\
 & \ddots & & \\
 & & z_r & \\
 & & & x_1 \\
 & & & & \ddots \\
 & & & & & x_t
\end{pmatrix},
$$

with $2r + t = n, z_i \in K^*, x_i \in F^*$, then one has $\widehat{T}_r^w \subset B \cap U_r^{-w}G_n(F)U_r^{-w}$, so that χ must be positive on \widehat{T}_r^w.

We remark that if χ is unitary, then χ is trivial on \widehat{T}_r^w, and $\pi(\chi)$ is of the desired form.

For the general case, we deduce from Theorem 5.1 that there exists three integers $p \geq 0, q \geq 0, s \geq 0$ such that up to reordering, we have $\chi_{2i} = \chi_{2i+1}$ for $1 \leq i \leq p$, we have $\chi_{2p+k}|_{\mathbb{F}_r} = 1$ for $1 \leq k \leq q$.
and these \(\chi_{2p+k} \)'s are different (so that \(\chi_{2p+k} \neq \chi_{2p+k'} \) for \(k \neq k' \)), and \(\chi_{2p+q+j} = \eta_{K/F} \) for \(1 \leq j \leq s \), these \(\chi_{2p+q+j} \)'s being different.

We note \(\mu_k = \chi_{2p+k} \) for \(q \geq k \geq 1 \), and \(\nu_i' = \chi_{2p+q+i} \) for \(s \geq k' \geq 1 \).

We show that if such a character \(\chi \) is positive on a conjugate of \(T_r \) by an element of \(S_n \), then \(s = 0 \).

Suppose \(\nu_1 \) appears, then either \(\nu_1 \) is positive on \(F^* \), but that is not possible, or it is coupled with another \(\chi_i \), and \((\nu_1, \chi_i) \) is positive on elements \((z, z^\sigma) \), for \(z \) in \(K^* \).

Suppose \(\chi_i = \nu_j \) for some \(j \neq 1 \), then \((\nu_1, \chi_i) \) is unitary, so it must be trivial on couples \((z, z^\sigma) \), which implies \(\nu_1 = \nu_j = \nu_j', \) which is absurd.

The character \(\chi_i \) cannot be of the form \(\mu_j \), because it would imply \(\nu_{1|F^*} = 1 \).

The last case is \(i \leq 2p \), then \(\nu_1 = \nu_1 \) must be the unitary part of \(\chi_i \) because of the positivity of \((\nu_1, \chi_i) \) on the couples \((z, z^\sigma) \).

But \(\chi_i^{-\sigma} \) also appears and is not trivial on \(F^* \), hence must be coupled with another character \(\chi_j \) with \(j \leq 2p \) and \(j \neq i \), such that \((\chi_i^{-\sigma}, \chi_j) \) is positive on the elements \((z, z^\sigma) \), for \(z \) in \(K^* \), which implies that \(\chi_j \) has unitary part \(\nu_1^{-\sigma} = \nu_1 \). The character \(\chi_j \) cannot be a \(\mu_k \) because of its unitary part.

If it is a \(\chi_k \) with \(k \leq 2p \), we consider again \(\chi_k^{-\sigma} \).

But repeating the process lengthily enough, we can suppose that \(\chi_j \) is of the form \(\nu_k \), for \(k \neq 1 \).

Taking unitary parts, we see that \(\nu_k = \nu_1^{-\sigma} = \nu_1 \), which is in contradiction with the fact that all \(\nu_i \)'s are different. We conclude that \(s = 0 \).

\[\text{Theorem 3.2.} \]

Let \(\chi = (\chi_1, \ldots, \chi_n) \) be a character of \(T_n(K) \), the principal series representation \(\pi(\chi) \) is distinguished if and only if there exists \(r \leq n/2 \), such that \(\chi_i^{r+1} = \chi_i^{-1} \) for \(i = 1, 3, \ldots, 2r-1 \), and that \(\chi_{i|F^*} = 1 \) for \(i > 2r \).

\[\text{Proof.} \] There is one implication left.

Suppose \(\chi \) is of the desired form, then \(\pi(\chi) \) is parabolically (unitarily) induced from representations of the type \(\pi(\chi_i, \chi_i^{-\sigma}) \) of \(G_2(K) \), and distinguished characters of \(K^* \).

Hence, because of Lemma 4.4, the Theorem will be proved if we know that the representations \(\pi(\chi_i, \chi_i^{-\sigma}) \) are distinguished, but this is Corollary 4.1 of the next paragraph.

This gives a counter-example to a conjecture of Jacquet (conjecture 1 in [A]), asserting that if an irreducible admissible representation \(\pi \) of \(G_n(K) \) verifies that \(\tilde{\pi} \) is isomorphic to \(\pi^\sigma \), then it is distinguished if \(n \) is odd, and it is distinguished or \(\eta_{K/F} \)-distinguished if \(n \) is even.

\[\text{Corollary 3.1.} \]

For \(n \geq 3 \), there exist smooth irreducible representations \(\pi \) of \(G_n(K) \), with central character trivial on \(F^* \), that are neither distinguished, nor \(\eta_{K/F} \)-distinguished, but verify that \(\tilde{\pi} \) is isomorphic to \(\pi^\sigma \).

\[\text{Proof.} \] Take \(\chi_1, \ldots, \chi_n \), all different, such that \(\chi_1|F^* = \chi_2|F^* = \eta_{K/F} \), and \(\chi_3|F^* = 1 \) for \(3 \leq j \leq n \).

Because each \(\chi_i \) has trivial restriction to \(N_{K/F}(K^*) \), it is equal to \(\chi_i^{-\sigma} \), hence \(\tilde{\pi} \) is isomorphic to \(\pi^\sigma \).

Another consequence is that if \(k \) and \(l \) are two different integers between 1 and \(n \), then \(\chi_k \neq \chi_l^{-\sigma} \), because we supposed the \(\chi_i \)'s all different.

Then it follows from Theorem 3.2 that \(\pi = \pi(\chi_1, \ldots, \chi_n) \) is neither distinguished, nor \(\eta_{K/F} \)-distinguished, but clearly, the central character of \(\pi \) is trivial on \(F^* \) and \(\tilde{\pi} \) is isomorphic to \(\pi^\sigma \).
4 Distinction and gamma factors for $GL(2)$

As said in the introduction, in this section we generalize to smooth infinite dimensional irreducible representations of $G_2(K)$ a criterion of Hakim (cf. [H], Theorem 4.1) characterising smooth unitary irreducible distinguished representations of $G_2(K)$. In proof of Theorem 4.1 of [H], Hakim deals with unitary representations so that the integrals of Kirillov functions on F^* with respect to a Haar measure of F^* converge. We skip the convergence problems using Proposition 2.9 of chapter 1 of [J-L].

We note $M(K)$ the mirabolic subgroup of $G_2(K)$ of matrices of the form $\begin{pmatrix} a & x \\ 0 & 1 \end{pmatrix}$ with a in K^* and x in K, and $M(F)$ its intersection with $G_2(F)$. We note w the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Let π be a smooth infinite dimensional irreducible representation of $G_2(K)$, it is known that it is generic (cf.[Z] for example). Let $K(\pi,\psi)$ be its Kirillov model corresponding to ψ ([J-L], th. 2.13), it contains the subspace $D(K^*)$ of functions with compact support on the group K^*. If ϕ belongs to $K(\pi,\psi)$, and x belongs to K, then $\phi - \pi \left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array} \right) \phi$ belongs to $D(K^*)$ ([J-L], prop.2.9, ch.1), from this follows that $K(\pi,\psi) = D(K^*) + \pi(w)D(K^*)$.

We now recall a consequence of the functional equation at $1/2$ for Kirillov representations (cf. [B], section 4.7).

For all ϕ in $K(\pi,\psi)$ and χ character of K^*, we have whenever both sides converge absolutely:

$$\int_{K^*} \pi(w)\phi(x)(c_\pi \chi)^{-1}(x)d^*x = \gamma(\pi \otimes \chi, \psi) \int_{K^*} \phi(x)\chi(x)d^*x$$

(1)

where d^*x is a Haar measure on K^*, and c_π is the central character of π.

Theorem 4.1. Let π be a smooth irreducible representation of $G_2(K)$ of infinite dimension with central character trivial on F^*, and ψ a nontrivial character of K trivial on F. If $\gamma(\pi \otimes \chi, \psi) = 1$ for every character χ of K^* trivial on F^*, then π is distinguished.

Proof. In fact, using a Fourier inversion in functional equation [H] and the change of variable $x \mapsto x^{-1}$, we deduce that for all ϕ in $D(K^*) \cap \pi(w)D(K^*)$, we have

$$c_\pi(x) \int_{F^*} \pi(w)\phi(tx^{-1})d^*t = \int_{F^*} \phi(t)x d^*t$$

(d^*t is a Haar measure on F^*) which for $x = 1$ gives

$$\int_{F^*} \pi(w)\phi(t)d^*t = \int_{F^*} \phi(t)d^*t.$$

Now we define on $K(\pi,\psi)$ a linear form λ by:

$$\lambda(\phi_1 + \pi(w)\phi_2) = \int_{F^*} \phi_1(t)d^*t + \int_{F^*} \phi_2(t)d^*t$$
for ϕ_1 and ϕ_2 in $D(K^*)$, which is well defined because of the previous equality and the fact that $K(\pi, \psi) = D(K^*) + \pi(w)D(K^*)$.

It is clear that λ is w-invariant. As the central character of π is trivial on F^*, λ is also F^*-invariant. Because $GL_2(F)$ is generated by $M(F)$, its center, and w, it remains to show that λ is $M(F)$-invariant.

Since ψ is trivial on F, one has if $\phi \in D(K^*)$ and $m \in M(F)$ the equality $\lambda(\pi(m)\phi) = \lambda(\phi)$.

Now if $\phi = \pi(w)\phi_2 \in \pi(w)D(K^*)$, and if a belongs to F^*, then $\pi\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \pi(w)\phi_2 = \pi(w)\pi\left(\begin{array}{cc} 1 & 0 \\ 0 & a \end{array}\right) \phi_2 = \pi(w)\pi\left(\begin{array}{cc} a^{-1} & 0 \\ 0 & 1 \end{array}\right) \phi_2$ because the central character of π is trivial on F^*, and $\lambda(\pi\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \phi) = \lambda(\phi)$.

If $x \in F$, then $\pi\left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right) \phi - \phi$ is a function in $D(K^*)$, which vanishes on F^*, hence $\lambda\pi(\left(\begin{array}{cc} 1 & x \\ 0 & 1 \end{array}\right) \phi - \phi) = 0$.

Eventually λ is $M(F)$-invariant, hence $G_2(F)$-invariant, it is clear that its restriction to $D(K^*)$ is non zero.

Corollary 4.1. Let μ be a character of K^*, then $\pi(\mu, \mu^{-\sigma})$ is distinguished.

Proof. Indeed, first we notice that the central character $\mu\mu^{-\sigma}$ of $\pi(\mu, \mu^{-\sigma})$ is trivial on F^*.

Now let χ be a character of K^*/F^*, then $\gamma(\pi(\mu, \mu^{-\sigma}) \otimes \chi, \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-\sigma} \chi, \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-1} \chi^{-\sigma}, \psi^{-1})$, and as $\psi|F = 1$ and $\chi|F^* = 1$, one has $\psi^{-1} = \psi^{-1}$ and $\chi^{-\sigma} = \chi^{-1}$, so that $\gamma(\pi(\chi, \chi^{-\sigma}), \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-1} \chi^{-1}, \psi^{-1}) = 1$. The conclusion falls from Proposition 4.1.

Assuming Theorem 1.2 of [A-G], the converse of Theorem 4.1 is also true:

Theorem 4.2. Let π be a smooth irreducible representation of infinite dimension of $G_2(K)$ with central character trivial on F^* and ψ a non trivial character of K/F, it is distinguished if and only if $\gamma(\pi \otimes \chi, \psi) = 1$ for every character χ of K^* trivial on F^*.

Proof. It suffices to show that if π is a smooth irreducible distinguished representation of infinite dimension of $G_2(K)$, and ψ a non trivial character of K/F, then $\gamma(\pi, \psi) = 1$. Suppose λ is a non zero $G_2(F)$-invariant linear form on $K(\pi, \psi)$, it is shown in the proof of the corollary of Proposition 3.3 in [H], that its restriction to $D(F^*)$ must be a multiple of the Haar measure on F^*. Hence for any function ϕ in $D(K^*) \cap \pi(w)D(K^*)$, we must have $\int_{F^*} \phi(t)d^*t = \int_{F^*} \pi(w)\phi(t)d^*t$.

9
From this one deduces that for any function in $D(K^*) \cap \pi(w) D(K^*)$:

$$
\int_{K^*} \pi(w) \phi(x) e^{-1}_\pi(x) d^*x = \int_{K^*/F^*} c^{-1}_\pi(a) \int_{F^*} \pi(w) \phi(ta) d^* tda
$$

$$
= \int_{K^*/F^*} c^{-1}_\pi(a) \int_{F^*} \pi(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}) \pi(w) \phi(t) d^* tda
$$

$$
= \int_{K^*/F^*} c^{-1}_\pi(a) \int_{F^*} \pi(w) c_\pi(a) \pi(\begin{pmatrix} a^{-1} & 0 \\ 0 & 1 \end{pmatrix}) \phi(t) d^* tda
$$

$$
= \int_{K^*/F^*} \int_{F^*} \pi(\begin{pmatrix} a^{-1} & 0 \\ 0 & 1 \end{pmatrix}) \phi(t) d^* tda
$$

$$
= \int_{K^*/F^*} \int_{F^*} \phi(ta^{-1}) d^* tda
$$

$$
= \int_{K^*/F^*} \int_{F^*} \phi(ta) d^* tda
$$

$$
= \int_{K^*} \phi(x) d^* x
$$

This implies that either $\gamma(\pi, \psi)$ is equal to one, or $\int_{K^*} \phi(x) d^* x$ is equal to zero on $D(K^*) \cap \pi(w) D(K^*)$. In the second case, we could define two independent K^*-invariant linear forms on $K(\pi, \psi) = D(K^*) + \pi(w) D(K^*)$, given by $\phi_1 + \pi(w) \phi_2 \mapsto \int_{K^*} \phi_1(x) d^* x$, and $\phi_1 + \pi(w) \phi_2 \mapsto \int_{K^*} \phi_2(x) d^* x$. This would contradict Theorem 1.2 of [A-G].

Acknowledgements

I would like to thank Corinne Blondel and Paul Gérardin, for many helpful comments and suggestions.

References

